留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内外激励下机车齿轮磨损仿真分析

朱海燕 王梦威 郑宇轩 易勇 肖乾 曾京 张卫华

朱海燕, 王梦威, 郑宇轩, 易勇, 肖乾, 曾京, 张卫华. 内外激励下机车齿轮磨损仿真分析[J]. 交通运输工程学报, 2024, 24(2): 166-178. doi: 10.19818/j.cnki.1671-1637.2024.02.011
引用本文: 朱海燕, 王梦威, 郑宇轩, 易勇, 肖乾, 曾京, 张卫华. 内外激励下机车齿轮磨损仿真分析[J]. 交通运输工程学报, 2024, 24(2): 166-178. doi: 10.19818/j.cnki.1671-1637.2024.02.011
ZHU Hai-yan, WANG Meng-wei, ZHENG Yu-xuan, YI Yong, XIAO Qian, ZENG Jing, ZHANG Wei-hua. Simulation analysis of locomotive gear wear under internal and external excitations[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 166-178. doi: 10.19818/j.cnki.1671-1637.2024.02.011
Citation: ZHU Hai-yan, WANG Meng-wei, ZHENG Yu-xuan, YI Yong, XIAO Qian, ZENG Jing, ZHANG Wei-hua. Simulation analysis of locomotive gear wear under internal and external excitations[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 166-178. doi: 10.19818/j.cnki.1671-1637.2024.02.011

内外激励下机车齿轮磨损仿真分析

doi: 10.19818/j.cnki.1671-1637.2024.02.011
基金项目: 

国家自然科学基金项目 52162045

江西省自然科学基金项目 20232ACB204022

江西省自然科学基金项目 20224BAB204040

江西省自然科学基金项目 20202BABL204036

载运工具与装备教育部重点实验室自主课题 KLCE2022-11

轨道交通运载系统全国重点实验室开放课题 RVL2403

详细信息
    作者简介:

    朱海燕(1975-),男,江西新干人,华东交通大学教授,工学博士,从事高速列车系统动力学与疲劳强度研究

  • 中图分类号: U270.3

Simulation analysis of locomotive gear wear under internal and external excitations

Funds: 

National Natural Science Foundation of China 52162045

Natural Science Foundation of Jiangxi Province 20232ACB204022

Natural Science Foundation of Jiangxi Province 20224BAB204040

Natural Science Foundation of Jiangxi Province 20202BABL204036

Independent Project of Key Laboratory of Conveyance and Equipment of Ministry of Education KLCE2022-11

Open Project of State Key Laboratory of Rail Transit Vehicle System RVL2403

More Information
  • 摘要: 通过Archard磨损公式和Hertz接触模型,建立了考虑动态磨损系数的机车齿轮磨损数值仿真模型,计算了理想情况下齿面磨损分布情况;利用ABAQUS二次开发UMESHMOTION子程序,结合ALE自适应网格,建立了齿轮磨损有限元模型,在仿真后通过MATLAB提取齿面磨损信息,并将有限元计算结果与数值仿真结果进行了对比;通过改变模型参数,研究了摩擦因数和中心距误差对齿面磨损的影响;基于多体动力学软件SIMPACK建模仿真得到了轮轨激励下从动齿轮垂向振动位移,并将其加载到有限元模型进行齿面磨损仿真计算。计算结果表明:2种计算方法得出的齿轮磨损分布情况较为一致,即主、从动齿轮最大磨损深度均在齿根处,节线处磨损深度为0,且节线两侧单双齿交替区域磨损深度均出现突变,磨损深度总量随摩擦因数的增大而增加,且均位于以节线为界靠近齿根处,当摩擦因数最大值取0.25时,磨损深度总量为3.104×10-6 mm,而齿顶处相反;当中心距误差为负时,随着中心距的减少,磨损深度总量呈增大趋势,最大值为3.313×10-6 mm,而当中心距误差为正时,随着中心距的增大,磨损深度总量变化甚微;轮轨外部激励会加剧齿根处磨损,影响齿轮寿命及行车安全。

     

