留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑砂浆随机分布的多孔沥青混合料黏附/黏聚失效行为

王晓威 张一鸣 王兴威 任家兴 杨旭 黄育兆 汪海年

王晓威, 张一鸣, 王兴威, 任家兴, 杨旭, 黄育兆, 汪海年. 考虑砂浆随机分布的多孔沥青混合料黏附/黏聚失效行为[J]. 交通运输工程学报, 2024, 24(3): 139-153. doi: 10.19818/j.cnki.1671-1637.2024.03.009
引用本文: 王晓威, 张一鸣, 王兴威, 任家兴, 杨旭, 黄育兆, 汪海年. 考虑砂浆随机分布的多孔沥青混合料黏附/黏聚失效行为[J]. 交通运输工程学报, 2024, 24(3): 139-153. doi: 10.19818/j.cnki.1671-1637.2024.03.009
WANG Xiao-wei, ZHANG Yi-ming, WANG Xing-wei, REN Jia-xing, YANG Xu, WONG Yiik-diew, WANG Hai-nian. Adhesion/cohesion failure behavior of porous asphalt concrete considering mortar random distribution[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 139-153. doi: 10.19818/j.cnki.1671-1637.2024.03.009
Citation: WANG Xiao-wei, ZHANG Yi-ming, WANG Xing-wei, REN Jia-xing, YANG Xu, WONG Yiik-diew, WANG Hai-nian. Adhesion/cohesion failure behavior of porous asphalt concrete considering mortar random distribution[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 139-153. doi: 10.19818/j.cnki.1671-1637.2024.03.009

考虑砂浆随机分布的多孔沥青混合料黏附/黏聚失效行为

doi: 10.19818/j.cnki.1671-1637.2024.03.009
基金项目: 

国家重点研发计划 2021YFB2601000

国家自然科学基金项目 52008333

高性能土木工程材料国家重点实验室开放基金课题 2023CEM006

详细信息
    作者简介:

    王晓威(1990-),男,河南安阳人,西安建筑科技大学副教授,工学博士,从事路面结构与材料研究

    通讯作者:

    汪海年(1977-),男,江苏涟水人,长安大学教授,工学博士

  • 中图分类号: U416.2

Adhesion/cohesion failure behavior of porous asphalt concrete considering mortar random distribution

Funds: 

National Key Research and Development Program of China 2021YFB2601000

National Natural Science Foundation of China 52008333

Open Fund Project of State Key Laboratory of High Performance Civil Engineering Materials 2023CEM006

More Information
  • 摘要: 为获得更加真实的多孔沥青混合料(PAC)黏附/黏聚失效行为,提出了一种考虑砂浆随机分布的细观有限元建模方法;基于X射线CT扫描和图像处理技术量化了PAC的真实细观结构和砂浆分布,研究了砂浆的随机分布特性;通过可精确控制砂浆厚度的拉拔试验评价了不同厚度砂浆的黏附/黏聚性能,确定了不同厚度砂浆对应的内聚力模型参数;在砂浆-集料边界和砂浆内部嵌入零厚度内聚力单元,并基于PAC内不同区域的砂浆厚度赋予该区域内聚力单元相应的模型参数,最终构建了考虑砂浆随机分布的细观有限元模型(模型A),研究了PAC黏附/黏聚失效行为的细观演化过程。研究结果表明:推荐将试件分割为36份用于表征砂浆的随机分布特性,砂浆厚度对其黏附/黏聚性能、失效模式以及内聚力模型参数具有显著影响,当砂浆厚度小于0.9 mm或在1.2~1.8 mm时为黏附失效,大于1.9 mm时为黏附-黏聚混合失效,其他厚度下为黏聚失效,且同一失效模式下,黏附/黏聚强度随着砂浆厚度的增大而增大;与不考虑砂浆随机分布的细观有限元模型(模型B)相比,模型A和B的起裂点均为黏附失效,但失效位置不同,模型B以单一的黏附失效为主,模型A表现出多种黏附/黏聚失效行为,与现场复杂的黏附/黏聚失效行为更加一致;砂浆的随机分布对PAC黏附/黏聚失效过程、应力分布、裂缝发展具有显著的影响,故考虑砂浆的随机分布能够更加准确地识别PAC黏附/黏聚失效的最不利位置,增大砂浆厚度能够延缓黏附/黏聚失效的扩展过程。

