留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝土单箱多室箱梁温度梯度地域差异性

徐向锋 马禄爱 张峰 张磊 邬刚

徐向锋, 马禄爱, 张峰, 张磊, 邬刚. 混凝土单箱多室箱梁温度梯度地域差异性[J]. 交通运输工程学报, 2024, 24(1): 185-201. doi: 10.19818/j.cnki.1671-1637.2024.01.012
引用本文: 徐向锋, 马禄爱, 张峰, 张磊, 邬刚. 混凝土单箱多室箱梁温度梯度地域差异性[J]. 交通运输工程学报, 2024, 24(1): 185-201. doi: 10.19818/j.cnki.1671-1637.2024.01.012
XU Xiang-feng, MA Lu-ai, ZHANG Feng, ZHANG Lei, WU Gang. Regional difference in temperature gradient of concrete single-box multi-cell box girder[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 185-201. doi: 10.19818/j.cnki.1671-1637.2024.01.012
Citation: XU Xiang-feng, MA Lu-ai, ZHANG Feng, ZHANG Lei, WU Gang. Regional difference in temperature gradient of concrete single-box multi-cell box girder[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 185-201. doi: 10.19818/j.cnki.1671-1637.2024.01.012

混凝土单箱多室箱梁温度梯度地域差异性

doi: 10.19818/j.cnki.1671-1637.2024.01.012
基金项目: 

国家重点研发计划 2022YFB2603303

山东省自然科学基金项目 ZR2021ME077

山东省自然科学基金项目 ZR2021QE216

详细信息
    作者简介:

    徐向锋(1978-),女,山东济南人,山东交通学院副教授,从事桥梁加固研究

    通讯作者:

    张峰(1978-),男,江苏泰州人,山东大学教授,工学博士

  • 中图分类号: U441.5

Regional difference in temperature gradient of concrete single-box multi-cell box girder

Funds: 

National Key Research and Development Program of China 2022YFB2603303

Natural Science Foundation of Shandong Province ZR2021ME077

Natural Science Foundation of Shandong Province ZR2021QE216

More Information
  • 摘要:

    为确定不同地区混凝土单箱多室箱梁日照温差代表值,在西藏山南、陕西铜川与广西来宾分别建立了室外日照温度场试验模型,同时安装了大量温度传感器与气象采集器,通过现场实测数据总结了山南、铜川和来宾气象差异性;通过长期箱梁测试温度与逐时气象数据的逐步回归,提出了山南、铜川和来宾箱梁温差计算公式;调研了西藏6个地级市、陕西10个地级市和广西14个地级市1955—2016年的气象数据,并将气象日值数据分解为逐时气象数据用于温差计算,基于超阈值分布模型得到了3个地区重现期为50年的温度作用代表值,并绘制了温度作用分布地图。研究结果表明:箱梁模型实测的向阳侧边腹板竖向温差、中腹板竖向温差、顶板横向温差与底板横向温差从高到低依次为山南、铜川和来宾,说明受地理位置影响,中国不同地区的箱梁竖向温差和横向温差具有差异性;混凝土箱梁顶板向阳侧横向温差均高于底板,山南、铜川和来宾箱梁顶板向阳侧横向温差比底板分别高30.7%、23.2%和11.1%;西藏、陕西和广西的中腹板竖向温差地域差异性最大可达10.5 ℃,顶板横向温差地域差异性最大可达20.3 ℃,说明混凝土桥梁的日照作用具有明显的地域差异性。

     

  • 图  1  山南模型(单位:mm)

    Figure  1.  Shannan model (unit: mm)

    图  2  铜川模型(单位:mm)

    Figure  2.  Tongchuan model (unit: mm)

    图  3  来宾模型(单位:mm)

    Figure  3.  Laibin model (unit: mm)

    图  4  泡沫密封处理(来宾模型)

    Figure  4.  Foam seal treatment (Laibin model)

