留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横风作用下空载和满载敞车的动力学特性对比

王开云 何文涛 胡彦霖 閤鑫

王开云, 何文涛, 胡彦霖, 閤鑫. 横风作用下空载和满载敞车的动力学特性对比[J]. 交通运输工程学报, 2024, 24(3): 217-226. doi: 10.19818/j.cnki.1671-1637.2024.03.015
引用本文: 王开云, 何文涛, 胡彦霖, 閤鑫. 横风作用下空载和满载敞车的动力学特性对比[J]. 交通运输工程学报, 2024, 24(3): 217-226. doi: 10.19818/j.cnki.1671-1637.2024.03.015
WANG Kai-yun, HE Wen-tao, HU Yan-lin, GE Xin. Comparison of dynamics characteristics of empty and full load gondola cars subjected to crosswind[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 217-226. doi: 10.19818/j.cnki.1671-1637.2024.03.015
Citation: WANG Kai-yun, HE Wen-tao, HU Yan-lin, GE Xin. Comparison of dynamics characteristics of empty and full load gondola cars subjected to crosswind[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 217-226. doi: 10.19818/j.cnki.1671-1637.2024.03.015

横风作用下空载和满载敞车的动力学特性对比

doi: 10.19818/j.cnki.1671-1637.2024.03.015
基金项目: 

国家自然科学基金项目 52388102

详细信息
    作者简介:

    王开云(1974-), 男, 江西萍乡人, 西南交通大学研究员, 工学博士, 从事轨道交通大系统动力学研究

  • 中图分类号: U270.11

Comparison of dynamics characteristics of empty and full load gondola cars subjected to crosswind

Funds: 

National Natural Science Foundation of China 52388102

More Information
  • 摘要: 建立了考虑1节机车和4节敞车的货物列车空气动力学模型,研究了风速对空载和满载敞车车体表面压力分布规律的影响,计算了敞车受到的气动载荷,并将气动载荷加载到货物列车动力学模型,从车体姿态和运行安全性两方面分析了不同速度横风作用下空载和满载敞车的动力学特性。研究结果表明:在横风作用下,机车后第1节敞车受到的侧力、升力和侧滚力矩最大,当风速为10 m·s-1时,最大值分别为-7.17 kN、4.59 kN、1.89 kN·m;对于第1节敞车,当风速为10 m·s-1时,满载敞车受到的侧力、点头力矩和摇头力矩相比于空载敞车分别减小了15.8%、79.0%和12.2%,而受到的升力和侧滚力矩分别增大了39.9%和56.6%,因此,装载状态对横风作用下敞车气动载荷有较大影响;空载敞车更易受气动载荷影响,当风速分别为25、30 m·s-1时,空载敞车1的车体横移分别为-12.66、-14.82 mm,满载敞车1的车体横移分别为-12.01、-13.68 mm,空载敞车1的车体侧滚角分别-0.69°、-0.83°,满载敞车1的车体侧滚角分别-0.64°、-0.73°, 因此,空载敞车横移与侧滚角大于满载敞车;当风速为25 m·s-1时,空载敞车的轮重减载率达到0.68,已超出安全限值0.65,而满载敞车的轮重减载率为0.24,小于安全限值,当风速为30 m·s-1,空载敞车的倾覆系数达到0.75,接近安全限值0.80,而满载敞车的倾覆系数仅为0.23,因此,较大速度横风作用下,空载敞车存在较大的运行安全风险。

     

  • 图  1  列车几何模型与计算域

    Figure  1.  Computational domain and geometric model of train

    图  2  空载敞车计算网格模型

    Figure  2.  Computation mesh model of empty gondola car

    图  3  网格无关性验证

    Figure  3.  Mesh independence verification

    图  4  满载敞车网格分布

    Figure  4.  Mesh distribution of full load gondola car

    图  5  货物列车动力学模型

    Figure  5.  Dynamics model of freight train

    图  6  试验压力测点布置

    Figure  6.  Layout of measuring points for pressure in test

    图  7  仿真与试验压力系数对比

    Figure  7.  Comparison between test values and simulation values for pressure coefficient

    图  8  敞车1横向中心截面的压力分布

    Figure  8.  Pressure distributions of transverse central section of gondola car 1

    图  9  空载和满载敞车纵向中心截面压力分布

    Figure  9.  Pressure distributions of empty and full load gondola cars along longitudinal central section

    图  10  敞车的轮轴横向力

    Figure  10.  Wheelset lateral forces of gondola cars

    图  11  车体横移和侧滚角随风速变化规律

    Figure  11.  Changing rules of lateral displacements and roll angles of car bodies with wind speed

    图  12  敞车1不同装载状态下安全性指标随风速的变化规律

    Figure  12.  Changing rules of safety indices of gondola car 1 under no-load and full-load conditions at different wind speeds

