留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向多用能需求场景的公路交通自洽微网系统规划方法

师瑞峰 唐可意 高毓钦 贾利民

师瑞峰, 唐可意, 高毓钦, 贾利民. 面向多用能需求场景的公路交通自洽微网系统规划方法[J]. 交通运输工程学报, 2024, 24(4): 31-42. doi: 10.19818/j.cnki.1671-1637.2024.04.003
引用本文: 师瑞峰, 唐可意, 高毓钦, 贾利民. 面向多用能需求场景的公路交通自洽微网系统规划方法[J]. 交通运输工程学报, 2024, 24(4): 31-42. doi: 10.19818/j.cnki.1671-1637.2024.04.003
SHI Rui-feng, TANG Ke-yi, GAO Yu-qin, JIA Li-min. Planning method of highway-traffic self-contained microgrid system orientedto multiple energy demand scenarios[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 31-42. doi: 10.19818/j.cnki.1671-1637.2024.04.003
Citation: SHI Rui-feng, TANG Ke-yi, GAO Yu-qin, JIA Li-min. Planning method of highway-traffic self-contained microgrid system orientedto multiple energy demand scenarios[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 31-42. doi: 10.19818/j.cnki.1671-1637.2024.04.003

面向多用能需求场景的公路交通自洽微网系统规划方法

doi: 10.19818/j.cnki.1671-1637.2024.04.003
基金项目: 

国家重点研发计划 2021YFB2601300

详细信息
    作者简介:

    师瑞峰(1977-),男,华北电力大学教授,工学博士,从事电动汽车有序充放电、能源与交通融合研究

    通讯作者:

    贾利民(1963-),男,北京交通大学教授,工学博士

  • 中图分类号: U495

Planning method of highway-traffic self-contained microgrid system orientedto multiple energy demand scenarios

Funds: 

National Key Research and Development Program of China 2021YFB2601300

More Information
  • 摘要: 面向交通用能绿色化、清洁化转型需求,提出了基于交通基础设施蕴含的风、光可再生资源禀赋构建绿色、弹性、自洽和可持续发展的公路交通自洽微网系统规划方法;基于公路交通基础设施空间范围内的可再生能源发电装置、储能装置、用能负荷设备及微网系统,构建了“源-网-荷-储”协同联动的公路交通自洽微网系统架构;针对中国不同地域特点、不同自然资源禀赋以及不同电网支撑条件确定的应用场景,提出了西藏、吉林、浙江3种典型场景下的公路交通自洽微网基础模型,在此基础上,考虑微网建设经济性与微网内可再生能源消纳率等因素,以最小化微网年均综合成本为目标,在各能源设备、储能装置的出力约束及微网内的功率平衡约束下构建系统规划模型,采用粒子群优化算法对微网内各能源设备的配置容量进行优化求解;为验证粒子群算法的全局搜索能力与收敛特性,减小算法求解过程中的随机因素,对3种典型场景的规划方案分别进行了50次独立求解的仿真试验。研究结果表明:利用构建的模型和求解方法,在无大电网支撑场景下公路交通自洽微网系统依靠蓄电池和氢储能协同工作,可实现可再生能源自洽率99.95%的配置效果,弃风弃光率仅为1.34%,表明合理的储能配置可以有效减少风光出力间歇性和波动性带来的问题,实现良好的可调节性,保证微网系统的供电可靠性,可为中国公路交通自洽微网系统规划设计提供决策支持。

     

  • 图  1  公路交通自洽微网系统架构

    Figure  1.  Architecture of highway-traffic self-contained microgrid system

    图  2  公路交通自洽微网系统求解流程

    Figure  2.  Solving flow of highway-traffic self-contained microgrid system

    图  3  各场景下公路交通自洽微网系统基础输入数据

    Figure  3.  Basic input data of highway-traffic self-contained microgrid system in each scenario

    图  4  场景1下自洽微网系统内各单元出力情况

    Figure  4.  Outputs of each unit in self-contained microgrid system in scenario 1

    图  5  场景2下自洽微网系统内各单元出力情况

    Figure  5.  Outputs of each unit in self-contained microgrid system in scenario 2

    图  6  场景3下自洽微网系统内各单元出力情况

    Figure  6.  Outputs of each unit in self-contained microgrid system in scenario 3