  • 图  1  齿轮接触简化模型

    Figure  1.  Simplified model of gear contact

    图  2  齿轮副相对滑动位移

    Figure  2.  Relative sliding displacement of gear pair

    图  3  齿轮磨损仿真计算流程

    Figure  3.  Simulation calculation flow of gear wear

    图  4  齿轮动态磨损系数

    Figure  4.  Dynamic wear coefficients of gear

    图  5  主、从动齿轮滑动系数

    Figure  5.  Sliding coefficients of driving and driven gears

    图  6  主、从动齿轮磨损深度分布

    Figure  6.  Wear depth distribution of driving and driven gears

    图  7  机车传动齿轮接触有限元模型

    Figure  7.  Contact finite element model of locomotive transmission gears

    图  8  单齿加密网格

    Figure  8.  Single-tooth dense meshes

    图  9  ALE自适应网格技术

    Figure  9.  ALE adaptive mesh technologies

    图  10  齿面最大接触压力和相对滑动位移分布

    Figure  10.  Distributions of maximum contact pressure and relative sliding displacement on tooth surface

    图  11  有限元计算和理论计算下齿面磨损深度分布

    Figure  11.  Wear depth distributions of tooth surface under finite element calculation and theoretical calculation

    图  12  多循环下主动齿轮齿面磨损深度分布

    Figure  12.  Wear depth distributions of driving gear tooth surface under multiple cycles

    图  13  不同摩擦因数下相对滑动位移差值

    Figure  13.  Relative sliding displacements differences under different friction factors

    图  14  不同摩擦因数下最大接触压力差值

    Figure  14.  Maximum contact pressure differences under different friction factors

    图  15  不同摩擦因数下磨损深度差值

    Figure  15.  Differences of wear depth under different friction factors

    图  16  不同摩擦因数下磨损深度总量

    Figure  16.  Total amounts of wear depth under different friction factors

    图  17  不同中心距误差下相对滑动位移差值

    Figure  17.  Relative sliding displacement differences under different center distance errors

    图  18  不同中心距误差下最大接触压力差值

    Figure  18.  Maximum contact pressure differences under different center distance errors

    图  19  不同中心距误差下磨损深度差值

    Figure  19.  Wear depth differences under different center distance errors

    图  20  不同中心距误差下磨损深度总量

    Figure  20.  Total amounts of wear depth under different center distance errors

    图  21  机车动力学模型

    Figure  21.  Locomotive dynamics model

    图  22  机车动力学模型临界速度

    Figure  22.  Critical speeds of locomotive dynamics model

    图  23  从动齿轮振动位移

    Figure  23.  Vibration displacements of driven gear

    图  24  有、无轮轨激励齿面各差值分布

    Figure  24.  Distributions of each difference of tooth surface with and without wheel-rail excitation

    图  25  多循环下有、无轮轨激励齿面磨损深度差值分布

    Figure  25.  Distributions of wear depth difference of tooth surface with and without wheel-rail excitation under multiple cycles

    图  26  有、无轮轨激励齿面磨损深度总量差值

    Figure  26.  Total differences of tooth surface wear depth with and without wheel-rail excitation

    表  1  某型机车传动齿轮基本参数

    Table  1.   Basic parameters of transmission gear of a locomotive

    参数 主动齿轮 从动齿轮
    齿轮材料 18CrNiMo7-6
    模数/mm 8
    压力角/(°) 20
    齿顶高系数 1
    顶隙系数 0.25 0.25
    变位系数 0.362 0.151
    齿宽/mm 140
    齿数 23 120
    弹性模量/GPa 206
    泊松比 0.3
    表面粗糙度/μm 0.3
    中心距/mm 572
    黏度系数/(Pa·s) 6.5×10-3
    润滑油黏压因数/(m2·N-1) 1.33×10-8
    下载: 导出CSV
  • [1] 范士娟, 何姗, 徐玉萍, 等. 高速铁路对江西省虹吸效应的影响分析[J]. 华东交通大学学报, 2021, 38(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202101011.htm

