留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-ECC/UHPC组合梁负弯矩区力学性能研究

武芳文 左剑 樊州 贺润斌 刘壮壮 何岚清

武芳文, 左剑, 樊州, 贺润斌, 刘壮壮, 何岚清. 钢-ECC/UHPC组合梁负弯矩区力学性能研究[J]. 交通运输工程学报, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014
引用本文: 武芳文, 左剑, 樊州, 贺润斌, 刘壮壮, 何岚清. 钢-ECC/UHPC组合梁负弯矩区力学性能研究[J]. 交通运输工程学报, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014
WU Fang-wen, ZUO Jian, FAN Zhou, HE Run-bin, LIU Zhuang-zhuang, HE Lan-qing. Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014
Citation: WU Fang-wen, ZUO Jian, FAN Zhou, HE Run-bin, LIU Zhuang-zhuang, HE Lan-qing. Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014

钢-ECC/UHPC组合梁负弯矩区力学性能研究

doi: 10.19818/j.cnki.1671-1637.2024.01.014
基金项目: 

国家自然科学基金项目 52378121

陕西省自然科学基础研究计划项目 2022JZ-32

中央高校基本科研业务费专项资金项目 300102212212

详细信息
    作者简介:

    武芳文(1980-),男,河北邯郸人,长安大学副教授,工学博士,从事钢-混凝土组合结构理论与应用研究

  • 中图分类号: U441.4

Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions

Funds: 

National Natural Science Foundation of China 52378121

Natural Science Basic Research Project of Shaanxi Province 2022JZ-32

Fundamental Research Funds for the Central Universities 300102212212

More Information
  • 摘要:

    为改善钢-混组合梁负弯矩区混凝土易开裂缺点,引入工程水泥基复合材料(ECC)和超高性能混凝土(UHPC)代替普通混凝土(NC)形成钢-ECC/UHPC组合梁,展开了1片钢-NC组合梁、1片钢-ECC组合梁和2片钢-UHPC组合梁的负弯矩区静力试验;结合有限元分析方法对比了不同类型混凝土的应变、裂缝扩展与分布特点,分析了混凝土类型和配筋对钢-混组合梁破坏形态、承载能力与变形能力影响规律。研究结果表明:钢-混组合梁在负弯矩作用下整体协同工作性能良好,破坏形态均为弯曲破坏;ECC和UHPC裂缝呈现纤细的特点,ECC尤为明显;与钢-NC组合梁相比,钢-ECC组合梁和钢-UHPC组合梁的开裂荷载分别提高了2.00和2.75倍,抗弯刚度分别提高了17.23%和35.73%,抗弯承载力分别提高了9.00%和6.81%,表明UHPC抗裂能力更强,可以有效改善钢-混组合梁负弯矩区桥面板抗裂性能,ECC与UHPC代替NC可以提高钢-混组合梁的抗弯刚度和承载力;配筋与无筋钢-UHPC组合梁的开裂荷载和前期刚度无显著差异,无筋钢-UHPC组合梁破坏时形成贯通裂缝,其承载力相比配筋钢-UHPC组合梁下降了13.39%;ECC强度增加,钢-ECC组合梁承载力提高较显著,UHPC强度变化对钢-UHPC组合梁承载力影响不明显;配筋率对钢-UHPC组合梁承载力影响可分为2个阶段,当配筋率小于1.6%时承载力显著增长,当超过1.6%时承载力增幅趋缓。

     

  • 图  1  试验梁构造和尺寸(单位:mm)

    Figure  1.  Test girder construction and dimensions (unit: mm)

    图  2  材料力学性能试验

    Figure  2.  Mechanical properties tests of materials

    图  3  加载装置

    Figure  3.  Loading device

    图  4  测点布置(单位:mm)

    Figure  4.  Layout of measuring points (unit: mm)