    表  1  三种典型场景适配的公路交通自洽微网系统

    Table  1.   Highway-traffic self-contained microgrid systems adapted to three typical scenarios

    场景 微网构成组分
    自然资源 辅助供能 有无大电网连接 储能系统
    1 风+光 蓄电池+氢储能
    2 风+光 燃气轮机 蓄电池
    3 风+光 蓄电池
    下载: 导出CSV

    表  2  设备参数

    Table  2.   Equipment parameters

    设备名称 规格参数 投资成本/ (元·kW-1) 运维成本/ (元·kW-1) 寿命/年
    风电机组 100 kW 11 000 0.02 20
    光伏板 2 kW 8 500 0.01 20
    燃气轮机 50 kW 16 000 0.09 20
    蓄电池 4 kW 1 000 0.01 5
    电解槽 1 kW 13 000 0.03 10
    储氢罐 1 kW·h 1 800 0.00 20
    燃料电池 1 kW 11 000 0.05 10
    下载: 导出CSV

    表  3  燃气轮机污染物排放系数与治理费用

    Table  3.   Pollutant emission coefficients and treatment costs of gas turbine

    污染物名称 排放系数/[g·(kW·h-1)] 治理费用/(元·kg-1)
    CO2 646.00 0.23
    SO2 0.21 14.85
    下载: 导出CSV

    表  4  三种场景下各系统优化配置结果

    Table  4.   Optimization configuration results of each system in three scenarios

    场景 优化配置结果
    风机/台 光伏板/片 燃气轮机/台 蓄电池/块 氢储能系统
    电解槽/个 储氢罐/个 燃料电池/块
    1 17 219 3 783 334 1 012 302
    2 2 8 6 52
    3 9 593 600
    下载: 导出CSV

    表  5  三种场景下各系统相关指标计算结果

    Table  5.   Calculation results of relevant indicators of each system in three scenarios

    场景 投资成本/元 年均成本/(元·年-1) 可再生能源自洽率/% 弃风弃光率/% 大电网交互/(元·年-1)
    运维成本 惩罚成本 购电成本 售电收益
    1 5 228 630 74 233 86.63 22.54
    2 620 500 909 360 157 550 99.95 1.34
    3 1 239 050 60 147 65.26 6.18 1 755 490 287 235
    下载: 导出CSV
  • [1] 庄贵阳. 我国实现"双碳"目标面临的挑战及对策[J]. 人民论坛, 2021, 709(18): 50-53. doi: 10.3969/j.issn.1004-3381.2021.18.012

    ZHUANG Gui-yang. Challenges and countermeasures for China to achieve the "Double Carbon" goal[J]. People's Tribune, 2021, 709(18): 50-53. (in Chinese) doi: 10.3969/j.issn.1004-3381.2021.18.012
    [2] 焦姣, 张珈铭, 刘知鑫, 等. DNV发布《2022—2050年全球能源转型展望》[J]. 世界石油工业, 2022, 29(6): 78.

    JIAO Jiao, ZHANG JIA-ming, LIU Zhi-xin, et al. DNV released the "Outlook for global energy transformation from 2022—2050"[J]. World Petroleum Industry, 2022, 29(6): 78. (in Chinese)
    [3] 伍朝辉, 武晓博, 王亮. 交通强国背景下智慧交通发展趋势展望[J]. 交通运输研究, 2019, 5(4): 26-36.

    WU Zhao-hui, WU Xiao-bo, WANG Liang. Prospect of development trend of smart transportation under the background of building China into a country with strong transportation network[J]. Transport Research, 2019, 5(4): 26-36. (in Chinese)
    [4] JIA Li-min, MA Jing, CHENG Peng, et al. A perspective on solar energy-powered road and rail transportation in China[J]. CSEE Journal of Power and Energy Systems, 2020, 6(4): 760-771.
    [5] 贾利民, 师瑞峰, 吉莉, 等. 轨道与道路交通与能源融合发展战略研究报告—道路篇[R]. 北京: 中国工程院战略咨询报告, 2022.

