留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑3种时延的车辆队列控制系统稳定性

朱旭 孙卓 张泽华 闫茂德

朱旭, 孙卓, 张泽华, 闫茂德. 考虑3种时延的车辆队列控制系统稳定性[J]. 交通运输工程学报, 2024, 24(2): 254-266. doi: 10.19818/j.cnki.1671-1637.2024.02.018
引用本文: 朱旭, 孙卓, 张泽华, 闫茂德. 考虑3种时延的车辆队列控制系统稳定性[J]. 交通运输工程学报, 2024, 24(2): 254-266. doi: 10.19818/j.cnki.1671-1637.2024.02.018
ZHU Xu, SUN Zhuo, ZHANG Ze-hua, YAN Mao-de. Stability of vehicle platoon control system with three types of delays[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 254-266. doi: 10.19818/j.cnki.1671-1637.2024.02.018
Citation: ZHU Xu, SUN Zhuo, ZHANG Ze-hua, YAN Mao-de. Stability of vehicle platoon control system with three types of delays[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 254-266. doi: 10.19818/j.cnki.1671-1637.2024.02.018

考虑3种时延的车辆队列控制系统稳定性

doi: 10.19818/j.cnki.1671-1637.2024.02.018
基金项目: 

国家重点研发计划 2021YFA1000303

国家自然科学基金项目 62003054

陕西省重点研发计划 2023-YBGY-398

详细信息
    作者简介:

    朱旭(1987-),男,山东烟台人,长安大学副教授,工学博士,从事智能网联车辆队列控制研究

  • 中图分类号: U491.2

Stability of vehicle platoon control system with three types of delays

Funds: 

National Key Research and Development Program of China 2021YFA1000303

National Natural Science Foundation of China 62003054

Key Research and Development Program of Shaanxi Province 2023-YBGY-398

More Information
    Author Bio:

    ZHU Xu(1987-), male, associate professor, PhD, zx@chd.edu.cn

  • 摘要: 针对含输入时延、跟随车之间的通信时延、领航车广播时延的车辆队列控制系统,研究了其内部稳定性和队列稳定性;在内部稳定性方面,提出了一种融合克罗内克和与特征根聚类(CTCR)法的方法,获得了系统内部稳定的充分必要条件;在队列稳定性方面,为了保证干扰沿车辆队列向后传播不扩散,给出了队列稳定的充分条件,揭示了队列稳定性独立于跟随车之间的通信时延;在此基础上,给出了可保证队列稳定的时延上界与车辆控制器增益设计范围。仿真结果表明:当满足所提稳定性条件时,车辆队列控制系统可同时保持内部稳定和队列稳定;所提内部稳定性方法求解的时延边界是完整、精确的,理论推导结果与仿真试验结果的误差小于0.1 s,且仿真时间比Bézout结式消元快2个数量级,比Sylvester结式消元快3个数量级,表明该方法大幅度降低了传统特征根聚类法的运算量;车间状态误差可在15 s内快速减小并趋近于0;在所有车辆恒速行驶时,车间保持50 m期望安全距离;在领航车以0.4 m·s-2加速和0.6 m·s-2减速过程中,跟随车的速度和加速度随领航车变化,车辆位置误差小于0.5 m,且沿车辆队列向后传播不扩散。

     

