留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二次诱导的群体空港旅客出行推荐方法

柴琳果 芮涛 上官伟 蔡伯根

柴琳果, 芮涛, 上官伟, 蔡伯根. 基于二次诱导的群体空港旅客出行推荐方法[J]. 交通运输工程学报, 2023, 23(6): 301-313. doi: 10.19818/j.cnki.1671-1637.2023.06.020
引用本文: 柴琳果, 芮涛, 上官伟, 蔡伯根. 基于二次诱导的群体空港旅客出行推荐方法[J]. 交通运输工程学报, 2023, 23(6): 301-313. doi: 10.19818/j.cnki.1671-1637.2023.06.020
CHAI Lin-guo, RUI Tao, SHANGGUAN Wei, CAI Bai-gen. Group airport passengers travel recommendation method based on secondary induction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 301-313. doi: 10.19818/j.cnki.1671-1637.2023.06.020
Citation: CHAI Lin-guo, RUI Tao, SHANGGUAN Wei, CAI Bai-gen. Group airport passengers travel recommendation method based on secondary induction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 301-313. doi: 10.19818/j.cnki.1671-1637.2023.06.020

基于二次诱导的群体空港旅客出行推荐方法

doi: 10.19818/j.cnki.1671-1637.2023.06.020
基金项目: 

国家重点研发计划 2018YFB1601200

详细信息
    作者简介:

    柴琳果(1988-),男,湖北荆门人,北京交通大学副教授,工学博士,从事交通信息工程及控制研究

    上官伟:SHANGGUAN Wei(1979-), male, professor, PhD, wshg@bjtu.edu.cn

    通讯作者:

    上官伟(1979-),男,陕西咸阳人,北京交通大学教授,工学博士

  • 中图分类号: V351

Group airport passengers travel recommendation method based on secondary induction

Funds: 

National Key Research and Development Program of China 2018YFB1601200

More Information
  • 摘要: 针对旅客个性化出行需求和机场快速疏解要求,在对陆侧交通各出行方式固定分配的基础上,提出了一种基于二次诱导的群体空港旅客出行推荐方法,为定制化旅客服务提供算法支撑;基于旅客原始数据,结合粗糙集理论进行特征属性的知识约简,提高算法性能;运用改进贝叶斯分类算法进行基于旅客独立特征概率计算的出行方式推荐度量化,生成基于一次诱导的旅客出行推荐序列;面向机场陆侧各出行方式运力固定分配的约束,将旅客出行推荐序列输入基于改进非支配排序遗传算法(NSGA-Ⅱ)的旅客二次诱导出行推荐模型中,进行运力与旅客流的深度匹配,对旅客出行推荐结果进行再次优化;基于普适性原则,使用小规模(100人次)和大规模(1 000人次) 旅客样本进行模型验证。分析结果表明:在不同规模旅客流输入情况下均能得到良好结果,小规模样本下旅客出行方式推荐正确率为77.41%,大规模样本下旅客出行方式推荐正确率为79.62%;经过二次诱导后,旅客流出行推荐分布与运力间的匹配度相比真实出行以及一次诱导分布皆有巨大提升。在旅客流与运力高度匹配的基础上实现了旅客出行偏好需求,算法性能良好,为改善枢纽机场客流疏解能力提供了一种切实可行的方法。

     

  • 图  1  算法框架

    Figure  1.  Framework of algorithm

    图  2  基于依赖度的属性约简流程

    Figure  2.  Attribute reduction process based on dependency

    图  3  出行偏好与运力梯度匹配模型

    Figure  3.  Matching model of travel preference and capacity gradient

    图  4  不同约简流程的一次诱导正确率对比

    Figure  4.  Comparison of primary induction accuracies of different reduction processes

    图  5  帕累托前沿迭代

    Figure  5.  Iterations of Pareto front

    图  6  第1目标函数空间迭代

    Figure  6.  Iterations of first objective function space

    图  7  最优出行组合旅客流推荐分布

    Figure  7.  Recommended distributions of optimal travel combination passenger flows

    图  8  不同诱导阶段旅客出行方式分布综合对比

    Figure  8.  Comprehensive comparison of distributions of passenger travel modes at different induction stages

    表  1  属性约简算法结果

    Table  1.   Result of attribute reduction algorithm

    约简算法 付款人 准时重要性 理想出发时间 理想到达时间 旅行人数 年龄 收入 性别 职业 受教育程度 出发时间 到达时间 飞行时间 旅行时间 机票价格
    无约简
    基于依赖度的属性约简 · · ·
    基于正域的属性约简 ·
    下载: 导出CSV

    表  2  特征属性权值

    Table  2.   Feature attributes weights

    特征属性 付款人 准时重要性 收入 性别 受教育程度 出发时间 到达时间 机票价格
    权值 1.000 1.000 0.548 0.216 0.436 0.371 1.000 0.374
    下载: 导出CSV