    表  1  空载和满载敞车气动载荷

    Table  1.   Aerodynamic loads of empty and full load gondola cars

    装载状态 气动载荷 不同敞车的气动载荷
    敞车1 敞车2 敞车3 敞车4
    空载 侧力/kN -7.17 -6.49 -6.12 -5.72
    升力/kN 4.59 3.85 3.36 2.64
    侧滚力矩/(kN·m) 1.89 1.06 0.84 0.59
    点头力矩/(kN·m) -5.72 -10.73 -11.08 -10.89
    摇头力矩/(kN·m) -1.31 -5.21 -4.18 -3.01
    满载 侧力/kN -6.04 -5.72 -5.94 -5.94
    升力/kN 6.42 4.88 4.04 3.25
    侧滚力矩/(kN·m) 2.96 1.62 1.10 0.82
    点头力矩/(kN·m) -1.20 -2.94 -1.34 -1.25
    摇头力矩/(kN·m) -1.15 -4.46 -3.55 -0.32
    下载: 导出CSV
  • [1] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. https://transport.chd.edu.cn/article/id/200601001

    TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) https://transport.chd.edu.cn/article/id/200601001
    [2] 杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(7): 217-460. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htm

    YANG Guo-wei, WEI Yu-jie, ZHAO Gui-lin, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(7): 217-460. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htm
    [3] 梁习锋, 熊小慧. 4种车型横向气动性能分析与比较[J]. 中南大学学报(自然科学版), 2006, 37(3): 607-612. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200603035.htm

    LIANG Xi-feng, XIONG Xiao-hui. Analysis and comparison oflateral aerodynamic performance on four kinds of cars[J]. Journal of Central South University (Science and Technology), 2006, 37(3): 607-612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200603035.htm
    [4] HUO Xiao-shuai, LIU Tang-hong, CHEN Zheng-wei, et al. Effect of the formation type with different freight vehicles on the train aerodynamic performance[J]. Vehicle System Dynamics, 2021, 60(11): 3868-3896.
    [5] 何华, 田红旗, 熊小慧, 等. 横风作用下敞车的气动性能研究[J]. 中国铁道科学, 2006, 27(3): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603012.htm

    HE Hua, TIAN Hong-qi, XIONG Xiao-hui, et al. Study on the aerodynamics performance of gondola car under cross wind[J]. China Railway Science, 2006, 27(3): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603012.htm
    [6] 马成成. 横风作用下快速货车气动特性及运行安全性研究[D]. 成都: 西南交通大学, 2021.

    MA Cheng-cheng. The study on aerodynamic characteristics and operation safety of fast freight car under crosswinds[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
    [7] 张田, 张楠, 王少钦, 等. 基于可靠度理论的桥上列车横风安全性分析[J]. 振动与冲击, 2019, 38(17): 226-231. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917032.htm

    ZHANG Tian, ZHANG Nan, WANG Shao-qin. et al. Crosswind safety analysis for a train running on abridge based on reliability theory[J]. Journal of Vibration and Shock, 2019, 38(17): 226-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917032.htm
    [8] 何佳骏, 向活跃, 龙俊廷, 等. 桥隧过渡段高速列车行车抗风安全分析[J]. 西南交通大学学报, 2021, 56(5): 1056-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202105022.htm

    HE Jia-jun, XIANG Huo-yue, LONG Jun-ting, et al. Wind-resistant safety analysis of high-speed trains passing through bridge-tunnel transition[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1056-1064. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202105022.htm
    [9] LIU Dong-run, LIANG Xi-feng, ZHOU Wei, et al. Contributions of bogie aerodynamic loads to the crosswind safety of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 228: 105082. doi: 10.1016/j.jweia.2022.105082
    [10] CHEN Zheng-wei, LIU Tang-hong, GUO Zi-jian, et al. Dynamic behaviors and mitigation measures of a train passing through windbreak transitions from ground to cutting[J]. Journal of Central South University, 2022, 29(8): 2675-2689. doi: 10.1007/s11771-022-5114-6
    [11] ZHANG Dong-qin, ZHONG Mu, HU Gang, et al. Numerical study of the unsteady crosswind response of high-speed train under local structure-induced unsteady winds by MBS[J]. Engineering Structures, 2023, 281: 115788. doi: 10.1016/j.engstruct.2023.115788
    [12] FLYNN D, HEMIDA H, BAKER C. On the effect of crosswinds on the slipstream of a freight train and associated effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 14-28. doi: 10.1016/j.jweia.2016.07.001
    [13] LI Chao, BURTON D, KOST M, et al. Flow topology of a container train wagon subjected to varying local loading configurations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169: 12-29. doi: 10.1016/j.jweia.2017.06.011
    [14] MALEKI S, BURTON D, THOMPSON M C. On the flow past and forces on double-stacked wagons within a freight train under cross-wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104224. doi: 10.1016/j.jweia.2020.104224
    [15] 高广军, 段丽丽, 苗秀娟. 青藏线棚车在强横风下的倾覆稳定性[J]. 中南大学学报(自然科学版), 2011, 42(4): 1150-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201104048.htm

