留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速公路自洽能源系统规划中的经济性特点

黄仙 叶笑容 纪文童 冯璋洁

黄仙, 叶笑容, 纪文童, 冯璋洁. 高速公路自洽能源系统规划中的经济性特点[J]. 交通运输工程学报, 2024, 24(4): 56-70. doi: 10.19818/j.cnki.1671-1637.2024.04.005
引用本文: 黄仙, 叶笑容, 纪文童, 冯璋洁. 高速公路自洽能源系统规划中的经济性特点[J]. 交通运输工程学报, 2024, 24(4): 56-70. doi: 10.19818/j.cnki.1671-1637.2024.04.005
HUANG Xian, YE Xiao-rong, JI Wen-tong, FENG Zhang-jie. Economic characteristics of highway self-consistent energy system planning[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 56-70. doi: 10.19818/j.cnki.1671-1637.2024.04.005
Citation: HUANG Xian, YE Xiao-rong, JI Wen-tong, FENG Zhang-jie. Economic characteristics of highway self-consistent energy system planning[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 56-70. doi: 10.19818/j.cnki.1671-1637.2024.04.005

高速公路自洽能源系统规划中的经济性特点

doi: 10.19818/j.cnki.1671-1637.2024.04.005
基金项目: 

国家重点研发计划 2021YFB2601300

详细信息
    作者简介:

    黄仙(1966-),男,江西赣州人,华北电力大学教授,工学博士,从事系统工程与人工智能研究

  • 中图分类号: U417.9

Economic characteristics of highway self-consistent energy system planning

Funds: 

National Key Research and Development Program of China 2021YFB2601300

More Information
  • 摘要: 为促进交通与能源融合发展,构建了以风-光-储为供电侧,高速公路用电设备为需求侧,且具有合理运行规则的高速公路自洽能源系统架构;以风-光-储设备数量为规划变量,系统等年值成本为优化目标,缺电概率和弃风弃光量等为约束条件,建立了自洽能源系统的规划模型;将设定的系统运行规则转化成具体的运行策略,以西部某地区风、光历史数据及负荷需求数据为输入,进行了算例仿真。研究结果表明:微电网联通功率上限的提升可使自洽能源系统的经济成本明显下降, 当微电网联通功率上限由0增加到1 000 kW时,系统等年值成本减少了8.53%;新能源消纳率的提高将造成经济成本抬升,过高的新能源消纳率追求甚至将导致经济成本的急速攀升,弃风弃光量约束力度的加强使新能源消纳率上涨了9.05%,等年值成本随之上涨了73.86%;负荷分级管理的应用可大幅降低系统经济成本,一级负荷的缺电概率上限不变,将二级和三级负荷的缺电概率上限从0分别改设为0.05和0.20时,自洽能源系统的等年值成本甚至减少了90.97%。可见,微电网联通、负荷分级管理的应用以及合理的新能源消纳率要求可使高速公路自洽能源系统规划的成本更具合理性。

     

  • 图  1  高速公路供电区段

    Figure  1.  Power supply sections of highway

    图  2  高速公路自洽能源系统架构

    Figure  2.  Self-consistent energy system architecture for highway

    图  3  系统运行策略

    Figure  3.  System operation strategy

    图  4  优化配置流程

    Figure  4.  Flow of optimize configuration

    图  5  风速、光照强度曲线

    Figure  5.  Curves of wind speed and irradiance

    图  6  负荷年数据曲线

    Figure  6.  Annual load data curves

    图  7  年联通功率分布对比

    Figure  7.  Comparison of annual connection power distributions

    图  8  某时段联通功率分布对比

    Figure  8.  Comparison of connection power distributions within a certain period

    图  9  不同Rres的配置结果对比

    Figure  9.  Comparison of configuration results of different Rres

    图  10  考虑负荷分级和新能源消耗率的年联通功率分布对比

    Figure  10.  Comparison of annual connection power distributions considering load grading and new energy consumption rate

    图  11  考虑负荷分级和新能源消耗率的某时段联通功率对比分布

    Figure  11.  Comparison of connection power distributions within a certain period considering load grading and new energy consumption rate