    图  5  试验梁破坏形态

    Figure  5.  Failure modes of test girders

    图  6  荷载-位移曲线

    Figure  6.  Load-displacement curves

    图  7  试验梁对比

    Figure  7.  Comparison of test girders

    图  8  中支点截面应变分布

    Figure  8.  Strain distributions of middle fulcrum sections

    图  9  中和轴位置变化曲线

    Figure  9.  Changing curves of neutral axis positions

    图  10  混凝土和钢筋应变曲线

    Figure  10.  Strain curves of concrete and reinforcement

    图  11  混凝土应力释放

    Figure  11.  Concrete stress release

    图  12  混凝土板裂缝分布

    Figure  12.  Crack distributions of concrete slabs

    图  13  有限元模型(单位:mm)

    Figure  13.  Finite element model (unit: mm)

    图  14  试验与模拟荷载-位移曲线对比

    Figure  14.  Comparison of load-displacement curves between test and simulation

    图  15  破坏状态主应变云图

    Figure  15.  Principal strain cloud diagrams at failure state

    图  16  配筋率分析

    Figure  16.  Analysis of reinforcement ratios

    图  17  UHPC板强度分析

    Figure  17.  Strength analysis of UHPC slabs

    图  18  ECC板强度分析

    Figure  18.  Strength analysis of ECC slabs

    表  1  试验梁设置

    Table  1.   Test girders setting

    梁号 混凝土类型 配筋
    SNCB-1 NC
    SECB-1 ECC
    SUCB-1 UHPC
    SUCB-0 UHPC
    下载: 导出CSV

    表  2  材料性能参数

    Table  2.   Material performance parameters

    材料类型 规格 fy/MPa fcu/MPa ftu/MPa Es/GPa
    纵向钢筋 HRB400 388.20 493.50 212.30
    H型钢 Q345C 375.00 501.00 209.80
    NC C50 61.78 3.05 37.53
    ECC C50 60.99 4.63 19.60
    UHPC C120 127.70 6.90 42.65
    下载: 导出CSV

    表  3  混凝土材料塑性损伤参数

    Table  3.   Plastic damage parameters of concrete material

    参数 膨胀角/(°) 偏心率 强度比 常应力比值 黏聚系数
    取值 30 0.1 1.16 0.666 7 0.000 5
    下载: 导出CSV

    表  4  试验与模拟结果对比

    Table  4.   Comparison of test and simulation results

    梁号 试验值/kN 模拟值/kN 模拟值/试验值
    SNCB-1 411 372.7 0.907
    SECB-1 448 413.1 0.922
    SUCB-1 439 420.3 0.957
    SUCB-0 388 374.6 0.966
    下载: 导出CSV
  • [1] 聂建国, 陈林, 肖岩. 钢-混凝土组合梁正弯矩区截面的组合抗剪性能[J]. 清华大学学报(自然科学版), 2002(6): 835-838. doi: 10.3321/j.issn:1000-0054.2002.06.034

    NIE Jian-guo, CHEN Lin, XIAO Yan. Composite shear behavior of steel-concrete composite beams under sagging moment[J]. Journal of Tsinghua University(Science and Technology), 2002(6): 835-838. (in Chinese) doi: 10.3321/j.issn:1000-0054.2002.06.034
    [2] 罗兵, 马冰. 钢-UHPC-NC组合梁负弯矩区受力性能试验研究[J]. 桥梁建设, 2021, 51(1): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202101010.htm

    LUO Bing, MA Bing. Experimental study of fatigue performance of steel-UHPC-NC composite beam in negative moment zone[J]. Bridge Construction, 2021, 51(1): 58-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202101010.htm
    [3] 刘永健, 刘江. 钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003

    LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.003
    [4] WANG Yu-hang, NIE Jian-guo, LI Jian-jun. Study on fatigue property of steel-concrete composite beams and studs[J]. Journal of Constructional Steel Research, 2014, 94: 1-10. doi: 10.1016/j.jcsr.2013.11.004
    [5] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3-8. doi: 10.3321/j.issn:1000-131X.1999.02.001

    NIE Jian-guo, YU Zhi-wu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32(2): 3-8. (in Chinese)) doi: 10.3321/j.issn:1000-131X.1999.02.001
    [6] 余志武, 张大付, 焦姣. 钢-混凝土连续组合箱梁负弯矩区极限抗弯承载力研究[J]. 铁道科学与工程学报, 2014, 11(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201402002.htm