     

  • 图  1  PAC-13的CT图像

    Figure  1.  CT image of PAC-13

    图  2  PAC-13三组分的二值化图像

    Figure  2.  Binary images of three components of PAC-13

    图  3  砂浆厚度分布

    Figure  3.  Distribution of mortar thickness

    图  4  不同分割份数下砂浆厚度分布和变异系数

    Figure  4.  Mortar thickness distributions and coefficients of variation under different segmentation numbers

    图  5  拉拔试验

    Figure  5.  Pull-off test

    图  6  力-位移曲线和界面破坏

    Figure  6.  Force-displacement curve and interface failure

    图  7  间接拉伸试验

    Figure  7.  Indirect tensile test

    图  8  双线性CZM

    Figure  8.  Bilinear CZM

    图  9  零厚度二维内聚力单元嵌入

    Figure  9.  Zero thickness two-dimensional cohesive element embedding

    图  10  嵌入内聚力单元

    Figure  10.  Embedding of cohesive elements

    图  11  内聚力单元参数获取方法

    Figure  11.  Method for obtaining cohesive element parameters

    图  12  考虑砂浆随机分布的细观有限元模型

    Figure  12.  Meso-scale finite element model considering mortar random distribution

    图  13  力-位移时程曲线

    Figure  13.  Force-displacement time-history curves

    图  14  裂缝长度

    Figure  14.  Crack lengths

    图  15  模型的起裂点

    Figure  15.  Crack initiation points of models

    图  16  模型的裂缝扩展过程

    Figure  16.  Crack propagation processes of models

    图  17  完全破坏时模型的应力分布

    Figure  17.  Stress distributions of models at completed failure stage

    表  1  PAC-13和砂浆的级配组成与集料比表面积

    Table  1.   Gradation compositions and aggregate specific surface areas of PAC-13 and mortar

    集料粒径/mm 16.000 13.200 9.500 4.750 2.360 1.180 0.600 0.300 0.150 0.075
    PAC-13级配通过率/% 100.0 95.3 61.6 23.3 16.3 13.2 10.7 8.8 7.4 5.4
    砂浆级配通过率/% 100.0 100.0 100.0 100.0 100.0 100.0 81.1 66.7 56.1 40.9
    集料比表面积系数 0.41 0.41 0.82 1.64 2.87 6.14 12.29 32.77
    S1/ (m2·kg-1) 437.3
    S2/(m2·kg-1) 351.6
    下载: 导出CSV

    表  2  不同厚度砂浆的黏附/黏聚强度和失效模式

    Table  2.   Adhesion/cohesion strengths and failure modes of different thickness mortar

    砂浆厚度/mm 失效模式 开裂强度/MPa
    0.4 黏附失效 1.30
    0.9 黏附失效 1.81
    1.0 黏聚失效 1.33
    1.1 黏聚失效 1.90
    1.2 黏附失效 1.00
    1.3 黏附失效 1.06
    1.4 黏附失效 1.14
    1.5 黏附失效 1.17
    1.6 黏附失效 1.22
    1.7 黏附失效 1.24
    1.8 黏附失效 1.27
    1.9 混合失效 1.41
    2.0 混合失效 1.45
    下载: 导出CSV