    图  5  每日最高、最低气温

    Figure  5.  Daily maximum and minimum atmospheric temperatures

    图  6  每日最大太阳辐射

    Figure  6.  Maximum daily solar radiations

    图  7  每日平均风速

    Figure  7.  Average daily wind speeds

    图  8  实测最大竖向温差分布

    Figure  8.  Distributions of measured maximum vertical temperature difference

    图  9  竖向温差实测最大值

    Figure  9.  Measured maximum values of vertical temperature difference

    图  10  实测最大横向温差分布

    Figure  10.  Distributions of measured maximum lateral temperature difference

    图  11  横向温差实测最大值

    Figure  11.  Measured maximum values of lateral temperature difference

    图  12  王家河特大桥

    Figure  12.  Wangjiahe Super-Large Bridge

    图  13  培森柳江特大桥

    Figure  13.  Peisen Liujiang Super-Large Bridge

    图  14  王家河特大桥测试截面

    Figure  14.  Test section of Wangjiahe Super-Large Bridge

    图  15  培森柳江特大桥测试截面

    Figure  15.  Test section of Peisen Liujiang Super-Large Bridge

    图  16  竖向温差分布

    Figure  16.  Distributions of vertical temperature difference

    图  17  横向温差分布

    Figure  17.  Distributions of lateral temperature difference

    图  18  箱梁日照阴影示意

    Figure  18.  Schematic of box girder sunshine shadow

    图  19  梁高对腹板竖向温差的影响

    Figure  19.  Effects of beam heights on web's vertical temperature differences

    图  20  板宽对顶板、底板横向温差的影响

    Figure  20.  Effects of plate widths on top plate's and bottom plate's lateral temperature differences

    图  21  单箱单室箱梁有限元模型

    Figure  21.  Finite element model of single-box single-cell box girder

    图  22  不同箱梁形式竖向温差差异性

    Figure  22.  Differences in vertical temperature difference between different box girder forms

    图  23  顶板、底板横向测点拟合R2

    Figure  23.  Lateral measuring points fit R2 of top plate and bottom plate

    图  24  腹板竖向测点拟合R2

    Figure  24.  Vertical measuring points fit R2 of web

    图  25  Tsw1实测温差和预测温差对比

    Figure  25.  Comparisons between measured and predicted temperature differences of Tsw1

    图  26  Tmw1实测温差和预测温差对比

    Figure  26.  Comparisons between measured and predicted temperature differences of Tmw1

    图  27  Tt1实测温差和预测温差对比

    Figure  27.  Comparisons between measured and predicted temperature differences of Tt1

    图  28  Tb1实测温差和预测温差对比

    Figure  28.  Comparisons between measured and predicted temperature differences of Tb1

    图  29  Tsw1代表值

    Figure  29.  Tsw1 representative values

    图  30  Tmw1代表值

    Figure  30.  Tmw1 representative values

    图  31  Tt1代表值

    Figure  31.  Tt1 representative values

    图  32  Tb1代表值

    Figure  32.  Tb1 representative values

    表  1  实际桥梁和缩尺模型实测温差对比

    Table  1.   Comparison of measured temperature differences between actual bridge and scaled-down model 

    截面温差 陕西 广西
    铜川模型 王家河特大桥 偏差 来宾模型 培森柳江特大桥 偏差
    Tsw1 10.9 11.6 -0.7 9.4 9.2 0.2
    Tmw1 12.2 12.0 0.2 8.8 8.3 0.5
    Tt1 18.5 18.1 0.4 10.8 11.5 -1.3
    Tb1 14.2 12.7 1.5 9.6 8.8 0.8
    下载: 导出CSV

    表  2  不同地区温差计算公式待定系数

    Table  2.   Undetermined coefficients of temperature difference calculating formulas of different regions

    截面温差 地区 待定系数
    p1 p2 p3 p4 p5
    Tsw1 山南 -3.295 8 0.152 6 0.008 7 0.396 9 -0.039 9
    铜川 -3.712 6 0.155 6 0.006 5 1.590 3 -0.083 4
    来宾 -2.594 0 0.100 2 0.008 1 0.007 2 -0.585 4
    Tmw1 山南 -2.196 0 0.136 9 0.009 3 0.158 7 -0.006 2
    铜川 -3.354 1 0.103 0 0.005 2 1.155 9 0.163 2
    来宾 -3.317 0 0.137 7 0.006 7 -1.070 8 0.072 3
    Tt1 山南 2.748 8 0.029 0 0.019 8 -0.124 3 -0.035 0
    铜川 -1.983 9 0.006 2 0.008 4 0.944 9 0.288 8
    来宾 -0.929 5 0.045 1 0.003 5 -1.139 8 0.261 9
    Tb1 山南 -1.632 9 0.096 0 0.008 5 0.089 0 0.027 5
    铜川 -3.128 5 0.024 3 0.006 7 2.131 2 0.013 7
    来宾 -1.022 9 0.078 7 0.008 3 -0.206 6 -0.004 1
    下载: 导出CSV

    表  3  箱梁温差GP分布模型参数估计值和50年一遇温差代表值

    Table  3.   Estimated parameters of box girder temperature difference GP distribution model and representative values of 1-in-50-year temperature difference