    表  1  高速公路能耗设施分类与组成

    Table  1.   Classification and composition of highway energy consumption facilities

    高速公路能耗设施 能耗项目 能耗设备
    隧道 照明 照明灯具
    通风系统 风扇
    监测系统 监测设备
    消防系统 消防器材
    供电系统 供配电设备
    交通安全设施 交通信号灯等
    收费站 收费通道 收费设备
    监测系统 监测设备
    照明 照明灯具
    收费站供配电系统 电源供应器、分布设备
    服务区 综合服务楼 照明、办公和餐饮
    综合能源服务站 充电桩等
    厕所 相关设施和设备
    停车场 照明
    维修室 相关设施和设备
    维修中心 维护和操作 维修设备
    生活区 生活能耗 生活和办公设备
    车辆能耗 交通通勤
    运营管理中心 办公室 办公设备和设施
    沿线设施 监测系统 监测设备
    通信系统 通信设备
    照明 照明灯具
    交通安全设施 交通安全设备
    下载: 导出CSV

    表  2  高速公路用电负荷分级

    Table  2.   Classification of electrical loads on highway

    用电负荷等级 主要设备
    一级负荷 供配电设备、监测设备、通信设备、防灾报警系统设备、重要办公设备、重要消防器材和应急照明设备
    二级负荷 收费设备、管理中心及服务区照明、一般消防系统设施、充电桩、维修设备
    三级负荷 其他用电设备
    下载: 导出CSV

    表  3  情景分类

    Table  3.   Classification of scenarios

    情景 MG1 MG2 MG3
    1 ΔP1(t)≥0 ΔP2(t) < 0 ΔP3(t)≥0
    2 ΔP1(t) < 0 ΔP2(t) < 0 ΔP3(t)≥0
    3 ΔP1(t)≥0 ΔP2(t) < 0 ΔP3(t) < 0
    4 ΔP1(t) < 0 ΔP2(t) < 0 ΔP3(t) < 0
    5 ΔP1(t)≥0 ΔP2(t)≥0 ΔP3(t)≥0
    6 ΔP1(t) < 0 ΔP2(t)≥0 ΔP3(t)≥0
    7 ΔP1(t)≥0 ΔP2(t)≥0 ΔP3(t) < 0
    8 ΔP1(t) < 0 ΔP2(t)≥0 ΔP3(t) < 0
    下载: 导出CSV

    表  4  光伏板参数

    Table  4.   PV panel parameters

    设备参数 数值
    降额因数 0.8
    标准测试条件下光伏板温度/℃ 25
    额定功率/kW 10
    初始投资成本/元 45 000
    置换成本/元 45 000
    年运维成本/元 300
    寿命/年 20
    下载: 导出CSV

    表  5  风机参数

    Table  5.   Wind turbine parameters

    设备参数 数值
    额定风速/(m·s-1) 10
    切入风速/(m·s-1) 2.5
    切出风速/(m·s-1) 45
    轮毂高度/m 150
    额定功率/kW 100
    初始投资成本/元 300 000
    置换成本/元 300 000
    年运维成本/元 1 200
    寿命/年 20
    下载: 导出CSV

    表  6  蓄电池参数

    Table  6.   Battery parameters

    设备参数 数值
    放电深度 0.2~0.8
    充电效率 0.85
    放电效率 0.9
    额定容量/(A·h) 1 000
    额定电压/V 2
    初始投资成本/元 1 320
    置换成本/元 1 320
    运维成本/(元·kW-1) 0.2
    寿命/年 5
    下载: 导出CSV

    表  7  不同联通功率上限下的系统配置结果对比

    Table  7.   Comparison of system configuration results under different upper limits of connection power