    表  3  旅客出行推荐序列分布

    Table  3.   Distributions of passenger travel recommendation sequence

    样本 推荐梯度次数 出租车/网约车 机场巴士 轨道交通 私家车
    小规模
    旅客样本
    首位 12 10 56 15
    次位 28 36 16 13
    三位 13 29 10 41
    末位 40 18 11 24
    大规模
    旅客样本
    首位 89 65 628 149
    次位 320 329 108 174
    三位 88 267 84 492
    末位 395 240 167 129
    下载: 导出CSV

    表  4  二次诱导算法参数设置

    Table  4.   Parameter setting of secondary induction algorithm

    参数 取值
    最佳运力分配比例{t1, t2, t3, t4} {0.150, 0.519, 0.161, 0.170}
    进化代数N 小规模旅客样本 20、50、80
    大规模旅客样本 50、100、150
    基因数目na 小规模旅客样本 100
    大规模旅客样本 1 000
    种群数目n 5 000
    目标函数数目v 2
    交叉参数p1, off 1.00
    交叉参数p2, off 0.60
    变异参数p1, var 0.50
    变异参数p2, var 0.15
    下载: 导出CSV

    表  5  不同诱导阶段旅客出行分布与运力适应度对比

    Table  5.   Comparison of adaptabilities between passenger travel distribution and transport capacity at different induction stages

    样本 真实出行分布与运力适应度 一次诱导分布与运力适应度 二次诱导分布与运力适应度
    小规模旅客样本 -14.89 -10.01 -4.39
    大规模旅客样本 -181.83 -108.77 -37.19
    下载: 导出CSV
  • [1] HE Yu-gang. Civil aviation transportation industry and economic growth: an investigation from China[J]. Journal of Tourism and Industry Research, 2018, 38(4): 5-14.
    [2] CHOO S, YOU S, LEE H. Exploring characteristics of airport access mode choice: a case study of Korea[J]. Transportation Planning and Technology, 2013, 36(4): 335-351. doi: 10.1080/03081060.2013.798484
    [3] TABARES D A. An airport operations proposal for a pandemic-free air travel[J]. Journal of Air Transport Management, 2021, 90: 101943. doi: 10.1016/j.jairtraman.2020.101943
    [4] 赵嶷飞, 肖瞳瞳, 万俊强. 中国民航空中交通管制体制演化[J]. 交通运输工程学报, 2020, 20(2): 100-120. doi: 10.19818/j.cnki.1671-1637.2020.02.009

    ZHAO Yi-fei, XIAO Tong-tong, WAN Jun-qiang. Evolution of air traffic control system of Chinese Civil Aviation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 100-120. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.009
    [5] 刘晓明, 夏洪山. 基于逆向重力模型的枢纽机场旅客吞吐量估计方法[J]. 交通运输工程学报, 2008, 8(2): 85-89. doi: 10.3321/j.issn:1671-1637.2008.02.018

    LIU Xiao-ming, XIA Hong-shan. Estimating methods of passenger throughput for hub airport based on reverse gravity model[J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 85-89. (in Chinese) doi: 10.3321/j.issn:1671-1637.2008.02.018
    [6] 李国栋, 胡雅茹. 中国民航业发展与人口布局均衡程度实证研究[J]. 综合运输, 2018, 40(1): 11-16, 67.

    LI Guo-dong, HU Ya-ru. Empirical study on the balance degree between China's civil aviation industry development and population distribution[J]. China Transportation Review, 2018, 40(1): 11-16, 67. (in Chinese)
    [7] LIU Yu, WANG Wei-jie, HUANG Hong-zhong, et al. A new simulation model for assessing aircraft emergency evacuation considering passenger physical characteristics[J]. Reliability Engineering and System Safety, 2014(121): 187-197.
    [8] FAN Ai-hua, CHEN Xu-mei, WANG You-an, et al. All-stop, skip-stop, or transfer service: an empirical study on preferences of bus passengers[J]. IET Intelligent Transport Systems, 2018, 12(10): 1255-1263. doi: 10.1049/iet-its.2018.5213
    [9] 阚劲军, 周中雨. 四型机场与四强空管有机统一浅谈[J]. 民航学报, 2021, 5(4): 29-31.

    GAN Jin-jun, ZHOU Zhong-yu. On organic unity of airport with four features and air traffic control with four strengths[J]. Journal of Civil Aviation, 2021, 5(4): 29-31. (in Chinese)
    [10] WU Xiao-kun, ZHAO Tian-fang, CHEN Wei-neng, et al. Toward predicting active participants in tweet streams: a case study on two civil rights events[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, DOI: 10.1109/TKDE.2020.3017635.
    [11] 刘晓飞, 朱斐, 伏玉琛, 等. 基于用户偏好特征挖掘的个性化推荐算法[J]. 计算机科学, 2020, 47(4): 50-53.

    LIU Xiao-fei, ZHU Fei, FU Yu-chen, et al. Personalized recommendation algorithm based on user preference feature mining[J]. Computer Science, 2020, 47(4): 50-53. (in Chinese)
    [12] WU Cheng-lang, CHEN Yi-meng. Effects of passenger characteristics and terminal layout on airport retail revenue: an agent-based simulation approach[J]. Transportation Planning and Technology, 2019, 42(2): 167-186. doi: 10.1080/03081060.2019.1565163
    [13] WANG Liu, ZHANG Yong, ZHAO Xia, et al. Irregular travel groups detection based on cascade clustering in urban subway[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 2216-2225. doi: 10.1109/TITS.2019.2933497
    [14] 原福永, 冯静, 符茜茜. 微博用户的影响力指数模型[J]. 现代图书情报技术, 2012(6): 60-64.