    FAN Shi-juan, HE Shan, XU Yu-ping, et al. Analysis of the influence of high speed railway on the siphon effect in Jiangxi Province[J]. Journal of East China Jiaotong University, 2021, 38(1): 67-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202101011.htm
    [2] FLODIN A, ANDERSSON S. Wear simulation of spur gears[J]. Tribotest, 1999, 5(3): 225-249. doi: 10.1002/tt.3020050303
    [3] FLODIN A, ANDERSSON S. A simplified model for wear prediction in helical gears[J]. Wear, 2001, 249(3/4): 285-292.
    [4] ZHOU Chang-jiang, XING Ming-cai, HU Bo, et al. A modified wear model considering contact temperature for spur gears in mixed elastohydrodynamic lubrication[J]. Tribology Letters, 2020, 68(4): 1-17.
    [5] HUANG De-quan, WANG Zhong-hou, KUBO A. Hypoid gear integrated wear model and experimental verification design and test[J]. International Journal of Mechanical Sciences, 2019, 166(11): 105228.
    [6] 韩致信, 石文瑞, 彭国义, 等. 齿轮系统振动加剧齿轮磨损毁坏的机理分析[J]. 机械传动, 2006, 30(2): 47-49, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD200602016.htm

    HAN Zhi-xin, SHI Wen-rui, PENG Guo-yi, et al. Mechanism research on gear abrasion failure caused by the vibration of the gear system[J]. Journal of Mechanical Transmission, 2006, 30(2): 47-49, 55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD200602016.htm
    [7] 周长江, 雷玉英, 汪红兵, 等. 准静态与动态载荷下斜齿轮齿面黏着磨损计算[J]. 机械工程学报, 2018, 54(23): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201823002.htm

    ZHOU Chang-jiang, LEI Yu-ying, WANG Hong-bing, et al. Calculation of adhesion and wear of helical gears under quasi-static and dynamic loads[J]. Journal of Mechanical Engineering, 2018, 54(23): 10-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201823002.htm
    [8] 何荣国, 江亲瑜, 姚一富. 渐开线斜齿圆柱齿轮磨损的数值仿真[J]. 润滑与密封, 2007, 32(3): 88-91, 130. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF200703026.htm

    HE Rong-guo, JIANG Qin-yu, YAO Yi-fu. Numerical simulation of tooth wearing for involute helical cylindrical gears [J]. Lubrication Engineering, 2007, 32(3): 88-91, 130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF200703026.htm
    [9] 刘峰壁. 直齿圆柱齿轮磨损过程模拟[J]. 机械科学与技术, 2004, 23(1): 55-56, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200401016.htm

    LIU Feng-bi. Simulation of wear processin spur gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2004, 23(1): 55-56, 59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200401016.htm
    [10] 张俊, 卞世元, 鲁庆, 等. 准静态工况下渐开线直齿轮齿面磨损建模与分析[J]. 机械工程学报, 2017, 53(5): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201705017.htm

    ZHANG Jun, BIAN Shi-yuan, LU Qing, et al. Quasi-static-model-based wear analysis of spur gears[J]. Journal of Mechanical Engineering, 2017, 53(5): 136-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201705017.htm
    [11] YUKSEL C, KAHRAMAN A. Dynamic tooth loads of planetary gear sets having tooth profile wear[J]. Mechanism and Machine Theory, 2004, 39(7): 695-715.
    [12] 宁志远, 白争锋, 蒋鑫, 等. 磨损与动力学耦合的行星传动齿轮动力学研究[J]. 力学学报, 2022, 54(4): 1125-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202204027.htm

    NING Zhi-yuan, BAI Zheng-feng, JIANG Xin, et al. Study on dynamics of planetary transmission gear considering wear and dynamics coupling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1125-1135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202204027.htm
    [13] 潘冬, 赵阳, 李娜, 等. 齿轮磨损寿命预测方法[J]. 哈尔滨工业大学学报, 2012, 44(9): 29-33, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201209007.htm

    PAN Dong, ZHAO Yang, LI Na, et al. The wear life prediction method of gear system[J]. Journal of Harbin Institute of Technology, 2012, 44(9): 29-33, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201209007.htm
    [14] WANG Hong-bing, ZHOU Chang-jiang, LEI Yu-ying, et al. An adhesive wear model for helical gears in line-contact mixed elastohydrodynamic lubrication[J]. Wear, 2019, 426/427: 896-909.
    [15] 宁志远, 陈长征. 混合弹流润滑下内啮合直齿轮动态特性磨损退化研究[J]. 振动与冲击, 2021, 40(16): 183-191. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202116023.htm