    P1-2, max /kW P3-2, max/kW Vwt, 1/kW Ves, 1/(kW·h) Vwt, 2/kW Vpv, 2/kW Ves, 2/(kW·h) Vpv, 3/kW Ves, 3/(kW·h) Cin, a/万元 Crep, a/万元 Com, a/万元 Ca/万元 Rres/%
    0 0 30 300 165 800 27 900 192 000 4 448 000 17 230 288 500 51 114 52 997 9 292 113 403 51.31
    100 100 29 100 165 800 28 300 191 940 4 445 400 17 220 288 500 51 062 52 969 9 241 113 273 51.50
    300 300 26 600 165 800 29 700 191 650 4 440 700 17 180 288 600 50 970 52 919 9 122 113 012 51.81
    500 500 24 200 165 800 28 100 192 690 4 437 900 17 160 288 600 50 862 52 889 9 111 112 862 52.54
    1 000 1 000 21 100 165 800 27 700 193 150 4 436 900 17 050 288 600 50 749 52 878 8 988 112 614 53.29
    下载: 导出CSV

    表  8  不同Rres要求下的配置结果对比

    Table  8.   Comparison of different configuration results under different Rres requirements

    方案 Vwt, 1/kW Ves, 1/(kW·h) Vwt, 2/kW Vpv, 2/kW Ves, 2/(kW·h) Vpv, 3/kW Ves, 3/(kW·h) Cin, a/万元 Crep, a/万元 Com, a/万元 Ca/万元 Rres/%
    1 6 700 3 726 700 3 700 147 810 86 697 600 17 600 288 400 712 345 980 662 11 909 1 704 915 95.92
    2 7 000 3 181 200 6 600 159 030 44 886 400 17 560 288 400 384 685 522 759 10 837 918 281 81.21
    3 8 900 896 600 12 400 165 160 26 165 500 17 500 288 600 222 437 295 678 10 057 528 172 72.16
    4 8 900 894 100 7 400 181 670 12 619 700 17 380 288 500 118 096 149 212 10 161 277 468 66.84
    5 21 100 165 800 27 700 194 290 4 433 800 17 040 288 600 50 932 52 713 9 001 112 646 52.17
    下载: 导出CSV

    表  9  配置结果对比

    Table  9.   Comparison of configuration results

    是否切负荷 Vwt, 1/kW Ves, 1/(kW·h) Vwt, 2/kW Vpv, 2/kW Ves, 2/(kW·h) Vpv, 3/kW Ves, 3/(kW·h) Cin, a/万元 Crep, a/万元 Com, a/万元 Ca/万元 Rres/%
    8 900 896 600 12 400 165 160 26 165 500 17 500 288 600 222 437 295 678 10 057 528 172 72.16
    12 800 661 000 16 800 14 180 663 100 17 340 271 600 21 828 17 251 8 634 47 712 70.24
    下载: 导出CSV

    表  10  不同联通功率上限下的系统配置结果对比

    Table  10.   Comparison of system configuration results under different connection power limits

    P1-2, max/kW P3-2, max/kW Vwt, 1/kW Ves, 1/(kW·h) Vwt, 2/kW Vpv, 2/kW Ves, 2/(kW·h) Vpv, 3/kW Ves, 3/(kW·h) Cin, a/万元 Crep, a/万元 Com, a/万元 Ca/万元 Rres/%
    0 0 11 200 932 200 18 200 142 480 614 000 17 210 271 700 23 570 19 653 8 877 52 099 70.30
    100 100 11 600 868 500 17 700 142 560 627 400 17 230 271 700 23 181 19 109 8 868 51 159 70.28
    300 300 12 500 755 300 17 300 141 860 681 000 17 290 271 700 22 703 18 465 8 824 49 991 70.27
    500 500 12 900 674 100 16 200 142 540 678 000 17 310 271 600 22 062 17 553 8 810 48 425 70.25
    1 000 1 000 13 700 609 200 15 700 142 080 708 000 17 340 271 600 21 779 17 176 8 698 476 53 70.23
    下载: 导出CSV
  • [1] 张友民, 马冬冬. 交能融合背景下的高速公路绿色电力发展研究[J]. 光源与照明, 2022, 175(12): 177-179.

    ZHANG You-min, MA Dong-dong. Research on the development of green electricity on highways under the background of traffic energy integration[J]. Lamps and Lighting, 2022, 175(12): 177-179. (in Chinese)
    [2] 岳丹, 李明君, 李娜, 等. "双碳"背景下绿色公路建设理念与实现方式探讨[J]. 交通节能与环保, 2022, 18(4): 40-44, 65.