    GAO Guang-jun, DUAN Li-li, MIAO Xiu-juan. Overturning stability of box-car on Qinghai-Tibet Railway Line with strong cross wind[J]. Journal of Central South University (Science and Technology), 2011, 42(4): 1150-1155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201104048.htm
    [16] 高广军, 李鹏. 青藏线上集装箱平车在强横风下的稳定性[J]. 中南大学学报(自然科学版), 2011, 42(2): 533-538. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201102042.htm

    GAO Guang-jun, LI Peng. Runing stability of container car in Qinghai-Tibet Railway Line[J]. Journal of Central South University (Science and Technology), 2011, 42(2): 533-538. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201102042.htm
    [17] 高广军, 田红旗, 姚松, 等. 兰新线强横风对车辆倾覆稳定性的影响[J]. 铁道学报, 2004, 26(4): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404008.htm

    GAO Guang-jun, TIAN Hong-qi, YAO Song, et al. Effect of strong cross-wind on the stability of trains running on the Lanzhou-Xinjiang Railway Line[J]. Journal of the China Railway Society, 2004, 26(4): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404008.htm
    [18] 蒋崇文, 张劲柏, 关雪梅, 等. 横风强度对平原上集装箱列车横向稳定性的影响[J]. 铁道学报, 2011, 33(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201103005.htm

    JIANGChong-wen, ZHANG Jin-bai, GUAN Xue-mei, et al. Influence of crosswind intensity on cross stability of container trains running on plain[J]. Journal of the China Railway Society, 2011, 33(3): 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201103005.htm
    [19] 龚凯, 刘林芽, 向俊, 等. 横风作用对重载铁路桥上列车脱轨全过程的影响[J]. 铁道学报, 2022, 44(8): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202208014.htm

    GONG Kai, LIU Lin-ya, XIANG Jun, et al. Effects of crosswind on freight train derailment process on heavy haul railway bridge[J]. Journal of the China Railway Society, 2022, 44(8): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202208014.htm
    [20] 姚志勇, 张楠, 夏禾, 等. 基于重叠网格的三维车桥系统气动特性研究[J]. 工程力学, 2018, 35(2): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802007.htm

    YAO Zhi-yong, ZHANG Nan, XIA He, et al. Study on aerodynamic performance of three-dimensional train-bridge system based on overset mesh[J]. Engineering Mechanics, 2018, 35(2): 38-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802007.htm
    [21] 李田, 秦登, 张继业, 等. 高速列车气动及声学行为的尺度效应研究[J]. 铁道学报, 2022, 44(2): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202202003.htm

    LI Tian, QIN Deng, ZHANG Ji-ye, et al. Study on scale effect of aerodynamic and acoustic behaviors of high-speed trains[J]. Journal of the China Railway Society, 2022, 44(2): 16-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202202003.htm
    [22] NIU Ji-qiang, ZHANG Ying-chao, LI Rui, et al. Aerodynamic simulation of effects of one- and two-side windbreak walls on a moving train running on a double track railway line subjected to strong crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 221: 104912. doi: 10.1016/j.jweia.2022.104912
    [23] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [24] BS EN 14067-6: 2018, Railway applications-aerodynamics Part 6: Requirements and test procedures for cross wind assessment[S].
    [25] 邹云峰, 刘志鹏, 史康, 等. 横风作用下悬挂单轨车桥系统动力响应研究[J]. 中南大学学报(自然科学版), 2022, 53(6): 2370-2381. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206036.htm

    ZOU Yun-feng, LIU Zhi-peng, SHI Kang, et al. Study on dynamic response of suspended monorail vehicle-bridge system with crosswinds[J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2370-2381. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206036.htm
    [26] GE Xin, LING Liang, GUO Li-rong, et al. Dynamic derailment simulation of an empty wagon passing a turnout in the through route[J]. Vehicle System Dynamics, 2022, 60(4): 1148-1169. doi: 10.1080/00423114.2020.1849744
    [27] 何文涛, 胡彦霖, 閤鑫, 等. 货物列车敞车空载及侧风运营条件下的运行安全性研究[J]. 工程力学, 2023, http://kns.cnki.net/kcms/detail/11.2595.O3.20230810.1707.006.html.

    HE Wen-tao, HU Yan-lin, GE Xin, et al. Research on operation safety of empty gondola cars in freight trains subjected to crosswind[J]. Engineering Mechanics, 2023, http://kns.cnki.net/kcms/detail/11.2595.O3.20230810.1707.006.html. (in Chinese)
    [28] SOPER D, BAKER C, STERLING M. An experimental investigation to assess the influence of container loading configuration on the effects of a crosswind on a container freight train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 304-317. doi: 10.1016/j.jweia.2015.03.002
    [29] LIU Dong-run, LI Tian, MENG Shi, et al. Investigating the car-body vibration of high-speed trains under different operating conditions with full-scale tests[J]. Vehicle System Dynamics, 2022, 60(2): 633-652. doi: 10.1080/00423114.2020.1828594
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  36
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-05
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回