    表  3  不同厚度砂浆的内聚力单元参数

    Table  3.   Cohesive element parameters of mortar with different thicknesses

    砂浆厚度/mm Tc/MPa K/(GPa·m-1) Gc/(J·mm-2)
    0.4 1.30 1.42 0.32
    0.9 1.81 1.43 0.45
    1.0 1.33 1.02 0.47
    1.1 1.90 1.80 0.48
    1.2 1.00 0.83 0.39
    1.3 1.06 0.92 0.42
    1.4 1.14 0.95 0.47
    1.5 1.17 0.97 0.49
    1.6 1.22 0.98 0.55
    1.7 1.24 0.99 0.61
    1.8 1.27 0.99 0.64
    1.9 1.41 1.10 0.75
    2.0 1.45 1.11 0.83
    下载: 导出CSV
  • [1] WANG Xiao-wei, GU Xing-yu, HU Xin-yu, et al. Three-stage evolution of air voids and deformation of porous-asphalt mixtures in high-temperature permanent deformation[J]. Journal of Materials in Civil Engineering, 2020, 32(9): 4020233. doi: 10.1061/(ASCE)MT.1943-5533.0003300
    [2] WANG Xiao-wei, HU Xin-yu, GU Xing-yu, et al. Microstructure and damage evolution of porous asphalt mixtures under coupled effects of high temperature and moisture[J]. International Journal of Pavement Engineering, 2023, 24(1): 1-15.
    [3] CANESTRARI F, CARDONE F, GRAZIANI A, et al. Adhesive and cohesive properties of asphalt-aggregate systems subjected to moisture damage[J]. Road Materials and Pavement Design, 2010, 11(S1): 11-32.
    [4] LIU Ya-wen, APEAGYEI A, AHMAD N, et al. Examination of moisture sensitivity of aggregate-bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests[J]. International Journal of Pavement Engineering, 2014, 15(7): 657-670. doi: 10.1080/10298436.2013.855312
    [5] 张恺, 罗蓉, 张德润. 基于表面自由能理论的彩色树脂类沥青材料润湿性分析[J]. 中国公路学报, 2016, 29(5): 34-40. doi: 10.3969/j.issn.1001-7372.2016.05.005

    ZHANG Kai, LUO Rong, ZHANG De-run. Wettability analysis on colored resin asphalt binder based on surface free energy theory[J]. China Journal of Highway and Transport, 2016, 29(5): 34-40. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.05.005
    [6] 罗蓉, 郑松松, 张德润, 等. 基于表面能理论的沥青与集料黏附性能评价[J]. 中国公路学报, 2017, 30(6): 209-214. doi: 10.3969/j.issn.1001-7372.2017.06.003

    LUO Rong, ZHENG Song-song, ZHANG De-run, et al. Evaluation of adhesion property in asphalt-aggregate systems based on surface energy theory[J]. China Journal of Highway and Transport, 2017, 30(6): 209-214. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.06.003
    [7] APEAGYEI A K, GRENFELL J R A, AIREY G D. Moisture-induced strength degradation of aggregate-asphalt mastic bonds[J]. Road Materials and Pavement Design, 2014, 15(S1): 239-262.
    [8] HUANG Wei-dong, LYU Quan, XIAO Fei-peng. Investigation of using binder bond strength test to evaluate adhesion and self-healing properties of modified asphalt binders[J]. Construction and Building Materials, 2016, 113: 49-56. doi: 10.1016/j.conbuildmat.2016.03.047
    [9] CHATURABONG P, BAHIA H U. Effect of moisture on the cohesion of asphalt mastics and bonding with surface of aggregates[J]. Road Materials and Pavement Design, 2018, 19(3): 741-753. doi: 10.1080/14680629.2016.1267659
    [10] ZHANG Heng-ji, LI Hui, ZHANG Yi, et al. Performance enhancement of porous asphalt pavement using red mud as alternative filler[J]. Construction and Building Materials, 2018, 160: 707-713. doi: 10.1016/j.conbuildmat.2017.11.105
    [11] CAI Jun, WEN Yong, WANG Di, et al. Investigation on the cohesion and adhesion behavior of high-viscosity asphalt binders by bonding tensile testing apparatus[J]. Construction and Building Materials, 2020, 261: 120011. doi: 10.1016/j.conbuildmat.2020.120011
    [12] WANG Xiao-wei, REN Jia-xing, GU Xing-yu, et al. Investigation of the adhesive and cohesive properties of asphalt, mastic, and mortar in porous asphalt mixtures[J]. Construction and Building Materials, 2021, 276: 122255. doi: 10.1016/j.conbuildmat.2021.122255
    [13] 黄云涌, 刘朝晖, 李宇峙. 沥青混合料水稳性试验方法[J]. 交通运输工程学报, 2002, 2(2): 19-22. doi: 10.3321/j.issn:1671-1637.2002.02.005

