留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地铁列车关键气密部件对车内压力舒适性的影响

李杨 刘友梅

李杨, 刘友梅. 地铁列车关键气密部件对车内压力舒适性的影响[J]. 交通运输工程学报, 2024, 24(3): 227-237. doi: 10.19818/j.cnki.1671-1637.2024.03.016
引用本文: 李杨, 刘友梅. 地铁列车关键气密部件对车内压力舒适性的影响[J]. 交通运输工程学报, 2024, 24(3): 227-237. doi: 10.19818/j.cnki.1671-1637.2024.03.016
LI Yang, LIU You-mei. Impact of key airtight components on pressure comfort in metro train[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 227-237. doi: 10.19818/j.cnki.1671-1637.2024.03.016
Citation: LI Yang, LIU You-mei. Impact of key airtight components on pressure comfort in metro train[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 227-237. doi: 10.19818/j.cnki.1671-1637.2024.03.016

地铁列车关键气密部件对车内压力舒适性的影响

doi: 10.19818/j.cnki.1671-1637.2024.03.016
基金项目: 

国家重大技术装备攻关工程项目 2019430204

湖南省科技创新计划资助项目 2021RC2107

详细信息
    作者简介:

    李杨(1982-),男,湖南长沙人,中车株洲电力机车有限公司高级工程师,工学博士,从事列车空气动力学与气密性研究

  • 中图分类号: U270.14

Impact of key airtight components on pressure comfort in metro train

Funds: 

National Major Technology and Equipment Tackling Project of China 2019430204

Science and Technology Innovation Program of Hunan Province 2021RC2107

More Information
  • 摘要: 为全面分析地铁列车运营时车外压力对车内乘客耳压舒适性的影响,采用实车线路试验方法,实测了地铁列车匀速通过隧道时,关键气密部件(空调压力波保护阀、车门气动辅助锁与贯通道排污孔筛)在不同密封条件下的车内、外压力,分析了车外压力波动特性、沿列车长度方向的压力分布规律以及车内关键气密部件对车内压力变化幅值的影响。研究结果表明:头车和中间车的车外压力受车头进入隧道产生的压缩波影响较大,列车车身表面压力峰值从头车向尾车逐渐降低;在空调开启时,相较于启用压力波保护阀,未启用时车内3 s内压力变化幅值增加了48%~61%,1 s内增加了75%~90%,说明空调压力波保护阀对车内压力舒适性影响显著;在空调关闭时,与启用车门气动辅助锁相比,未启用时3 s内车内压力变化幅值增加了39%~46%,1 s内增加了69%~78%,表明车门气动辅助锁对车内压力舒适性的影响仅次于空调压力波保护阀;在空调关闭的情况下,与启用贯通道排污孔筛相比,未启用时3 s内车内压力变化幅值增加了3%~11%,1 s内增加了1%~13%,说明贯通道排污孔筛对车内压力的影响较小。

     

  • 图  1  试验地铁列车示意

    Figure  1.  Schematic of test metro train

    图  2  试验线路隧道示意

    Figure  2.  Schematic of test line tunnel

    图  3  测试设备和系统示意

    Figure  3.  Schematic of test equipment and system

    图  4  测点编号与分布示意

    Figure  4.  Schematic of measurement points number and distribution

    图  5  压力测点安装示意

    Figure  5.  Schematic of pressure measurement points installation

    图  6  列车通过隧道时头车测点W5压力曲线

    Figure  6.  Pressure curves of measurement point W5 on head vehicle when train passes through tunnel

    图  7  头车测点W5压力曲线与压力波传递

    Figure  7.  Pressure curves of measurement point W5 on head veicle and corresponding pressure wave transmission

    图  8  各车外部测点压力曲线

    Figure  8.  Pressure curves of external measurement points on each vehicle

    图  9  各车外部测点压力峰峰值

    Figure  9.  Peak-to-peak pressure values of external measurement points on each vehicle

    图  10  头车测点W5和N6压力曲线

    Figure  10.  Pressure curves of measurement points W5 and N6 on head vehicle

    图  11  工况1~3条件下头车内、外压差曲线

    Figure  11.  Pressure difference curves inside and outside head vehicle under conditions 1-3

    图  12  工况1~3条件下头车内压力曲线

    Figure  12.  Pressure curves inside head vehicle under conditions 1-3

    图  13  工况1和4条件下头车内、外压差曲线

    Figure  13.  Pressure difference curves inside and outside head vehicle under conditions 1 and 4

    图  14  工况1和4条件下头车内压力曲线

    Figure  14.  Pressure curves inside head vehicle under conditions 1 and 4

    图  15  工况1和5条件下头车内、外压差曲线

    Figure  15.  Pressure difference curves inside and outside head vehicle under conditions 1 and 5