    YU Zhi-wu, ZHANG Da-fu, JIAO Jiao. Research on ultimate flexural bearing capacity of negative moment area for steel-concrete composite continuous box girder[J]. Journal of Railway Science and Engineering, 2014, 11(2): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201402002.htm
    [7] 邵旭东, 胡伟业, 邱明红, 等. 组合梁负弯矩区UHPC接缝抗弯性能试验[J]. 中国公路学报, 2021, 34(8): 246-260. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108021.htm

    SHAO Xu-dong, HU Wei-ye, QIU Ming-hong, et al. Experiment on flexural behavior of UHPC joint in negative moment area of composite bridges[J]. China Journal of Highway and Transport, 2021, 34(8): 246-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108021.htm
    [8] SU Qing-tian, DAI Chang-yuan, XU Chen. Full-scale experimental study on the negative flexural behavior of orthotropic steel-concrete composite bridge deck[J]. Journal of Bridge Engineering, 2018, 23(12): 04018097. doi: 10.1061/(ASCE)BE.1943-5592.0001320
    [9] 戴昌源, 苏庆田. 钢-混凝土组合桥面板负弯矩区裂缝宽度计算[J]. 同济大学学报(自然科学版), 2017, 45(6): 806-813. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201706004.htm

    DAI Chang-yuan, SU Qing-tian. Crack width calculation of steel-concrete composite bridge deck in negative moment region[J]. Journal of Tongji University(Natural Science), 2017, 45(6): 806-813. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201706004.htm
    [10] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [11] LI V C, WANG Shu-xin, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492.
    [12] 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5): 632-642. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201505013.htm

    CAO Ming-li, XU Ling, ZHANG Cong. Review on micromechanical design, performance and development tendency of engineered cementitious composite[J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 632-642. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201505013.htm
    [13] 潘钻峰, 汪卫, 孟少平, 等. 混杂聚乙烯醇纤维增强水泥基复合材料力学性能[J]. 同济大学学报(自然科学版), 2015, 43(1): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201501006.htm

    PAN Zuan-feng, WANG Wei, MENG Shao-ping, et al. Study on mechanical properties of hybrid PVA fibers reinforced cementitious composites[J]. Journal of Tongji University (Natural Science), 2015, 43(1): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201501006.htm
    [14] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002

    CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002
    [15] RAHEEM A H A, MAHDY M, MASHALY A A. Mechanical and fracture mechanics properties of ultra-high- performance concrete[J]. Construction and Building Materials, 2019, 213: 561-566. doi: 10.1016/j.conbuildmat.2019.03.298
    [16] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm

    SHAO Xu-dong, FAN Wei, HUANG Zheng-yu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm
    [17] DONG Bing-qing, PAN Jin-long, LU Cong. Flexural behavior of steel reinforced engineered cementitious composite beams[J]. Journal of Southeast University (English Edition), 2019, 35(1): 72-82.
    [18] 樊健生, 施正捷, 芶双科, 等. 钢-ECC组合梁负弯矩区受弯性能试验研究[J]. 土木工程学报, 2017, 50(4): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704008.htm

    FAN Jian-sheng, SHI Zheng-jie, GOU Shuang-ke, et al. Experimental research on negative bending behavior of steel-ECC composite beams[J]. China Civil Engineering Journal, 2017, 50(4): 64-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704008.htm
    [19] FAN Jian-sheng, GOU Shuang-ke, DING Ran, et al. Experimental and analytical research on the flexural behaviour of steel-ECC composite beams under negative bending moments[J]. Engineering Structures, 2020, 210: 110309. doi: 10.1016/j.engstruct.2020.110309
    [20] 孙启力. 钢-混杂纤维ECC组合受力行为及其在桥梁中的应用研究[D]. 北京: 清华大学, 2019.

