留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯盐环境下预损伤UHPC-HPC组合梁抗弯性能

梅葵花 亢文波 刘洋 卢德利 孙胜江 韩方玉 武彦池

梅葵花, 亢文波, 刘洋, 卢德利, 孙胜江, 韩方玉, 武彦池. 氯盐环境下预损伤UHPC-HPC组合梁抗弯性能[J]. 交通运输工程学报, 2024, 24(1): 117-130. doi: 10.19818/j.cnki.1671-1637.2024.01.007
引用本文: 梅葵花, 亢文波, 刘洋, 卢德利, 孙胜江, 韩方玉, 武彦池. 氯盐环境下预损伤UHPC-HPC组合梁抗弯性能[J]. 交通运输工程学报, 2024, 24(1): 117-130. doi: 10.19818/j.cnki.1671-1637.2024.01.007
MEI Kui-hua, KANG Wen-bo, LIU Yang, LU De-li, SUN Sheng-jiang, HAN Fang-yu, WU Yan-chi. Flexural behavior of pre-damaged UHPC-HPC composite beams in chloride corrosion environment[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 117-130. doi: 10.19818/j.cnki.1671-1637.2024.01.007
Citation: MEI Kui-hua, KANG Wen-bo, LIU Yang, LU De-li, SUN Sheng-jiang, HAN Fang-yu, WU Yan-chi. Flexural behavior of pre-damaged UHPC-HPC composite beams in chloride corrosion environment[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 117-130. doi: 10.19818/j.cnki.1671-1637.2024.01.007

氯盐环境下预损伤UHPC-HPC组合梁抗弯性能

doi: 10.19818/j.cnki.1671-1637.2024.01.007
基金项目: 

国家重点研发计划 2021YFB2601002

浙江省交通运输厅科研计划项目 2018007

详细信息
    作者简介:

    梅葵花(1974-),女,湖北黄梅人,长安大学教授,工学博士,从事新材料结构设计方法与应用研究

  • 中图分类号: U444

Flexural behavior of pre-damaged UHPC-HPC composite beams in chloride corrosion environment

Funds: 

National Key Research and Development Program of China 2021YFB2601002

Scientific Research Project of Zhejiang Provincial Department of Transportation 2018007

More Information
  • 摘要:

    为了提高普通钢筋混凝土梁的耐久性,设计了一种超高性能混凝土(UHPC)-高性能混凝土(HPC)组合梁新型结构,开展了锈蚀后UHPC-HPC组合梁的抗弯性能试验,研究了氯盐侵蚀后组合梁抗弯承载力降低的机理,分析了腐蚀程度、截面形式与预损伤对其抗弯性能的影响;引入钢筋屈服强度折减系数、截面积折减系数与混凝土预损伤系数,提出了锈蚀后UHPC-HPC组合梁抗弯承载力计算方法,并验证了计算方法的可行性。分析结果表明:锈蚀后梁体抗弯承载力降低主要原因为钢筋抗拉强度下降,梁体刚度退化与韧性减弱,钢纤维阻裂效果削弱;锈蚀后UHPC-HPC组合梁的破坏表现为跨中附近出现1条主裂缝或加载点附近出现2条主裂缝;UHPC-HPC组合梁的受力过程分为线弹性、裂缝发展和屈服3个阶段,梁体截面混凝土应变基本符合平截面假定;侵蚀时间越长,组合梁的开裂荷载和承载力降低越大,通电快速侵蚀10 d时,降幅分别达16.2%和10.9%;锈蚀后T形梁比矩形梁开裂早,前者的开裂荷载比后者降低8.1%,后期刚度下降较快;预损伤显著影响梁的整体刚度,预加载后梁的整体刚度降低,混凝土损伤后的预损伤系数为0.984;锈蚀率越大,钢筋的屈服强度与截面积折减系数越小,变化趋势符合二次抛物线;锈蚀后UHPC-HPC组合梁抗弯承载力的计算值与实测值吻合良好,两者之比的平均值为0.998,标准差为0.020。

     

  • 图  1  UHPC-HPC组合梁尺寸与配筋(单位:mm)

    Figure  1.  Sizes and reinforcements of UHPC-HPC composite beams (unit: mm)