    截面温差 地区 GP分布模型参数估计值 50年一遇温差代表值/℃
    k σ u
    Tsw1 拉萨 -0.142 1 0.371 0 11.446 13.07
    西安 -0.153 4 0.671 4 10.077 12.92
    南宁 -0.323 4 0.628 6 10.198 11.93
    Tmw1 拉萨 -0.157 6 0.372 5 12.596 14.15
    西安 -0.103 9 1.064 8 8.605 13.81
    南宁 -0.269 8 0.645 7 10.107 12.12
    Tt1 拉萨 -0.199 6 0.503 1 25.008 26.88
    西安 -0.244 9 1.404 6 11.836 16.49
    南宁 -0.097 9 0.374 0 7.698 9.56
    Tb1 拉萨 -0.131 2 0.398 5 14.979 16.77
    西安 -0.101 2 1.056 3 11.374 16.58
    南宁 -0.302 4 0.446 7 10.349 11.64
    下载: 导出CSV
  • [1] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905006.htm

    LIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905006.htm
    [2] 顾颖, 李亚东, 姚昌荣. 太阳辐射下混凝土箱梁温度场研究[J]. 公路交通科技, 2016, 33(2): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201602009.htm

    GU Ying, LI Ya-dong, YAO Chang-rong. Research on temperature field of concrete box girder under solar radiation[J]. Journal of Highway and Transportation Research and Development, 2016, 33(2): 46-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201602009.htm
    [3] SONG X M, MELHEM H, LI J, et al. Effects of solar temperature gradient on long-span concrete box girder during cantilever construction[J]. Journal of Bridge Engineering, 2016, 21(3): 04015061. doi: 10.1061/(ASCE)BE.1943-5592.0000844
    [4] 赵人达, 王永宝. 日照作用下混凝土箱梁温度场边界条件研究[J]. 中国公路学报, 2016, 29(7): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607009.htm

    ZHAO Ren-da, WANG Yong-bao. Research on the boundary conditions of temperature field of concrete box girder under sunshine[J]. China Journal of Highway and Transport, 2016, 29(7): 52-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607009.htm
    [5] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102002.htm

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102002.htm
    [6] PENG G, NAKAMURA S, ZHU X Q, et al. An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation[J]. Computers and Concrete, 2017, 20(5): 605-616.
    [7] SONG Y S, DING Y L. Fatigue monitoring and analysis of orthotropic steel deck considering traffic volume and ambient temperature[J]. Science China Technological Sciences, 2013, 56(7): 1758-1766. doi: 10.1007/s11431-013-5235-0
    [8] POTGIETER I C, GAMBLE W L. Response of highway bridges to nonlinear temperature distributions[R]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 1983.
    [9] POTGIETER I C, GAMBLE W L. Nonlinear temperature distributions in bridges at different locations in the United States[J]. PCI Journal, 1989, 34(4): 80-103. doi: 10.15554/pcij.07011989.80.103
    [10] ROBERTS-WOLLMAN C L, BREEN J E, CAWRSE J. Measurements of thermal gradients and their effects on segmental concrete bridge[J]. Journal of Bridge Engineering, 2002, 7(3): 166-174. doi: 10.1061/(ASCE)1084-0702(2002)7:3(166)
    [11] LEE J H, KALKAN I. Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformations[J]. Advances in Structural Engineering, 2012, 15(3): 447-459. doi: 10.1260/1369-4332.15.3.447
    [12] ABID S R, TAYI N, ÖZAKÇA M. Experimental analysis of temperature gradients in concrete box-girders[J]. Construction and Building Materials, 2016, 106: 523-532. doi: 10.1016/j.conbuildmat.2015.12.144
    [13] 潘旦光, 郭馨远, 丁民涛, 等. 单箱三室混凝土箱梁温度分布研究[J]. 河海大学学报(自然科学版), 2018, 46(6): 513-520. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201806008.htm

    PAN Dan-guang, GUO Xin-yuan, DING Min-tao, et al. Study on the temperature distribution of a single box three-room concrete girder[J]. Journal of Hohai University (Natural Sciences), 2018, 46(6): 513-520. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201806008.htm
    [14] ZHANG F, LIU J Y, GAO L. Experimental investigation of temperature gradients in a three-cell concrete box-girder[J]. Construction and Building Materials, 2022, 335: 127413. doi: 10.1016/j.conbuildmat.2022.127413
    [15] 王永宝, 赵人达. 混凝土箱梁温度梯度取值研究[J]. 世界桥梁, 2016, 44(5): 43-47, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201605009.htm

    WANG Yong-bao, ZHAO Ren-da. Study of temperature gradient values for concrete box girder[J]. World Bridges, 2016, 44(5): 43-47, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201605009.htm
    [16] 刘江, 刘永健, 白永新, 等. 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33(3): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003007.htm