    SUN Qi-li. The composite behavior of steel and hybrid-fiber engineered cementitious composites and its application in bridge[D]. Beijing: Tsinghua University, 2019. (in Chinese)
    [21] 樊健生, 刘入瑞, 张君, 等. 采用混杂纤维ECC的叠合板组合梁负弯矩受力性能试验研究[J]. 土木工程学报, 2021, 54(4): 57-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202104007.htm

    FAN Jian-sheng, LIU Ru-rui, ZHANG Jun, et al. Experimental research on mechanical behavior of composite beams with precast slabs and hybrid fiber ECC under negative moment[J]. China Civil Engineering Journal, 2021, 54(4): 57-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202104007.htm
    [22] XUE Jun-qing, BRISEGHELLA B, HUANG Fu-yun, et al. Review of ultra-high performance concrete and its application in bridge engineering[J]. Construction and Building Materials, 2020, 260: 119844. doi: 10.1016/j.conbuildmat.2020.119844
    [23] 张清华, 韩少辉, 贾东林, 等. 新型装配式UHPC华夫型上翼缘组合梁受力性能[J]. 西南交通大学学报, 2019, 54(3): 445-452, 442. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201903001.htm

    ZHANG Qing-hua, HAN Shao-hui, JIA Dong-lin, et al. Mechanical performance of novel prefabricated composite girder with top flange of ultra hight performance concrete waffle deck panel[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 445-452, 442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201903001.htm
    [24] 邵旭东, 吴佳佳, 刘榕, 等. 钢-UHPC轻型组合桥梁结构华夫桥面板的基本性能[J]. 中国公路学报, 2017, 30(3): 218-225, 245. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703024.htm

    SHAO Xu-dong, WU Jia-jia, LIU Rong, et al. Basic performance of waffle deck panel of light weight steel-UHPC composite bridge[J]. China Journal of Highway and Transport, 2017, 30(3): 218-225, 245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703024.htm
    [25] 邵旭东, 罗军, 曹君辉, 等. 钢-UHPC轻型组合桥面结构试验及裂缝宽度计算研究[J]. 土木工程学报, 2019, 52(3): 61-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903007.htm

    SHAO Xu-dong, LUO Jun, CAO Jun-hui, et al. Experimental study and crack width calculation of steel-UHPC lightweight composite deck structure[J]. China Civil Engineering Journal, 2019, 52(3): 61-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903007.htm
    [26] 刘新华, 周聪, 张建仁, 等. 钢-UHPC组合梁负弯矩区受力性能试验[J]. 中国公路学报, 2020, 33(5): 110-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005010.htm

    LIU Xin-hua, ZHOU Cong, ZHANG Jian-ren, et al. Experiment on negative bending behavior of steel-UHPC composite beams[J]. China Journal of Highway and Transport, 2020, 33(5): 110-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005010.htm
    [27] ZHANG Yang, CAI Shu-kun, ZHU Yan-ping, et al. Flexural responses of steel-UHPC composite beams under hogging moment[J]. Engineering Structures, 2020, 206: 110134. doi: 10.1016/j.engstruct.2019.110134
    [28] ZHAO Qiu, XIAO Feng, ZHANG Hao, et al. Behavior and reasonable design of steel-UHPC composite beams under negative moment[J]. Journal of Constructional Steel Research, 2024, 212: 108268. doi: 10.1016/j.jcsr.2023.108268
    [29] XU Bo, LIU Yong-jian, ZHU Wei-qing, et al. Comparative study on flexural behavior of steel-UHPC composite beams and steel-ordinary concrete composite beams in the negative moment zone[J]. Structures, 2023, 57: 105288. doi: 10.1016/j.istruc.2023.105288
    [30] YUAN Fang, PAN Jin-long, WU Yu-fei. Numerical study on flexural behaviors of steel reinforced engineered cementitious composite (ECC) and ECC/concrete composite beams[J]. Science China Technological Sciences, 2014, 57(3): 637-645. doi: 10.1007/s11431-014-5478-4
    [31] 杨剑, 方志. 超高性能混凝土单轴受压应力-应变关系研究[J]. 混凝土, 2008(7): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200807009.htm

    YANG Jian, FANG Zhi. Research on stress-strain relation of ultra high performance concrete[J]. Concrete, 2008(7): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200807009.htm
    [32] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htm

    ZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htm
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  32
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-27
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回