    图  2  试验梁预加载

    Figure  2.  Preloading of test beam

    图  3  通电加速腐蚀

    Figure  3.  Power-on accelerated corrosion

    图  4  加载装置

    Figure  4.  Loading setup

    图  5  试验梁破坏形态

    Figure  5.  Failure modes of test beams

    图  6  主裂缝处钢纤维拔出

    Figure  6.  Steel fibers pulling out at main crack

    图  7  钢筋锈蚀过程

    Figure  7.  Corrosion process of steel bar

    图  8  梁底表面锈蚀过程

    Figure  8.  Corrosion process of beam bottom surface

    图  9  钢纤维锈蚀过程

    Figure  9.  Corrosion process of steel fiber

    图  10  沿梁截面高度混凝土应变

    Figure  10.  Concrete strains along beam section height

    图  11  荷载-挠度曲线

    Figure  11.  Load-deflection curves

    图  12  主裂缝开展情况

    Figure  12.  Developments of main cracks

    图  13  k1-η拟合曲线

    Figure  13.  k1-η fitting curve

    图  14  第一类T形截面抗弯承载力

    Figure  14.  Flexural capacity of first type T-section

    表  1  UHPC-HPC组合梁试件参数

    Table  1.   Parameters of UHPC-HPC composite beam specimens

    试验梁编号 截面形式 加载方式 通电时间/d
    L1 T形梁 预加载 0
    L2 T形梁 未加载 6
    L3 T形梁 预加载 6
    L4 T形梁 预加载 8
    L5 T形梁 预加载 10
    L6 矩形梁 预加载 10
    下载: 导出CSV

    表  2  UHPC配合比

    Table  2.   Mix proportion of UHPC

    材料 预混料 减水剂 钢纤维
    单位质量/(kg·m-3) 2 232 16 199 195
    下载: 导出CSV

    表  3  HPC配合比

    Table  3.   Mix proportion of HPC

    材料 水泥 骨料 矿粉 粉煤灰 减水剂 阻锈剂
    单位质量/(kg·m-3) 308 693 1 130 44 88 132 5.3 5.3
    下载: 导出CSV

    表  4  混凝土材料性能

    Table  4.   Concrete material properties

    混凝土标号 抗压强度/MPa 抗拉强度/MPa 弹性模量/GPa
    C45 46.2 3.0 34.50
    C150 152.0 10.0 45.58
    下载: 导出CSV

    表  5  钢筋材料性能

    Table  5.   Steel bar material properties

    钢筋型号 直径/mm 屈服强度/MPa 极限强度/MPa
    HPB300 8 361.2 506.1
    HRB400 12 459.3 597.1
    下载: 导出CSV

    表  6  试验结果

    Table  6.   Test results

    试验梁编号 开裂荷载/kN 极限荷载/kN 破坏形式
    L1 37.0 128 适筋破坏
    L2 41.5 123 适筋破坏
    L3 38.5 121 适筋破坏
    L4 35.0 119 适筋破坏
    L5 31.0 116 适筋破坏
    L6 34.0 114 适筋破坏
    下载: 导出CSV

    表  7  混凝土预损伤系数对比

    Table  7.   Comparison of concrete pre-damage coefficients

    来源 PJX, Y/kN PJX, W/kN λ
    文献[28] 20.7 21.9 0.945
    本文 121.0 123.0 0.984
    下载: 导出CSV

    表  8  锈蚀后UHPC-HPC组合梁抗弯承载力

    Table  8.   Flexural capacities of UHPC-HPC composite beams after corrosion

    参数 L1 L3 L4 L5 L6
    φ1 0.979 6 0.969 4 0.964 7 0.959 0
    φ2 0.979 2 0.968 4 0.963 4 0.957 2
    λ 0.98 0.98 0.98 0.98
    Mj/(kN·m) 18.70 18.22 17.98 17.87 16.68
    Ms/(kN·m) 19.20 18.15 17.85 17.40 17.10
    Mj/Ms 0.974 1.004 1.008 1.027 0.976
    下载: 导出CSV

    表  9  钢筋屈服强度计算值与实测值对比

    Table  9.   Comparison of calculated and measured tensile strengths of steel bar

    锈蚀率/% 2.08 3.16 3.66 4.28
    fj/MPa 449.9 445.2 443.1 440.5
    fs/MPa 455.4 451.0 449.5 449.1
    fj/fs 0.988 0.987 0.986 0.981
    下载: 导出CSV