    YUAN Fu-yong, FENG Jing, FU Qian-qian. Influence index model of micro-blog user[J]. New Technology of Library and Information Service, 2012(6): 60-64. (in Chinese)
    [15] QIU Ying-hui, HE Zhen-huan. A research on passenger's travel choice behavior in high-speed railway based on passenger survey questionnaire[C]//IEEE. 2nd International Conference on Applied Mathematics, Modeling and Simulation (AMMS). New York: IEEE, 2018: 277-283.
    [16] GOSLING G D. Use of air passenger survey data in forecasting air travel demand[J]. Transportation Research Record, 2018(2449): 79-87.
    [17] ARAGHI Y, KROESEN M, MOLIN E, et al. Revealing heterogeneity in air travelers' responses to passenger-oriented environmental policies: a discrete-choice latent class model[J]. International Journal of Sustainable Transportation, 2016, 10(9): 765-772. doi: 10.1080/15568318.2016.1149645
    [18] WEI Wei, WANG Cheng. Design of air passenger travel choice intention prediction system based on deep learning[J]. Scientific Programming, 2022, 2022: 7340552.
    [19] 钟翔, 韩旭, 朱彩云, 等. 基于二分K均值算法的机场旅客群体划分模型[J]. 中国民航大学学报, 2018, 36(3): 37-40.

    ZHONG Xiang, HAN Xu, ZHU Cai-yun, et al. Airport passenger grouping model based on dichotomic K-means algorithm[J]. Journal of Civil Aviation University of China, 2018, 36(3): 37-40. (in Chinese)
    [20] 吴麟麟, 卢海琴, 汪洋, 等. 引入忠诚度变量的城际出行方式动态选择行为研究[J]. 公路交通科技, 2014, 31(11): 123-129.

    WU Qi-lin, LU Hai-qin, WANG Yang, et al. Research on intercity travel mode dynamic choice behavior with introduced loyalty variable[J]. Journal of Highway and Transportation Research and Development, 2014, 31(11): 123-129. (in Chinese)
    [21] 尹溪琛. 基于旅客画像和出行链模型的交通出行推荐方法及应用[D]. 北京: 北京交通大学, 2021.

    YIN Xi-chen. Travel recommendation method and application based on passenger profile and trip chain model[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)
    [22] WU Xiang-juan, WANG Yu-ping, WANG Zi-qing. A centerline symmetry and double-line transformation based algorithm for large-scale multi-objective optimization[J]. Connection Science, 2022, 34(1): 1454-1481. doi: 10.1080/09540091.2022.2075828
    [23] MARTINEZ-ALVAREZ A, CRESPO-CANO R, DIAZ-TAHOCES A, et al. Automatic tuning of a retina model for a cortical visual neuroprosthesis using a multi-objective optimization genetic algorithm[J]. International Journal of Neural Systems, 2016, 26(7): 1650021. doi: 10.1142/S0129065716500210
    [24] OLIVETO P S, SUDHOLT D, ZARGES C. On the benefits and risks of using fitness sharing for multimodal optimisation[J]. Theoretical Computer Science, 2018, 773(2019): 53-70.
    [25] ZHU Shu-wei, XU Li-hong, GOODMAN E D, et al. A new many-objective evolutionary algorithm based on generalized pareto dominance[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7776-7790. doi: 10.1109/TCYB.2021.3051078
    [26] YUAN Yuan, XU Hua, WANG Bo, et al. A new dominance relation-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(1): 16-37. doi: 10.1109/TEVC.2015.2420112
    [27] 刘寅斌, 余咪咪, 李洪波, 等. 多目标项目调度研究综述: 复杂系统优化的视角[J]. 系统科学学报, 2020, 28(3): 84-89, 111.

    LIU Yin-bin, YU Mi-mi, LI Hong-bo, et al. A literature review of multi-objective project scheduling: a perspective on complex system optimization[J]. Journal of Systems Science, 2020, 28(3): 84-89, 111. (in Chinese)
    [28] 张泉峰. 首都机场接续运输协调保障技术研究与实现[D]. 成都: 电子科技大学, 2015.

    ZHANG Quan-feng. The research and implementation of capital International Airport roadside passenger transportation techniques[D]. Chengdu: University of Electronic Science and Technology, 2015. (in Chinese)
    [29] 聂磊, 高艺, 佘亮. 首都机场快线客运需求预测与运营方式研究[J]. 交通运输系统工程与信息, 2009, 9(4): 151-158.

    NEI Lei, GAO Yi, SHE Liang. Study on the forecast of the passenger flow to Beijing Airport by airport express line and its operation capital plan[J]. Journal of Transportation Systems Engineering and Information Technology, 2009, 9(4): 151-158. (in Chinese)
    [30] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  9
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回