  • 图  1  双向-领航车跟随式拓扑

    Figure  1.  Bidirectional-leader vehicle following topology

    图  2  子系统在时延谱域的核心超曲面

    Figure  2.  Kernal hypersurfaces of subsystems in delay-spectral domain

    图  3  τ3=0.1 s时车辆队列各子系统的时延边界

    Figure  3.  Delay margins of subsystems of vehicle platoon at τ3=0.1 s

    图  4  τ3=0.1 s时车辆队列的时延边界

    Figure  4.  Delay margins of vehicle platoon at τ3=0.1 s

    图  5  a处车辆队列的位置误差和速度

    Figure  5.  Spacing errors and velocities of vehicle platoon at point a

    图  6  b处车辆队列的位置误差和速度

    Figure  6.  Spacing errors and velocities of vehicle platoon at point b

    图  7  c处车辆队列的位置误差和速度

    Figure  7.  Spacing errors and velocities of vehicle platoon at point c

    图  8  试验1中车辆队列的状态与位置误差

    Figure  8.  States and spacing errors of vehicle platoon in experiment 1

    图  9  车辆控制器增益的可选设计范围

    Figure  9.  Optional design range of vehicle controller gains

    图  10  试验2中车辆队列的状态与位置误差

    Figure  10.  States and spacing errors of vehicle platoon in experiment 2

    图  11  试验3中车辆队列的状态与位置误差

    Figure  11.  States and spacing errors of vehicle platoon in experiment 3

    表  1  仿真时间

    Table  1.   Simulation times

    方法 仿真时间/min
    本文所提内部稳定性分析方法 0.05
    基于Bézout结式消元的CTCR法[11] 3.10
    基于Sylvester结式消元的CTCR法[30] 17.30
    下载: 导出CSV
  • [1] LI S E, ZHENG Y, LI K Q, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58. doi: 10.1109/MITS.2017.2709781
    [2] 张毅, 姚丹亚, 李力, 等. 智能车路协同系统关键技术与应用[J]. 交通运输系统工程与信息, 2021, 21(5): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105006.htm

    ZHANG Yi, YAO Dan-ya, LI Li, et al. Technologies and applications for intelligent vehicle-infrastructure cooperation systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 40-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105006.htm
    [3] LI Da-peng, LIU Yan-jun, TONG Shao-cheng, et al. Neural networks-based adaptive control for nonlinear state constrained systems with input delay[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1249-1258. doi: 10.1109/TCYB.2018.2799683
    [4] DENG Chao, CHE Wei-wei, WU Zheng-guang. A dynamic periodic event-triggered approach to consensus of heterogeneous linear multiagent systems with time-varying communication delays[J]. IEEE Transactions on Cybernetics, 2021, 51(4): 1812-1821. doi: 10.1109/TCYB.2020.3015746
    [5] HUANG Da-rong, LI Shao-qian, ZHANG Zhen-yuan, et al. Design and analysis of longitudinal controller for the platoon with time-varying delay[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23628-23639. doi: 10.1109/TITS.2022.3200026
    [6] LIU An-quan, LI Tao, GU Yu, et al. Cooperative extended state observer based control of vehicle platoons with arbitrarily small time headway[J]. Automatica, 2021, 129: 109678. doi: 10.1016/j.automatica.2021.109678
    [7] WANG Bing-ying, ZHENG Jun, REN Qi-lei, et al. Analysis of the intra-platoon message delivery delay in a platoon of vehicles[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 7012-7026. doi: 10.1109/TVT.2021.3076157
    [8] PLOEG J, SHUKLA D P, VAN DE WOUW N, et al. Controller synthesis for string stability of vehicle platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 854-865. doi: 10.1109/TITS.2013.2291493
    [9] ZHENG Y, LI S E, WANG J Q, et al. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 14-26. doi: 10.1109/TITS.2015.2402153
    [10] 李旭光, 张颖伟, 冯琳. 时滞系统的完全稳定性研究综述[J]. 控制与决策, 2018, 33(7): 1153-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201807001.htm

    LI Xu-guang, ZHANG Ying-wei, FENG Lin. Survey on complete stability study for time-delay systems[J]. Control and Decision, 2018, 33(7): 1153-1170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201807001.htm
    [11] AKKAYA S, AKBATI O, ERGENC A F. Stability analysis of connected vehicles with V2V communication and time delays: CTCR method via Bézout's resultant[J]. Transactions of the Institute of Measurement and Control, 2021, 43(8): 1802-1829. doi: 10.1177/0142331220981426
    [12] ABOLFAZLI E, BESSELINK B, CHARALAMBOUS T. On time headway selection in platoons under the MPF topology in the presence of communication delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8881-8894. doi: 10.1109/TITS.2021.3087484
    [13] GAO Q B, OLGAC N. Stability analysis for LTI systems with multiple time delays using the bounds of its imaginary spectra[J]. Systems and Control Letters, 2017, 102: 112-118. doi: 10.1016/j.sysconle.2017.02.003
    [14] GUO Ge, KANG Jian, LEI Hong-bo, et al. Finite-time stabilization of a collection of connected vehicles subject to communication interruptions[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10627-10635. doi: 10.1109/TITS.2021.3095147
    [15] GAO Q B, OLGAC N. Bounds of imaginary spectra of LTI systems in the domain of two of the multiple time delays[J]. Automatica, 2016, 72: 235-241. doi: 10.1016/j.automatica.2016.05.011
    [16] CHEN Jian-zhong, LIANG Huan, LI Jing, et al. Connected automated vehicle platoon control with input saturation and variable time headway strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4929-4940. doi: 10.1109/TITS.2020.2983468
    [17] 李永福, 何昌鹏, 朱浩, 等. 通信延时环境下异质网联车辆队列非线性纵向控制[J]. 自动化学报, 2021, 47(12): 2841-2856. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202112011.htm