    表  10  抗弯承载力计算结果与试验结果对比

    Table  10.   Comparison of calculated and experimental results of flexural capacity

    文献 [30] [31]
    试验梁尺寸/mm 1 800×150×300 2 000×150×250
    试验梁编号 L7 L8 L9 CL50-10-1 CL50-10-2 CL65-10-1
    实际锈蚀率/% 6.34 8.00 11.92 7.44 8.42 11.13
    混凝土强度/MPa 19.0 19.0 18.0 45.4 45.4 45.4
    钢筋屈服强度/MPa 335 335 335 383.7 383.7 383.7
    极限荷载/kN 150 145 137 198.4 196.3 184.7
    Mj/(kN·m) 51.09 49.71 46.66 56.54 55.63 53.22
    Ms/(kN·m) 55.05 53.29 49.22 59.52 58.89 57.15
    Mj/Ms 0.928 0.933 0.948 0.950 0.945 0.931
    下载: 导出CSV
  • [1] 路承功, 魏智强, 乔宏霞, 等. 盐渍土地区混凝土加速寿命试验可靠性分析方法[J]. 中南大学学报(自然科学版), 2021, 52(3): 1017-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202103032.htm

    LU Cheng-gong, WEI Zhi-qiang, QIAO Hong-xia, et al. Reliability analysis method of accelerated life test of concrete in saline soil area[J]. Journal of Central South University (Science and Technology), 2021, 52(3): 1017-1026. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202103032.htm
    [2] ZHANG Huai-an, YAO Yi-ming, ZHU De-ju, et al. Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures[J]. Polymer Testing, 2016, 51: 29-39. doi: 10.1016/j.polymertesting.2016.02.006
    [3] 吴林键, 鞠学莉, 马原飞, 等. 钢筋对混凝土中氯离子扩散的阻挡效应预测模型[J]. 建筑材料学报, 2021, 24(2): 296-303, 332. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202102011.htm

    WU Lin-jian, JU Xue-li, MA Yuan-fei, et al. Prediction model of chloride diffusion in concrete considering the blocking effects of rebar[J]. Journal of Building Materials, 2021, 24(2): 296-303, 332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202102011.htm
    [4] 鲍玖文, 魏佳楠, 张鹏, 等. 海洋环境下混凝土抗氯离子侵蚀的相似性研究进展[J]. 硅酸盐学报, 2020, 48(5): 689-704. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202005012.htm

    BAO Jiu-wen, WEI Jia-nan, ZHANG Peng, et al. Research progress of similarity of resistance to chloride ingress into concrete exposed to marine environment[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 689-704. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202005012.htm
    [5] 吴智深, 刘加平, 邹德辉, 等. 海洋桥梁工程轻质、高强、耐久性结构材料现状及发展趋势研究[J]. 中国工程科学, 2019, 21(3): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201903007.htm

    WU Zhi-shen, LIU Jia-ping, ZOU De-hui, et al. Status quo and development trend of light-weight, high-strength, and durable structural materials applied in marine bridge engineering[J]. Strategic Study of CAE, 2019, 21(3): 31-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201903007.htm
    [6] JALAL M, POULADKHAN A R, NOROUZI H, et al. Chloride penetration, water absorption and electrical resistivity of high performance concrete containing nano silica and silica fume[J]. Journal of American Science, 2012, 8(4): 278-284.
    [7] LEE B, KIM G, NAM J, et al. Compressive strength, resistance to chloride-ion penetration and freezing/thawing of slag-replaced concrete and cementless slag concrete containing desulfurization slag activator[J]. Construction and Building Materials, 2016, 128: 341-348. doi: 10.1016/j.conbuildmat.2016.10.075
    [8] 杨义, 童张法, 冯庆革, 等. 大掺量高性能混凝土的抗氯离子渗透特性[J]. 武汉理工大学学报, 2010, 32(15): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201015002.htm

    YANG Yi, TONG Zhang-fa, FENG Qing-ge, et al. Resistance to the penetration of chloride ions of high performance concrete with high volume mineral admixture[J]. Journal of Wuhan University of Technology, 2010, 32(15): 9-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201015002.htm
    [9] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(23): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201723004.htm