    图  16  工况1和5条件下头车内压力曲线

    Figure  16.  Pressure curves inside head vehicle under conditions 1 and 5

    表  1  试验工况

    Table  1.   Test conditions

    工况 空调状态 压力波保护阀状态 气动辅助锁状态 贯通道排污孔筛状态
    1 关机 未启用 启用 启用
    2 开机 启用 启用 启用
    3 开机 未启用 启用 启用
    4 关机 未启用 未启用 启用
    5 关机 未启用 启用 未启用
    下载: 导出CSV

    表  2  列车内、外测点压力变化幅值

    Table  2.   Pressure change amplitudes of measurement points inside and outside train

    测点 幅值类型 测试1/ Pa 测试2/ Pa 测试3/ Pa 平均偏差/ Pa 相对平均偏差/%
    W5 峰峰值 626 645 658 11 1.8
    3 s内变化幅值 558 585 587 12 2.2
    N6 峰峰值 272 284 293 7 2.6
    3 s内变化幅值 212 225 234 8 3.5
    下载: 导出CSV

    表  3  工况1条件下列车内测点压力变化幅值

    Table  3.   Pressure change amplitudes of measurement points inside train under condition 1

    测点 峰峰值/Pa 3 s内压力变化幅值/Pa 1 s内压力变化幅值/Pa
    N1 286 228 158
    N2 282 225 151
    N3 278 221 151
    N4 278 224 152
    N5 284 223 156
    N6 282 224 158
    N7 271 223 165
    N8 270 229 159
    下载: 导出CSV

    表  4  工况1~3条件下车内测点压力变化幅值

    Table  4.   Pressure change amplitudes of measurement points inside train under conditions 1-3

    工况 时间尺度/s 测点压力变化幅值/Pa
    N1 N2 N3 N4 N5 N6 N7 N8
    1 3 228 225 221 224 223 224 223 229
    1 158 151 151 152 156 158 165 159
    2 3 258 251 249 247 234 241 254 246
    1 159 151 157 153 159 162 174 169
    3 3 389 382 385 377 376 374 377 375
    1 290 287 285 291 300 302 305 301
    下载: 导出CSV

    表  5  空调压力波保护阀对车内压力变化幅值的影响

    Table  5.   Impact of pressure wave protection valve for air conditioning on pressure change amplitude inside train

    对比情况 时间尺度/s 测点工况对比增量/%
    N1 N2 N3 N4 N5 N6 N7 N8
    工况2对比工况1 3 13 12 13 10 5 7 14 7
    1 0 0 4 1 1 2 6 6
    工况3对比工况1 3 71 70 75 69 69 67 69 64
    1 83 90 88 91 92 91 85 89
    工况3对比工况2 3 51 52 55 53 61 55 48 52
    1 82 90 82 90 89 86 75 78
    下载: 导出CSV

    表  6  工况1和4条件下车内测点压力变化幅值

    Table  6.   Pressure change amplitudes of measurement points inside train under conditions 1 and 4

    工况 时间尺度/s 测点压力变化幅值/Pa
    N1 N2 N3 N4 N5 N6 N7 N8
    1 3 228 225 221 224 223 224 223 229
    1 158 151 151 152 156 158 165 159
    4 3 322 323 322 319 322 321 321 319
    1 268 266 266 271 274 279 278 279
    下载: 导出CSV

    表  7  车门气动辅助锁对车内压力变化幅值的影响

    Table  7.   Impact of door pneumatic auxiliary lock on pressure change amplitude inside train

    对比情况 时间尺度/s 测点工况对比增量/%
    N1 N2 N3 N4 N5 N6 N7 N8
    工况4对比工况1 3 41 43 46 42 45 43 44 39
    1 69 76 75 78 75 77 69 75
    下载: 导出CSV

    表  8  工况1和5条件下车内测点压力变化幅值

    Table  8.   Pressure change amplitudes of measurement points inside train under conditions 1 and 5

    工况 时间尺度/s 测点压力变化幅值/Pa
    N1 N2 N3 N4 N5 N6 N7 N8
    1 3 228 225 221 224 223 224 223 229
    1 158 151 151 152 156 158 165 159
    5 3 246 247 245 250 238 239 245 237
    1 160 158 160 172 164 162 174 167
    下载: 导出CSV

    表  9  贯通道排污孔筛对车内压力变化幅值的影响

    Table  9.   Impact of gangway drainage hole screen on pressure change amplitude inside train

    对比情况 时间尺度/s 测点工况对比增量/%
    N1 N2 N3 N4 N5 N6 N7 N8
    工况5对比工况1 3 8 10 11 11 7 7 10 3
    1 1 4 6 13 5 2 6 5
    下载: 导出CSV
  • [1] 刘友梅. 论电力牵引轨道交通的技术发展[J]. 中国工程科学, 2000, 2(10): 51-55, 62. doi: 10.3969/j.issn.1009-1742.2000.10.014