    YUE Dan, LI Ming-jun, LI Na, et al. Discussion on the concept and realization of green highway construction under the background of emission peak and carbon neutrality[J]. Transport Energy Conservation and Environmental Protection, 2022, 18(4): 40-44, 65. (in Chinese)
    [3] CANG Ding-bang, CHEN Cang, CHEN Qing, et al. Does new energy consumption conducive to controlling fossil energy consumption and carbon emissions?—Evidence from China[J]. Resources Policy, 2021, 74: 102427. doi: 10.1016/j.resourpol.2021.102427
    [4] HONG Zi-wei, SU Hong-li, LIU Hai-yang, et al. Research on key technologies and business models of low-carbon transformation of power industry under the "double carbon" trend[C]//IEEE. 2021 11th International Conference on Power and Energy Systems (ICPES). New York: IEEE, 2021: 643-647.
    [5] JIA Li-ming, MA Jing, CHENG Peng, et al. A perspective on solar energy-powered road and rail transportation in China[J]. CSEE Journal of Power and Energy Systems, 2020, 6(4): 760-771.
    [6] NGUYEN V C, WANG C T, HSIEH Y J. Electrification of highway transportation with solar and wind energy[J]. Sustainability, 2021, 13(10): 5456. doi: 10.3390/su13105456
    [7] ZHOU Peng-zhan, WANG Cong, YANG Yuan-yuan. Design and optimization of solar-powered shared electric autonomous vehicle system for smart cities[J]. IEEE Transactions on Mobile Computing, 2023, 22(4): 2053-2068. doi: 10.1109/TMC.2021.3116805
    [8] GARCÍA-OLIVARES A, SOLÉ J, OSYCHENKO O. Transportation in a 100% renewable energy system[J]. Energy Conversion and Management, 2018, 158: 266-285. doi: 10.1016/j.enconman.2017.12.053
    [9] HOSSAIN M F. Implementation of hybrid wind and solar energy in the transportation sector to mitigate global energy and environmental vulnerability[J]. Clean Technologies and Environmental Policy, 2023, 25(4): 1195-1210. doi: 10.1007/s10098-022-02437-4
    [10] SUBRAMANIAN R. The current status of roadways solar power technology: a review[C]//ASCE. Environmental Sustainability in Transportation Infrastructure. Reston: ASCE, 2015: 177-187.
    [11] 唐明涛, 陈志强, 王志刚, 等. 分布式光伏发电在高速公路交通设施中的应用[J]. 太阳能, 2016(9): 28-31.

    TANG Ming-tao, CHEN Zhi-qiang, WANG Zhi-gang, et al. Application of distributed photovoltaic power generation in expressway traffic facilities[J]. Solar Energy, 2016(9): 28-31. (in Chinese)
    [12] LIDULA N W A, RAJAPAKSE A D. Microgrids research: a review of experimental microgrids and test systems[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 186-202. doi: 10.1016/j.rser.2010.09.041
    [13] SHUAI Z K, SUN Y Y, SHEN Z J, et al. Microgrid stability: classification and a review[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 167-179. doi: 10.1016/j.rser.2015.12.201
    [14] CHANDAK S, ROUT P K. The implementation framework of a microgrid: a review[J]. International Journal of Energy Research, 2020, 45(3): 3523-3547.
    [15] KAMAL M M, ASHRAF I, FERNANDEZ E. Planning and optimization of microgrid for rural electrification with integration of renewable energy resources[J]. Journal of Energy Storage, 2022, 52: 104782. doi: 10.1016/j.est.2022.104782
    [16] SALMAN U, KHAN K, ALISMAIL F, et al. Techno-economic assessment and operational planning of wind-battery distributed renewable generation system[J]. Sustainability, 2021, 13(12): 6776. doi: 10.3390/su13126776
    [17] EGAN T, GABBAR H A, OTHMAN A M, et al. Design and control of resilient interconnected microgrid for sustained railway[C]//IEEE. 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE). New York: IEEE, 2017: 131-136.
    [18] WANG Cheng-shan, JIAO Bing-qi, GUO Li, et al. Optimal planning of stand-alone microgrids incorporating reliability[J]. Journal of Modern Power Systems and Clean Energy, 2014, 2(3): 195-205. doi: 10.1007/s40565-014-0068-9
    [19] 丁明, 王波, 赵波, 等. 独立风光柴储微网系统容量优化配置[J]. 电网技术, 2013, 37(3): 575-581.