    HUANG Yun-yong, LIU Zhao-hui, LI Yu-zhi. Method of asphalt mixture immersion stability test[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 19-22. (in Chinese) doi: 10.3321/j.issn:1671-1637.2002.02.005
    [14] ALVAREZ A E, EPPS-MARTIN A, ESTAKHRI C, et al. Evaluation of durability tests for permeable friction course mixtures[J]. International Journal of Pavement Engineering, 2010, 11(1): 49-60. doi: 10.1080/10298430902730539
    [15] 严超, 魏显权, 方杨. 沥青混合料水稳定性能评价方法研究[J]. 公路, 2019, 64(10): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910006.htm

    YAN Chao, WEI Xian-quan, FANG Yang. Study of evaluation methods for water stability performance of asphalt mixture[J]. Highway, 2019, 64(10): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910006.htm
    [16] 周璐, 黄卫东, 吕泉, 等. 不同改性剂对沥青黏结及抗水损害性能的影响[J]. 建筑材料学报, 2021, 24(2): 377-384. doi: 10.3969/j.issn.1007-9629.2021.02.021

    ZHOU Lu, HUANG Wei-dong, LYU Quan, et al. Effects of various modifiers on the bond property and moisture damage resistance of asphalt[J]. Journal of Building Materials, 2021, 24(2): 377-384. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.02.021
    [17] XU Hui-ning, GUO Wei, TAN Yi-qiu. Internal structure evolution of asphalt mixtures during freeze-thaw cycles[J]. Materials and Design, 2015, 86: 436-446. doi: 10.1016/j.matdes.2015.07.073
    [18] HU Xin-yu, WANG Xiao-wei, ZHENG Nan-xiang, et al. Experimental investigation of moisture sensitivity and damage evolution of porous asphalt mixtures[J]. Materials, 2021, 14(23): 7151. doi: 10.3390/ma14237151
    [19] CUI Pei-de, WU Shao-peng, XIAO Yue, et al. 3D reconstruction of moisture damage resulted volumetric changes in porous asphalt mixture[J]. Construction and Building Materials, 2019, 228: 116658. doi: 10.1016/j.conbuildmat.2019.08.039
    [20] OMRANIAN S R, HAMZAH M O, YEE T S, et al. Effects of short-term ageing scenarios on asphalt mixtures' fracture properties using imaging technique and response surface method[J]. International Journal of Pavement Engineering, 2020, 21(11): 1374-1392. doi: 10.1080/10298436.2018.1546007
    [21] JIANG Ji-wang, LI Ying, ZHANG Yuan, et al. Distribution of mortar film thickness and its relationship to mixture cracking resistance[J]. International Journal of Pavement Engineering, 2022, 23(3): 824-833. doi: 10.1080/10298436.2020.1774767
    [22] BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636. doi: 10.1016/0021-8928(59)90157-1
    [23] XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. doi: 10.1016/0022-5096(94)90003-5
    [24] ESPINOSA H D, ZAVATTIERI P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part Ⅰ: theory and numerical implementation[J]. Mechanics of Materials, 2003, 35(3/4/5/6): 333-364.
    [25] MO L T, HUURMAN M, WOLDEKIDAN M F, et al. Investigation into material optimization and development for improved ravelling resistant porous asphalt concrete[J]. Materials and Design, 2010, 31(7): 3194-3206. doi: 10.1016/j.matdes.2010.02.026
    [26] HOSSAIN M I, TAREFDER R A. Quantifying moisture damage at mastic-aggregate interface[J]. International Journal of Pavement Engineering, 2014, 15(2): 174-189. doi: 10.1080/10298436.2013.812212
    [27] WANG Hao, WANG Jian, CHEN Jia-qi. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure[J]. Engineering Fracture Mechanics, 2014, 132: 104-119. doi: 10.1016/j.engfracmech.2014.10.029
    [28] FAN Ze-peng, DU Cong, LIU Peng-fei, et al. Study on interfacial debonding between bitumen and aggregate based on micromechanical damage model[J]. International Journal of Pavement Engineering, 2020, 23(2): 340-348.
    [29] BEKELE A, BALIEU R, JELAGIN D, et al. Micro-mechanical modelling of low temperature-induced micro-damage initiation in asphalt concrete based on cohesive zone model[J]. Construction and Building Materials, 2021, 286: 122971. doi: 10.1016/j.conbuildmat.2021.122971
    [30] MANRIQUE-SANCHEZ L, CARO S, ARÁMBULA-MERCADO E. Numerical modelling of ravelling in porous friction courses (PFC)[J]. Road Materials and Pavement Design, 2018, 19(3): 668-689. doi: 10.1080/14680629.2016.1269661
    [31] 郭志栋, 李得健, 陈维斌, 等. 基于细观孔隙结构的排水沥青混合料劈裂损伤分析[J]. 兰州工业学院学报, 2022, 29(2): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202004.htm