    NING Zhi-yuan, CHEN Chang-zheng. A study on wear degradation of internal spur gear under hybrid elastohydrodynamic lubrication[J]. Journal of Vibration and Shock, 2021, 40(16): 183-191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202116023.htm
    [16] 张荣华, 曹莉, 周建星, 等. 行星齿轮传动的齿面动态磨损特性[J]. 西安交通大学学报, 2021, 55(8): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202108006.htm

    ZHANG Rong-hua, CAO Li, ZHOU Jian-xing, et al. Dynamic tooth surface wear characteristics of planetary gear transmission[J]. Journal of Xi'an Jiaotong University, 2021, 55(8): 42-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202108006.htm
    [17] 陈魏, 雷雨龙, 李兴忠, 等. 低速工况下渐开线圆柱直齿轮齿面粘着磨损计算[J]. 吉林大学学报(工学版), 2021, 51(5): 1628-1634. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202105009.htm

    CHEN Wei, LEI Yu-long, LI Xing-zhong, et al. Calculation of adhesive wear of involute cylindrical spur gear under low-speed conditions[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1628-1634. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202105009.htm
    [18] ZHANG Jun, LIU Xian-zeng. Effects of misalignment on surface wear of spur gears[J]. Journal of Engineering Tribology, 2015, 229(9): 1145-1158.
    [19] KAHRAMAN A, SINGH R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system[J]. Journal of Sound and Vibration, 1991, 146(1): 135-156.
    [20] SEKAR P R, SATHISHKUMAR R. Enhancement of wear resistance on normal contact ratio spur gear pairs through non-standard gears [J]. Wear, 2017, 380/381: 228-239.
    [21] BAJPAI P, KAHRAMAN A, ANDERSON N E. A surface wear prediction methodology for parallel-axis gear pairs[J]. Journal of Tribology, 2004, 126(3): 597-605.
    [22] 唐进元, 周炜, 陈思雨. 齿轮传动啮合接触冲击分析[J]. 机械工程学报, 2011, 47(7): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201107005.htm

    TANG Jin-yuan, ZHOU Wei, CHEN Si-yu. Contact-impact analysis of gear transmission system[J]. Journal of Mechanical Engineering, 2011, 47(7): 22-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201107005.htm
    [23] 魏东, 魏沛堂, 刘怀举, 等. 微齿轮齿面磨损行为及仿真分析[J]. 重庆大学学报, 2022, 45(4): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202204003.htm

    WEI Dong, WEI Pei-tang, LIU Huai-ju, et al. Wear behavior and simulation analysis of micro gear tooth surface[J]. Journal of Chongqing University, 2022, 45(4): 22-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202204003.htm
    [24] PRIEST M, TAYLOR C M. Automobile engine tribology-approaching the surface[J]. Wear, 2000, 241(2): 193-203.
    [25] DING Hua-li, KAHRAMAN A. Interactions between nonlinear spur gear dynamics and surface wear[J]. Journal of Sound and Vibration, 2007, 307(3-5): 662-679.
    [26] WANG Hong-bing, ZHOU Chang-jiang, LEI Yu-ying, et al. An adhesive wear model for helical gears in line-contact mixed elastohydrodynamic lubrication[J]. Wear, 2019, 426/427: 896-909.
    [27] FLODIN A. Wear investigation of spur gear teeth[J]. Tribotest, 2000, 7(1): 45-60.
    [28] BOSE K K, PENCHALIAH R. 3-D FEM wear prediction of brass sliding against bearing steel using constant contact pressure approximation technique[J]. Tribology Online, 2019, 14(4): 194-207.
    [29] BRAUER J, ANDERSSON S. Simulation of wear in gears with flank interference: a mixed FE and analytical approach[J]. Wear, 2003, 254(11): 1216-1232.
    [30] 刘辉, 潘文斌, 艾永生, 等. 考虑摩擦的螺旋锥齿轮齿面接触应力分析[J]. 科学技术创新, 2021(19): 134-135. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202119058.htm

    LIU Hui, PAN Wen-bin, AI Yong-sheng, et al. Analysis on contact stress of spiral bevel gear by considering friction[J]. Scientific and Technological Innovation, 2021(19): 134-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202119058.htm
    [31] CHEN Zai-gang, ZHAI Wan-ming, WANG Kai-yun. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions[J]. Journal of Sound and Vibration, 2017, 408: 220-233.
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  113
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回