    JIA Li-min, SHI Rui-feng, JI Li, et al. Research report on integrated development strategy of rail and road transportation and energy: road[R]. Beijing: Strategic Consulting Report of Chinese Academy of Engineering, 2022. (in Chinese)
    [6] FARAHANI S S, VAN DER VEEN R, OLDENBROEK V, et al. A hydrogen-based integrated energy and transport system: the design and analysis of the car as power plant concept[J]. IEEE Systems, Man, and Cybernetics Magazine, 2019, 5(1): 37-50. doi: 10.1109/MSMC.2018.2873408
    [7] 赵峰, 李建霞, 高锋阳. 考虑不确定性的高速公路光储充电站选址定容[J]. 电力自动化设备, 2021, 41(8): 111-117.

    ZHAO Feng, LI Jian-xia, GAO Feng-yang. Siting and sizing of photovoltaic-storage charging stations on highway considering uncertainties[J]. Electric Power Automation Equipment, 2021, 41(8): 111-117. (in Chinese)
    [8] LIU Zi-yu, YANG An-qi, GAO Meng-yao, et al. Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image[J]. Journal of Cleaner Production, 2019, 228: 303-318. doi: 10.1016/j.jclepro.2019.04.262
    [9] ENCISO K B, JOSE M, LORIA R, et al. Implementation of hybrid photovoltaic and wind energy conversion system for traffic surveillance and road lighting[C]//IEEE. 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). New York: IEEE, 2019: 1-6.
    [10] FINN J, LEITTE A, FABISCH M, et al. Analysing the efficiency of solar roads within settlement areas in Germany[J]. Urban Climate, 2021, 38: 100894. doi: 10.1016/j.uclim.2021.100894
    [11] YANG Chun-chun, LIU Guan-lin, WANG Xue-jiao, et al. Harvesting wide frequency micromechanical vibration energy and wind energy with a multi-mode triboelectric nanogenerator for traffic monitoring and warning[J]. Advanced Materials Technologies, 2023, 8(1): 2200465. doi: 10.1002/admt.202200465
    [12] RAHMAN M A, MUKTA M Y, YOUSUF A, et al. IoT based hybrid green energy driven highway lighting system[C]// IEEE. 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/ CBDCom/CyberSciTech). New York: IEEE, 2019: 587-594.
    [13] 何正友, 向悦萍, 廖凯, 等. 能源-交通-信息三网融合发展的需求、形态及关键技术[J]. 电力系统自动化, 2021, 45(16): 73-86.

    HE Zheng-you, XIANG Yue-ping, LIAO Kai, et al. Demand, form and key technologies of integrated development of energy-transport-information networks[J]. Automation of Electric Power Systems, 2021, 45(16): 73-86. (in Chinese)
    [14] 江里舟, 别朝红, 龙涛, 等. 能源交通一体化系统发展模式与运行关键技术[J]. 中国电机工程学报, 2022, 42(4): 1285-1301.

    JIANG Li-zhou, BIE Zhao-hong, LONG Tao, et al. Development model and key technology of integrated energy and transportation system[J]. Proceedings of the CSEE, 2022, 42(4): 1285-1301. (in Chinese)
    [15] WU Tian-jing, LIU Shao-hua, NI Ming, et al. Model design and structure research for integration system of energy, information and transportation networks based on ANP-fuzzy comprehensive evaluation[J]. Global Energy Interconnection, 2018, 1(2): 137-144.
    [16] 杨勇平, 武平, 程鹏, 等. 我国陆路交通能源系统发展战略研究[J]. 中国工程科学, 2022, 24(3): 153-162.

    YANG Yong-ping, WU Ping, CHENG Peng, et al. Development strategy for energy system of land transport in China[J]. Strategic Study of CAE, 2022, 24(3): 153-162. (in Chinese)
    [17] DAI Liang, ZHANG Cheng-yin, HUANG Yun, et al. Feasibility Analysis of supply-demand matching between highway operational energy consumption and renewable energy integration: a case study of panzhihua-dali highway within sichuan province[C]//IEEE. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). New York: IEEE, 2022: 1989-1993.
    [18] HAN Zhen-qiang, ZHOU Wei-dong, SHA Ai-min, et al. Assessing the photovoltaic power generation potential of highway slopes[J]. Sustainability, 2023, 15(16): 12159.
    [19] SUN Meng-die, WANG Wei, ZHENG Peng, et al. A novel road energy harvesting system based on a spatial double V-shaped mechanism for near-zero-energy toll stations on expressways[J]. Sensors and Actuators A: Physical, 2021, 323: 112648.
    [20] LIU Yun, WANG Yu, LI Yuan-zheng, et al. Multi-agent based optimal scheduling and trading for multi-microgrids integrated with urban transportation networks[J]. IEEE Transactions on Power Systems, 2020, 36(3): 2197-2210.
    [21] 滕云, 闫佳佳, 回茜, 等. "无废"电-氢充能服务区多源微网优化运行模型[J]. 中国电机工程学报, 2021, 41(6): 2074-2088.