    LIU You-mei. Technology development of electric traction rail traffic[J]. Engineering Science, 2000, 2(10): 51-55, 62. (in Chinese) doi: 10.3969/j.issn.1009-1742.2000.10.014
    [2] 刘友梅. 城市轨道交通装备技术的多样性发展[J]. 城市轨道交通研究, 2009, 12(11): 1-4. doi: 10.3969/j.issn.1007-869X.2009.11.002

    LIU You-mei. Diversification of urban rail transit equipment technology[J]. Urban Mass Transit, 2009, 12(11): 1-4. (in Chinese) doi: 10.3969/j.issn.1007-869X.2009.11.002
    [3] 李杨, 刘友梅. 时速120 km地铁列车气密性设计与试验[J]. 中国铁道科学, 2023, 44(2): 139-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202302015.htm

    LI Yang, LIU You-mei. Air-tightness design and test of metro train with speed of 120 km·h-1[J]. China Railway Science, 2023, 44(2): 139-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202302015.htm
    [4] 李杨, 刘友梅, 陈勇, 等. 一种提升轨道车辆安全性与舒适度的格栅控制方案研究[J]. 机车电传动, 2022(2): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202202004.htm

    LI Yang, LIU You-mei, CHEN Yong, et al. Research on a grille control scheme to enhance safety and comfort of rail vehicles[J]. Electric Drive for Locomotives, 2022(2): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202202004.htm
    [5] 李杨, 刘友梅, 柳晓峰, 等. 80 km/h B型地铁列车隧道内运行空气动力学试验研究[J]. 都市快轨交通, 2023, 36(5): 51-58. doi: 10.3969/j.issn.1672-6073.2023.05.008

    LI Yang, LIU You-mei, LIU Xiao-feng, et al. Experimental study on aerodynamics of 80 km/h B-type metro train running in a tunnel[J]. Urban Rapid Rail Transit, 2023, 36(5): 51-58. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.05.008
    [6] LI Yang, LIU You-mei. Development of a forward design method for train airtightness: a case study of a metro express line[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2024, 144: 105479.
    [7] LI Yang, LIU You-mei. Analysis of pressure fluctuations and passenger comfort in metro express: an experimental study on a Wuhan bridge-tunnel line[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2024, 246: 105638. doi: 10.1016/j.jweia.2024.105638
    [8] LI Yang, LIU You-mei. Impact of coupled effects of airtight components at variable cross-section location on vehicle airtightness in Wuhan metro[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2024, DOI: 10.1177/09544097241229120.
    [9] 杨波, 施柱, 那艳玲, 等. 地铁中间风井前变速运行对乘客舒适性影响[J]. 铁道科学与工程学报, 2021, 18(6): 1555-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202106022.htm

    YANG Bo, SHI Zhu, NA Yan-ling, et al. Influence of running with varying velocity in front of the middle ventilating shaft of the subway on passenger comfort[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1555-1562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202106022.htm
    [10] 宋剑伟. 关于隧道空气动力学效应造成地铁列车客室压力变化的探讨与建议[J]. 铁道机车车辆, 2021, 41(3): 119-124. doi: 10.3969/j.issn.1008-7842.2021.03.23

    SONG Jian-wei. Discussion and suggestion on the pressure change of subway train passenger compartment caused by tunnel aerodynamics effect[J]. Railway Locomotive and Car, 2021, 41(3): 119-124. (in Chinese) doi: 10.3969/j.issn.1008-7842.2021.03.23
    [11] XIONG Xiao-hui, ZHU Liang, ZHANG Jie, et al. Field measurements of the interior and exterior aerodynamic pressure induced by a metro train passing through a tunnel[J]. Sustainable Cities and Society, 2020, 53: 101928. doi: 10.1016/j.scs.2019.101928
    [12] NIU Ji-qiang, ZHOU Dan, LIANG Xi-feng, et al. Numerical study on the aerodynamic pressure of a metro train running between two adjacent platforms[J]. Tunnelling and Underground Space Technology, 2017, 65: 187-199. doi: 10.1016/j.tust.2017.03.006
    [13] 骆建军. 高速地铁隧道内扩大段和通风竖井对压力波的影响研究[J]. 现代隧道技术, 2016, 53(4): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201604004.htm