    SHAO Xu-dong, QIU Ming-hong, YAN Ban-fu, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Materials Reports, 2017, 31(23): 33-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201723004.htm
    [10] 杜修力, 金浏, 张仁波. 力学荷载对混凝土中氯离子渗透扩散行为影响述评[J]. 建筑结构学报, 2016, 37(1): 107-125. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201601015.htm

    DU Xiu-li, JIN Liu, ZHANG Ren-bo. Review on effect of external mechanical loadings on chloride penetration and diffusion into concrete[J]. Journal of Building Structures, 2016, 37(1): 107-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201601015.htm
    [11] DOBIAS D, PERNICOVA R, MANDLIK T. Water transport properties and depth of chloride penetration in ultra high performance concrete[J]. Key Engineering Materials, 2016, 711: 137-142. doi: 10.4028/www.scientific.net/KEM.711.137
    [12] PYO S, KOH T, TAFESSE M, et al. Chloride-induced corrosion of steel fiber near the surface of ultra-high performance concrete and its effect on flexural behavior with various thickness[J]. Construction and Building Materials, 2019, 224: 206-213. doi: 10.1016/j.conbuildmat.2019.07.063
    [13] 安明喆, 李同乐. 活性粉末混凝土损伤后的抗氯离子渗透性能研究[J]. 混凝土, 2012(3): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201203007.htm

    AN Ming-zhe, LI Tong-le. Resistance to chloride ion penetration of reactive powder concrete after injury[J]. Concrete, 2012(3): 15-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201203007.htm
    [14] 刘钊, 雷海鹏, 罗杰, 等. 30 m先张预应力双T梁抗弯性能足尺模型试验研究[J]. 桥梁建设, 2022, 52(5): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202205003.htm

    LIU Zhao, LEI Hai-peng, LUO Jie, et al. Full-scale experimental test on flexural behavior of a 30 m-long pretensioned concrete double-tee girder[J]. Bridge Construction, 2022, 52(5): 14-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202205003.htm
    [15] LI Wang-wang, JI Wen-yu, AN Ming-zhe, et al. Flexural performance of composite prestressed UHPC-NC T-girders[J]. Journal of Bridge Engineering, 2020, 25(9): 04020064. doi: 10.1061/(ASCE)BE.1943-5592.0001600
    [16] 季文玉, 李旺旺, 王珏. 预应力RPC-NC叠合梁抗弯延性试验分析[J]. 哈尔滨工业大学学报, 2017, 49(6): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201706004.htm

    JI Wen-yu, LI Wang-wang, WANG Jue. Experimental analysis on flexural ductility of prestressed RPC-NC composite beam[J]. Journal of Harbin Institute of Technology, 2017, 49(6): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201706004.htm
    [17] 过民龙, 季文玉. 活性粉末混凝土与普通混凝土叠合T梁静载抗弯性能研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(3): 233-244. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201703002.htm

    GUO Min-long, JI Wen-yu. Bending behavior of RPC-NC composite T-girder under static load[J]. Journal of Tianjin University (Science and Technology), 2017, 50(3): 233-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201703002.htm
    [18] 刘超, 孙启鑫, 邹宇罡. 超高性能混凝土-混凝土组合简支梁弯曲性能试验[J]. 同济大学学报(自然科学版), 2020, 48(5): 664-672, 701. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202005005.htm

    LIU Chao, SUN Qi-xin, ZOU Yu-gang. Experimental study on bending performance of ultra-high performance concrete-normal concrete composite simply supported beam[J]. Journal of Tongji University (Natural Science), 2020, 48(5): 664-672, 701. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202005005.htm
    [19] SUN Qi-xin, LIU Chao. Experimental study and calculation method on the flexural resistance of reinforced concrete beam strengthened using high strain-hardening ultra high performance concrete[J]. Structural Concrete, 2021, 22(3): 1741-1759. doi: 10.1002/suco.202000592
    [20] CHEN Fei, GAO Jian-ming, QI Bing, et al. Degradation progress of concrete subject to combined sulfate-chloride attack under drying-wetting cycles and flexural loading[J]. Construction and Building Materials, 2017, 151: 164-171. doi: 10.1016/j.conbuildmat.2017.06.074
    [21] HARICHE L, BALLIM Y, BOUHICHA M, et al. Effects of reinforcement configuration and sustained load on the behaviour of reinforced concrete beams affected by reinforcing steel corrosion[J]. Cement and Concrete Composites, 2012, 34(10): 1202-1209. doi: 10.1016/j.cemconcomp.2012.07.010
    [22] 孙洋, 刁波, 张笑, 等. 侵蚀与荷载耦合作用下砼梁承载力与延性试验[J]. 哈尔滨工业大学学报, 2010, 42(12): 1972-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201012027.htm