    TENG Yun, YAN Jia-jia, HUI Qian, et al. Optimization operation model of "zero-waste" electricity-hydrogen charging service area multi-energy microgrid[J]. Proceedings of the CSEE, 2021, 41(6): 2074-2088. (in Chinese)
    [22] AZAZA M, WALLIN F. Multi objective particle swarm optimization of hybrid micro-grid system: a case study in Sweden[J]. Energy, 2017, 123: 108-118.
    [23] 张迪, 苗世洪, 赵健, 等. 分布式发电市场化环境下扶贫光伏布点定容双层优化模型研究[J]. 电工技术学报, 2019, 34(10): 1999-2010.

    ZHANG Di, MIAO Shi-hong, ZHAO Jian, et al. A bi-level locating and sizing optimal model for poverty alleviation PVs considering the marketization environment of distributed generation[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 1999-2010. (in Chinese)
    [24] 管霖, 赵琦, 周保荣, 等. 基于多尺度聚类分析的光伏功率特性建模及预测应用[J]. 电力系统自动化, 2018, 42(15): 24-30.

    GUAN Lin, ZHAO Qi, ZHOU Bao-rong, et al. Multi-scale clustering analysis based modeling of photovoltaic power characteristics and its application in prediction[J]. Automation of Electric Power Systems, 2018, 42(15): 24-30. (in Chinese)
    [25] YUAN Guan-xiu, GAO Yan, YE Bai. Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response[J]. Renewable Energy, 2021, 179: 1424-1446.
    [26] 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217.

    ZHANG Chen-jia, CAI Jun, ZHANG Yu-kui, et al. Simulation of high temperature solid oxide water electrolysis for hydrogen production based on thermodynamic equilibrium[J]. Acta Energiae Solaris Sinica. 2021, 42(9): 210-217. (in Chinese)
    [27] 李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3): 486-495.

    LI Qi, ZHAO Shu-dan, PU Yu-chen, et al. Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495. (in Chinese)
    [28] SHI Rui-feng, GAO Yu-qin, NING Jin, et al. Research on highway self-consistent energy system planning with uncertain wind and photovoltaic power output[J]. Sustainability, 2023, 15(4): 3166.
    [29] 贾利民, 师瑞峰, 吉莉, 等. 我国道路交通与能源融合发展战略研究[J]. 中国工程科学, 2022, 24(3): 163-172.

    JIA Li-min, SHI Rui-feng, Ji Li, et al. Road transportation and energy integration strategy in China[J]. Strategic Study of CAE, 2022, 24(3): 163-172. (in Chinese)
    [30] 蒲雨辰, 李奇, 陈维荣, 等. 计及最小使用成本及储能状态平衡的电-氢混合储能孤岛直流微电网能量管理[J]. 电网技术, 2019, 43(3): 918-927.

    PU Yu-chen, LI Qi, CHEN Wei-rong, et al. Energy management for islanded DC microgrid with hybrid electric-hydrogen energy storage system based on minimum utilization cost and energy storage state balance[J]. Power System Technology, 2019, 43(3): 918-927. (in Chinese)
    [31] 冉金周, 李华强, 李彦君, 等. 考虑灵活性供需匹配的孤岛微网优化调度策略[J]. 太阳能学报, 2022, 43(5): 36-44.

    RAN Jin-zhou, LI Hua-qiang, LI Yan-jun, et al. Optimal scheduling of isolated microgrid considering flexible power supply and demand[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 36-44. (in Chinese)
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  25
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-17
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回