    LIU Jiang, LIU Yong-jian, BAI Yong-xin, et al. Regional variation and zoning of temperature gradient pattern of concrete box girder[J]. China Journal of Highway and Transport, 2020, 33(3): 73-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003007.htm
    [17] SHENG X W, ZHOU T M, HUANG S J, et al. Prediction of vertical temperature gradient on concrete box-girder considering different locations in China[J]. Case Studies in Construction Materials, 2022, 16: e01026. doi: 10.1016/j.cscm.2022.e01026
    [18] CAI C Z, HUANG S J, HE X H, et al. Investigation of concrete box girder positive temperature gradient patterns considering different climatic regions[J]. Structures, 2022, 35: 591-607. doi: 10.1016/j.istruc.2021.11.030
    [19] 刘永健, 马志元, 刘江, 等. 陕西地区混凝土无伸缩缝桥梁的温度作用及其区划[J]. 交通运输工程学报, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004

    LIU Yong-jian, MA Zhi-yuan, LIU Jiang, et al. Temperature action and zoning of concrete jointless bridge in Shaanxi[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 85-103. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.05.004
    [20] 盛兴旺, 郑严煌, 郑纬奇, 等. 基于实时阴影技术的混凝土箱梁竖向温度梯度模式[J]. 华南理工大学学报(自然科学版), 2020, 48(10): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202010005.htm

    SHENG Xing-wang, ZHENG Yan-huang, ZHENG Wei-qi, et al. Vertical temperature gradient model of concrete box girders based on real time shadow technology[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(10): 40-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202010005.htm
    [21] ABID S R, XUE J Q, LIU J, et al. Temperatures and gradients in concrete bridges: experimental, finite element analysis and design[J]. Structures, 2022, 37: 960-976. doi: 10.1016/j.istruc.2022.01.070
    [22] 顾斌, 高望, 谢甫哲, 等. 基于历史气象参数的桥梁结构日照温度作用代表值研究[J]. 公路交通科技, 2019, 36(12): 79-86, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201912010.htm

    GU Bin, GAO Wang, XIE Fu-zhe, et al. Study on representative values of solar temperature action on bridge structure based on historical meteorological parameters[J]. Journal of Highway and Transportation Research and Development, 2019, 36(12): 79-86, 93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201912010.htm
    [23] ZHAO Lei, ZHOU Ling-yu, ZHANG Guang-chao, et al. Experimental study of the temperature distribution in CRTS-Ⅱ ballastless tracks on a high-speed railway bridge[J]. Applied Sciences, 2020, 10(6): 1980. doi: 10.3390/app10061980
    [24] ZHOU Guang-dong, YI Ting-hua, CHEN Bin, et al. A generalized pareto distribution-based extreme value model of thermal gradients in a long-span bridge combining parameter updating[J]. Advances in Structural Engineering, 2016, 20(2): 202-213.
    [25] ROEDER C W. Proposed design method for thermal bridge movements[J]. Journal of Bridge Engineering, 2003, 8(1): 12-19. doi: 10.1061/(ASCE)1084-0702(2003)8:1(12)
    [26] LEE J H. Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders[J]. Journal of Bridge Engineering, 2012, 17(3): 547-556. doi: 10.1061/(ASCE)BE.1943-5592.0000277
    [27] 刘江, 刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用(Ⅱ)——地域差异与等值线地图[J]. 中国公路学报, 2023, 36(1): 135-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202301012.htm

    LIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Temperature gradient action of steel-concrete composite girder bridge (Ⅱ)—regional difference and isoline map[J]. China Journal of Highway and Transport, 2023, 36(1): 135-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202301012.htm
    [28] 刘江, 刘永健, 房建宏, 等. 高原高寒地区"上"形钢-混凝土组合梁的竖向温度梯度模式[J]. 交通运输工程学报, 2017, 17(4): 32-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201704004.htm

    LIU Jiang, LIU Yong-jian, FANG Jian-hong, et al. Vertical temperature gradient patterns of 上-shaped steel-concrete composite girder in arctic alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 32-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201704004.htm
    [29] 刘诚. 钢-混凝土组合桥梁的温度场和温度效应研究[D]. 北京: 清华大学, 2018.

    LIU Cheng. The temperature field and thermal effect of steel- concrete composite bridges[D]. Beijing: Tsinghua University, 2018. (in Chinese)
    [30] FAN J S, LIU Y F, LIU C. Experiment study and refined modeling of temperature field of steel-concrete composite beam bridges[J]. Engineering Structures, 2021, 240(6): 112350.
  • 加载中
图(32) / 表(3)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  23
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-20
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回