    GUO Zhi-dong, LI De-jian, CHEN Wei-bin, et al. Splitting damage analysis of drainage asphalt mixture based on micropore structure[J]. Journal of Lanzhou Institute of Technology, 2022, 29(2): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202004.htm
    [32] ZHANG Hao-peng, DING Hai-bo, RAHMAN A. Effect of asphalt mortar viscoelasticity on microstructural fracture behavior of asphalt mixture based on cohesive zone model[J]. Journal of Materials in Civil Engineering, 2022, 34(7): 0004277.
    [33] 赵晓康, 董侨, 肖源杰, 等. 基于细观非均质模型的水稳碎石基层材料疲劳开裂研究[J]. 中南大学学报(自然科学版), 2021, 52(9): 3132-3142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202109015.htm

    ZHAO Xiao-kang, DONG Qiao, XIAO Yuan-jie, et al. Fatigue cracking of cement-eated composites with mesoscale heterogeneous model[J]. Journal of Central South University (Science and Technology), 2021, 52(9): 3132-3142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202109015.htm
    [34] WANG Ya-bo, ZHANG Hai-tao, ZHAO Qi. Micro-structural analysis on stress displacement and crack evolution of porous asphalt mixture based on DEM[J]. Materials Research Express, 2021, 8(6): 065102.
    [35] KOSE S, GULER M, BAHIA H U, et al. Distribution of strains within hot-mix asphalt binders: applying imaging and finite-element techniques[J]. Transportation Research Record, 2000, 1728(1): 21-27.
    [36] SEDGHI R, REZAEI LORI A, BOKAEI A, et al. Evaluating the bond strength and work of fracture of bituminous mastic using the taguchi method[J]. International Journal of Pavement Engineering, 2021, 22(10): 1318-1333.
    [37] SONG S H, PAULINO G H, BUTTLAR W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006, 73(18): 2829-2848.
    [38] SCHULTZ R A. Brittle strength of basaltic rock masses with applications to Venus[J]. Journal of Geophysical Research: Planets, 1993, 98(E6): 10883-10895.
    [39] ROQUE R, KOH C, CHEN Y, et al. Introduction of fracture resistance to the design and evaluation of open graded friction courses in Florida[R]. Tallahassee: Florida Department of Transportation, 2009.
    [40] MO Lian-tong, HUURMAN M, WU Shao-peng, et al. Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen-stone adhesion and mortar[J]. Materials and Design, 2009, 30(1): 170-179.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  19
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回