    LI Yong-fu, HE Chang-peng, ZHU Hao, et al. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delays[J]. Acta Automatica Sinica, 2021, 47(12): 2841-2856. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202112011.htm
    [18] SHI Min, YU Ya-juan, XU Qi. Delay-dependent consensus condition for a class of fractional-order linear multi-agent systems with input time-delay[J]. International Journal of Systems Science, 2019, 50(4): 669-678. doi: 10.1080/00207721.2019.1567865
    [19] SADEK B A, HOUSSAINE T E, NOREDDINE C. Small- gain theorem and finite-frequency analysis of TCP/AQM system with time varying delay[J]. IET Control Theory and Applications, 2019, 13(13): 1971-1982. doi: 10.1049/iet-cta.2018.6466
    [20] CEPEDA-GOMEZ R, OLGAC N. Consensus analysis with large and multiple communication delays using spectral delay space concept[J]. International Journal of Control, 2011, 84(12): 1996-2007. doi: 10.1080/00207179.2011.631151
    [21] 朱旭, 张泽华, 闫茂德. 含输入时延与通信时延的车辆队列PID控制系统稳定性[J]. 交通运输工程学报, 2022, 22(3): 184-198. doi: 10.19818/j.cnki.1671-1637.2022.03.015

    ZHU Xu, ZHANG Ze-hua, YAN Mao-de. Stability of PID control system for vehicle platoon with input delay and communication delay[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 184-198. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.03.015
    [22] GONG Jian, CAO Jin-de, ZHAO Yuan, et al. Sampling- based cooperative adaptive cruise control subject to communication delays and actuator lags[J]. Mathematics and Computers in Simulation, 2020, 171: 13-25. doi: 10.1016/j.matcom.2019.10.012
    [23] HU San-gen, WEN Hui-ying, XU Lun-hui, et al. Stability of platoon of adaptive cruise control vehicles with time delay[J]. Transportation Letters, 2019, 11(9): 506-515. doi: 10.1080/19427867.2017.1407488
    [24] XING H T, PLOEG J, NIJMEIJER H. Padé approximation of delays in cooperative ACC based on string stability requirements[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(3): 277-286. doi: 10.1109/TIV.2017.2662482
    [25] LIU Yong-gui, GAO Huan-li. Stability, scalability, speedability, and string stability of connected vehicle systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5): 2819-2832. doi: 10.1109/TSMC.2021.3054794
    [26] CHEHARDOLI H, HOMAEINEZHAD M R, GHASEMI A. Control design and stability analysis of homogeneous traffic flow under time delay: a new spacing policy[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(3): 622-635. doi: 10.1177/0954407017751789
    [27] ALIKOC B, ERGENC A F. A polynomial method for stability analysis of LTI systems independent of delays[J]. SIAM Journal on Control and Optimization, 2017, 55(4): 2661-2683. doi: 10.1137/16M1077726
    [28] ZHOU Bin, LIU Qing-song. Input delay compensation for neutral type time-delay systems[J]. Automatica, 2017, 78: 309-319. doi: 10.1016/j.automatica.2016.12.015
    [29] GAIDHANE V H, HOTE Y V. An improved approach for stability analysis of discrete system[J]. Journal of Control, Automation and Electrical Systems, 2018, 29(5): 535-540. doi: 10.1007/s40313-018-0396-5
    [30] CEPEDA-GOMEZ R, OLGAC N. Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling[J]. International Journal of Systems Science, 2016, 47(2): 433-449. doi: 10.1080/00207721.2014.886745
    [31] BIAN You-gang, ZHENG Yang, REN Wei, et al. Reducing time headway for platooning of connected vehicles via V2V communication[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 87-105. doi: 10.1016/j.trc.2019.03.002
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  32
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-23
  • 网络出版日期:  2024-05-16
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回