    DING Ming, WANG Bo, ZHAO Bo, et al. Configuration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgrid[J]. Power System Technology, 2013, 37(3): 575-581. (in Chinese)
    [20] DAWOOD F, SHAFIULLAH G M, ANDA M. Stand-alone microgrid with 100% renewable energy: a case study with hybrid solar PV-battery-hydrogen[J]. Sustainability, 2020, 12(5): 2047. doi: 10.3390/su12052047
    [21] ELMORSHEDY M F, ELKADEEM M R, KOTB K M, et al. Feasibility study and performance analysis of microgrid with 100% hybrid renewables for a real agricultural irrigation application[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102746. doi: 10.1016/j.seta.2022.102746
    [22] BANDEIRAS F, PINHEIRO E, GOMES M, et al. Review of the cooperation and operation of microgrid clusters[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110311. doi: 10.1016/j.rser.2020.110311
    [23] 赵波, 李得民, 吴在军, 等. 基于100%绿色能源供电目标的海岛微电网群容量优化配置[J]. 中国电机工程学报, 2021, 41(3): 932-945.

    ZHAO Bo, LI De-min, WU Zai-jun, et al. Capacity optimal sizing of island microgrid clusters based on the target of 100% green energy power supply[J]. Proceedings of the CSEE, 2021, 41(3): 932-945. (in Chinese)
    [24] SHI Meng-shu, HUANG Yuan-sheng, LIN Hong-yu. Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage[J]. Energy, 2023, 264: 126113. doi: 10.1016/j.energy.2022.126113
    [25] CHE Liang, ZHANG Xia-ping, SHAHIDEHPOUR M, et al. Optimal interconnection planning of community microgrids with renewable energy sources[J]. IEEE Transactions on Smart Grid, 2017, 8(3): 1054-1063. doi: 10.1109/TSG.2015.2456834
    [26] LIU Yang, LIU Tian-yu, HE Shu-sen. Coordination and optimization of CCHP microgrid group game based on the interaction of electric and thermal energy considering conditional value at risk[J]. IEEE Access, 2021, 9: 88664-88673. doi: 10.1109/ACCESS.2021.3089591
    [27] HARMON E, OZGUR U, CINTUGLU M H, et al. The internet of microgrids: a cloud-based framework for wide area networked microgrids[J]. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1262-1274. doi: 10.1109/TII.2017.2785317
    [28] LI Zhi-yi, SHAHIDEHPOUR M, AMINIFAR F, et al. Networked microgrids for enhancing the power system resilience[J]. Proceedings of the IEEE, 2017, 105(7): 1289-1310. doi: 10.1109/JPROC.2017.2685558
    [29] ALI AREFIFAR S, ORDONEZ M, MOHAMED Y A R I. Energy management in multi-microgrid systems—development and assessment[J]. IEEE Transactions on Power Systems, 2017, 32(2): 910-922. doi: 10.1109/TPWRD.2016.2578941
    [30] CHEN Jie, YU Zhong-hui, CHEN Guo-yan, et al. Calculation of carbon emission during expressway operation period based on energy consumption analysis[J]. IOP Conference Series: Earth and Environmental Science, 2021, 647(1): 012190. doi: 10.1088/1755-1315/647/1/012190
    [31] 范相冉. 分布式电源在高速公路直流微电网中选址定容的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    FAN Xiang-ran. Research on location and capacity determination of distributed generation in expressway DC microgrid[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [32] 王华城, 朱新春, 王子扶, 等. 绿色高速公路运营期在线监测技术体系研究——环境、气象、能耗监测[J]. 交通节能与环保, 2022, 18(1): 139-144.