    SUN Yang, DIAO Bo, ZHANG Xiao, et al. Experimental study on bearing capacity and ductility of reinforced concrete beam in multi-aggressive and loading coupling[J]. Journal of Harbin Institute of Technology, 2010, 42(12): 1972-1976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201012027.htm
    [23] 刘廷滨, 贾汝波, 张晨宇, 等. 锈蚀RC梁抗弯承载力计算方法研究[J]. 西南交通大学学报, 2020, 55(4): 789-798. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004015.htm

    LIU Ting-bin, JIA Ru-bo, ZHANG Chen-yu, et al. Bending capacity calculation method for corroded reinforced concrete beams[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 789-798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004015.htm
    [24] 马亚飞, 刘宇, 郭忠照, 等. 考虑黏结性退化的锈蚀PC梁抗弯承载力计算方法[J]. 防灾减灾工程学报, 2020, 40(4): 639-646. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202004019.htm

    MA Ya-fei, LIU Yu, GUO Zhong-zhao, et al. Calculation method for flexural capacity of corroded PC beams considering bond degradation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(4): 639-646. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202004019.htm
    [25] JIANG Chao, DING Hao, GU Xiang-lin, et al. Failure mode-based calculation method for bending bearing capacities of normal cross-sections of corroded reinforced concrete beams[J]. Engineering Structures, 2022, 258: 114113. doi: 10.1016/j.engstruct.2022.114113
    [26] 金伟良, 夏晋, 蒋遨宇, 等. 锈蚀钢筋混凝土梁受弯承载力计算模型[J]. 土木工程学报, 2009, 42(11): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200911012.htm

    JIN Wei-liang, XIA Jin, JIANG Ao-yu, et al. Flexural capacity of corrosion-damaged RC beams[J]. China Civil Engineering Journal, 2009, 42(11): 64-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200911012.htm
    [27] 余国庆, 王凯, 王宇航, 等. 超高性能混凝土功能梯度复合梁抗弯性能研究[J]. 铁道学报, 2022, 44(10): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202210020.htm

    YU Guo-qing, WANG Kai, WANG Yu-hang, et al. Study on flexural behavior of ultra-high performance concrete functionally graded composite beams[J]. Railway Journal, 2022, 44(10): 161-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202210020.htm
    [28] 胡大琳, 徐怀存, 张航, 等. 初始弯曲应力对冻融-碳化后钢筋混凝土梁承载力影响分析[J]. 长安大学学报(自然科学版), 2020, 40(5): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202005004.htm

    HU Da-lin, XU Huai-cun, ZHANG Hang, et al. Analysis on influence of initial bending stress on bearing capacity of reinforced concrete beam after freeze-thaw carbonization[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(5): 38-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202005004.htm
    [29] 赵羽习. 钢筋锈蚀引起混凝土结构锈裂综述[J]. 东南大学学报(自然科学版), 2013, 43(5): 1122-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201305035.htm

    ZHAO Yu-xi. State-of-art of corrosion-induced cracking of reinforced concrete structures[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(5): 1122-1134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201305035.htm
    [30] 彭建新, 胡守旺, 宋波, 等. 锈蚀RC梁抗弯性能试验与数值分析[J]. 中国公路学报, 2015, 28(6): 34-41, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201506006.htm

    PENG Jian-xin, HU Shou-wang, SONG Bo, et al. Experimental and numerical analysis of flexural performance for corroded RC beams[J]. China Journal of Highway and Transport, 2015, 28(6): 34-41, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201506006.htm
    [31] LIU Yang, JIANG Nan, DENG Yang, et al. Flexural experiment and stiffness investigation of reinforced concrete beam under chloride penetration and sustained loading[J]. Construction and Building Materials, 2016, 117: 302-310. doi: 10.1016/j.conbuildmat.2016.04.110
  • 加载中
图(14) / 表(10)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  26
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回