    LUO Jian-jun. The influences of enlarged sections and ventilation shafts on pressure waves in high-speed metro tunnels[J]. Modern Tunnelling Technology, 2016, 53(4): 22-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201604004.htm
    [14] NIU Ji-qiang, SUI Yang, YU Qiu-jun, et al. Aerodynamics of railway train/tunnel system: a review of recent research[J]. Energy and Built Environment, 2020, 1(4): 351-375. doi: 10.1016/j.enbenv.2020.03.003
    [15] GAWTHORPE R. Pressure effects in railway tunnels[J]. Rail International, 2000, 31(4): 10-17.
    [16] XIE Peng-peng, PENG Yong, WANG Tian-tian, et al. Risks of ear complaints of passengers and drivers while trains are passing through tunnels at high speed: a numerical simulation and experimental study[J]. International Journal of Environmental Research and Public Health, 2019, 16(7): 1283. doi: 10.3390/ijerph16071283
    [17] BAKER C J. A review of train aerodynamics, Part 1— fundamentals[J]. The Aeronautical Journal, 2014, 118(1201): 201-228. doi: 10.1017/S000192400000909X
    [18] SUZUKI H. Research trends on riding comfort evaluation in Japan[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1998, 212(1): 61-72. doi: 10.1243/0954409981530689
    [19] KOBAYASHI M, SUZUKI Y, AKUTSU K, et al. Alleviating aural discomfort of passengers on Shinkansen by controlling air flow rate in ventilation system[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 1998, 41(4): 936-944.
    [20] LI Wen-hui, LIU Tang-hong, MARTINEZ-VAZQUEZ P, et al. Aerodynamic effects of a high-speed train travelling through adjoining and separated tunnels[J]. Tunnelling and Underground Space Technology, 2021, 113: 103973. doi: 10.1016/j.tust.2021.103973
    [21] LIANG Xi-feng, GUANG Chen, LI Xiao-bai, et al. Numerical simulation of pressure transients caused by high-speed train passage through a railway station[J]. Building and Environment, 2020, 184: 107228. doi: 10.1016/j.buildenv.2020.107228
    [22] RICCO P, BARON A, MOLTENI P. Nature of pressure waves induced by a high-speed train travelling through a tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(8): 781-808. doi: 10.1016/j.jweia.2007.01.008
    [23] CHEN Xiao, LIU Tang-hong, XIA Yong-hong, et al. The evolution of airtight performance for a high-speed train during its long-term service[J]. Measurement, 2021, 177: 109319. doi: 10.1016/j.measurement.2021.109319
    [24] XIA Yu-tao, CHEN Xiao-dong, LIU Tang-hong, et al. A study on the airtightness of a high-speed train using a reduced-scale method[J]. Measurement, 2022, 188: 110610. doi: 10.1016/j.measurement.2021.110610
    [25] 郭蕾, 宋元全, 王天宇. 城轨车辆车门气密性研究及设计[J]. 轨道交通装备与技术, 2020(5): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGR202005014.htm

    GUO Lei, SONG Yuan-quan, WANG Tian-yu. Research and design of air tightness of urban rail vehicles[J]. Rail Transportation Equipment and Technology, 2020(5): 39-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGR202005014.htm
    [26] 邓长海. 市域快轨车辆主要部件密封性措施的研究[J]. 铁道车辆, 2021, 59(1): 47-48, 96. doi: 10.3969/j.issn.1002-7602.2021.01.012

    DENG Chang-hai. Research on sealing measures for main parts on inner-city rapid rail transit vehicle[J]. Rolling Stock, 2021, 59(1): 47-48, 96. (in Chinese) doi: 10.3969/j.issn.1002-7602.2021.01.012
    [27] 陈勇, 李杨, 左建勇, 等. 时速120 km地铁快线空气动力学试验研究[J]. 铁道科学与工程学报, 2024, 21(3): 1156-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202403024.htm

    CHEN Yong, LI Yang, ZUO Jian-yong, et al. Experimental study on aerodynamics of 120 km/h metro express line[J]. Journal of Railway Science and Engineering, 2024, 21(3): 1156-1167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202403024.htm
    [28] LIU Tang-hong, CHEN Xiao-dong, LI Wen-hui, et al. Field study on the interior pressure variations in high-speed trains passing through tunnels of different lengths[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169: 54-66. doi: 10.1016/j.jweia.2017.07.004
    [29] 王虎高, 李杨, 武涛. 时速80 km地铁B型车耳压舒适度测试分析[J]. 电力机车与城轨车辆, 2023, 46(2): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202302009.htm

    WANG Hu-gao, LI Yang, WU Tao. Test and analysis of ear pressure comfort for 80 km/h B-type metro train[J]. Electric Locomotives and Mass Transit Vehicles, 2023, 46(2): 45-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202302009.htm
    [30] 唐明赞, 熊小慧, 杨波, 等. 高速地铁隧道区间风井扩大段压力突变机理试验研究[J]. 中国铁道科学, 2023, 44(5): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202305014.htm

    TANG Ming-zan, XIONG Xiao-hui, YANG Bo, et al. Experimental study on the mechanism of pressure abrupt change at the enlarged section of the interval air shaft in high- speed subway tunnel[J]. China Railway Science, 2023, 44(5): 137-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202305014.htm
  • 加载中
图(16) / 表(9)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  34
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回