    WANG Hua-cheng, ZHU Xin-chun, WANG Zi-fu, et al. Research on online monitoring technology system of green highway during operation period——environmental, meteorological and energy consumption monitoring[J]. Transport Energy Conservation and Environmental Protection, 2022, 18(1): 139-144. (in Chinese)
    [33] CAI Ye, LIU Ying, TANG Xia-fei, et al. Increasing renewable energy consumption coordination with the monthly interprovincial transaction market[J]. Frontiers in Energy Research, 2021, 9: 719419. doi: 10.3389/fenrg.2021.719419
    [34] 刘岗楼. 孤岛发电站电力负荷分级管理的重要性及应用[J]. 电气技术与经济, 2017(4): 72-73.

    LIU Gang-lou. Importance and application of power load classification management in islanded power station[J]. Electrical Equipment and Economy, 2017(4): 72-73. (in Chinese)
    [35] REN Yin-ze, WU Hong-bin, YANG He-jun, et al. A method for load classification and energy scheduling optimization to improve load reliability[J]. Energies, 2018, 11(6): 1558. doi: 10.3390/en11061558
    [36] SHUVRA M A, CHOWDHURY B. Load management system and control strategies of distributed energy resources in an islanded microgrid[C]//IEEE. 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT and IoT and AI (HONET-ICT). New York: IEEE, 2019: 100-104.
    [37] DAI Liang, ZHANG Cheng-yin, HUANG-Yun, et al. Feasibility analysis of supply-demand matching between highway operational energy consumption and renewable energy integration: a case study of Panzhihua-Dali Highway within Sichuan Province[C]//IEEE. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). New York: IEEE, 2022: 1989-1993.
    [38] 马书红, 向前忠, 唐珂, 等. 高速公路营运期能耗体系与统计指标研究[J]. 公路, 2013, 58(10): 146-150.

    MA Shu-hong, XIANG Qian-zhong, TANG Ke, et al. Research on energy consumption system and statistical indicators of expressway in operation period[J]. Highway, 2013, 58(10): 146-150. (in Chinese)
    [39] SALEHI N, MARTÍNEZ-GARCÍA H, VELASCO-QUESADA G, et al. A comprehensive review of control strategies and optimization methods for individual and community microgrids[J]. IEEE Access, 2022, 10: 15935-15955. doi: 10.1109/ACCESS.2022.3142810
    [40] XU Chuan-bo, KE Yi-ming, LI Yan-bin, et al. Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-Ⅱ and CRITIC-TOPSIS[J]. Energy Conversion and Management, 2020, 215: 112892. doi: 10.1016/j.enconman.2020.112892
    [41] YU J, RYU J H, LEE I B. A stochastic optimization approach to the design and operation planning of a hybrid renewable energy system[J]. Applied Energy, 2019, 247: 212-220. doi: 10.1016/j.apenergy.2019.03.207
    [42] BILLINTON R, CHU K. Early evolution of LOLP: evaluating generating capacity requirements[history][J]. IEEE Power and Energy Magazine, 2015, 13(4): 88-98. doi: 10.1109/MPE.2015.2417475
    [43] 高雷, 苏辛一, 刘世宇. 可再生能源消纳责任权重下的新能源合理弃电率研究[J]. 中国电力, 2020, 53(12): 136-142.

    GAO Lei, SU Xin-yi, LIU Shi-yu. Study on reasonable curtailment rate of renewables under certain renewable energy consumption quota obligation[J]. Electric Power, 2020, 53(12): 136-142. (in Chinese)
    [44] ZHANG Jin-jin, WANG Tao, WU Jun-yong, et al. Short-term load forecasting method based on artificial intelligence highway neural network[C]//IEEE. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). New York: IEEE, 2021: 2999-3003.
    [45] 唐珂. 高速公路营运期能耗水平分析与测算方法研究[D]. 西安: 长安大学, 2013.

    TANG Ke. Energy consumption analysis and calculation method study of expressway operation period[D]. Xi'an: Chang'an University, 2013. (in Chinese)
    [46] 孙光辉, 沈国荣. 加强三道防线建设确保电网的安全稳定运行[J]. 江苏电机工程, 2004(5): 4-7.

    SUN Guang-hui, SHEN Guo-rong. Enhancing three-defense lines for insuring the security and stability of the power system of China[J]. Jiangsu Electrical Engineering, 2004(5): 4-7. (in Chinese)
  • 加载中
图(11) / 表(10)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  28
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回