留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁路清洁自洽能源宜能空间识别

滕婧 李龙恺 杨淇 师瑞峰

滕婧, 李龙恺, 杨淇, 师瑞峰. 铁路清洁自洽能源宜能空间识别[J]. 交通运输工程学报, 2024, 24(5): 12-22. doi: 10.19818/j.cnki.1671-1637.2024.05.002
引用本文: 滕婧, 李龙恺, 杨淇, 师瑞峰. 铁路清洁自洽能源宜能空间识别[J]. 交通运输工程学报, 2024, 24(5): 12-22. doi: 10.19818/j.cnki.1671-1637.2024.05.002
TENG Jing, LI Long-kai, YANG Qi, SHI Rui-feng. Desirable energy space identification of clean and self-consistent energy along railways[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 12-22. doi: 10.19818/j.cnki.1671-1637.2024.05.002
Citation: TENG Jing, LI Long-kai, YANG Qi, SHI Rui-feng. Desirable energy space identification of clean and self-consistent energy along railways[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 12-22. doi: 10.19818/j.cnki.1671-1637.2024.05.002

铁路清洁自洽能源宜能空间识别

doi: 10.19818/j.cnki.1671-1637.2024.05.002
基金项目: 

国家重点研发计划 2021YFB2601300

中央高校基本科研业务费专项资金项目 2023JC007

详细信息
    作者简介:

    滕婧(1981-), 女, 湖南麻阳人,华北电力大学副教授,工学博士, 从事人工智能与能源交通融合研究

    通讯作者:

    师瑞峰(1977-), 男, 山西河津人,华北电力大学教授,工学博士

  • 中图分类号: U212.2

Desirable energy space identification of clean and self-consistent energy along railways

Funds: 

National Key Research and Development Program of China 2021YFB2601300

Fundamental Research Funds for the Central Universities 2023JC007

More Information
  • 摘要: 为了智能识别铁路沿线的清洁自洽能源宜能空间,构建了一个包含210张分辨率为4 800像素× 2 986像素的铁路遥感图像数据集;针对遥感图像处理领域中多尺度融合单元通道信息不兼容的问题,提出了自注意力机制模块,以增强对多尺度特征的捕捉能力;针对不同尺度高分辨率遥感图像预测结果存在的差异性,提出了多尺度一致性正则化方法(MSCR),以增强模型对不同尺度图像处理的鲁棒性;综合自注意力机制模块与多尺度一致性正则化方法,对经典的图像分割HRNetV2方法进行了改进,构建了MSCR-HRNetV2方法;在自建的铁路遥感图像数据集和公开的Potsdam遥感图像数据集分别对MSCR-HRNetV2方法进行验证。研究结果表明:在铁路遥感图像数据集上,改进的MSCR-HRNetV2方法取得了81.37%的平均交并比,相较于原HRNetV2方法提高了3.13%,与主流图像分割方法DeepLabV3+相比,提高了3.86%;在Potsdam遥感图像数据集上,MSCR-HRNetV2方法的平均交并比达到了75.96%,相比HRNetV2方法提高了2.01%,与DeepLabV3+相比提高了2.19%。可见,改进的MSCR-HRNetV2方法显著提高了高分辨率遥感图像的语义分割性能,从而智能识别铁路沿线的清洁自洽能源宜能空间,为交通能源融合系统的规划和设计提供了重要的技术支撑。

     

  • 图  1  HRNet的方法架构

    Figure  1.  Architecture of HRNet method

    图  2  最终特征表示对比

    Figure  2.  Comparison of final feature representations

    图  3  MSCR-HRNetV2的方法架构

    Figure  3.  Architecture of MSCR-HRNetV2 method

    图  4  SE结构

    Figure  4.  Structure of SE

    图  5  损失分析

    Figure  5.  Analysis of loss

    图  6  不同方法在数据集1上的语义分割结果

    Figure  6.  Semantic segmentation results of different methods on dataset 1

    图  7  不同方法在数据集2上的语义分割结果

    Figure  7.  Semantic segmentation results of different methods on dataset 2

    表  1  消融试验结果MIoU

    Table  1.   MIoUs of ablation experiment results  %

    方法 SE MSCR 数据集1 数据集2
    HRNetV2 78.24 73.33
    HRNetV2_A 79.88 74.69
    HRNetV2_B 80.49 74.61
    MSCR-HRNetV2 81.37 75.96
    下载: 导出CSV

    表  2  数据集1中各类别目标MIoU对比

    Table  2.   Target MIoU comparison of each category on dataset 1  %

    类别 HRNetV2 MSCR-HRNetV2
    铁路线 78.08 82.41
    铁路边坡 77.90 81.69
    房屋 68.86 72.88
    植被 86.46 88.90
    荒地 93.53 94.01
    下载: 导出CSV

    表  3  数据集2中各类别目标MIoU对比

    Table  3.   Target MIoU comparison of each category on dataset 2  %

    类别 HRNetV2 MSCR-HRNetV2
    汽车 77.52 81.56
    树木 71.51 72.97
    低矮植被 71.97 73.66
    建筑 89.26 90.18
    不透水表面 49.70 55.84
    下载: 导出CSV

    表  4  MSCR-HRNetV2与其他方法比较结果

    Table  4.   Comparison results of MSCR-HRNetV2 and other methods  %

    方法 MIoU MPA
    数据集1 数据集2 数据集1 数据集2
    UNet 74.88 72.06 85.65 82.72
    DeepLabV3+ 77.51 71.05 88.24 81.30
    PSPNet 72.24 68.76 84.73 79.24
    HRNetV2 78.24 73.33 89.21 83.29
    MSCR-HRNetV2 81.37 75.96 90.43 85.30
    下载: 导出CSV

    表  5  不同方法的参数数量和GFLOPs的比较

    Table  5.   Comparison of params and GFLOPs of different methods

    方法 参数数量/106 GFLOPs
    UNet 24.891 397.095
    DeepLabV3+ 5.814 46.494
    PSPNet 2.376 5.301
    HRNetV2 9.638 32.831
    MSCR-HRNetV2 9.750 36.593
    下载: 导出CSV
  • [1] DALALA Z, AL-OMARI M, AL-ADDOUS M, et al. Increased renewable energy penetration in national electrical grids constraints and solutions[J]. Energy, 2022, 246: 123361. doi: 10.1016/j.energy.2022.123361
    [2] 艾国乐, 郝小礼, 刘仙萍, 等. 高速铁路上空安装光伏系统的节能潜力研究[J]. 太阳能学报, 2023, 44(2): 409-417.

    AI Guo-le, HAO Xiao-li, LIU Xian-ping, et al. Energy saving potential research of photovoltaic system installed over high-speed railway[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 409-417. (in Chinese)
    [3] 张舜, 张蜇. 基于光伏发电的铁路与新能源融合潜力评估[J]. 中国铁路, 2023(11): 64-71.

    ZHANG Shun, ZHANG Zhe. Evaluation of the potential application of new energy in the railway sector based on PV power generation[J]. China Railway, 2023(11): 64-71. (in Chinese)
    [4] LI Jian, CUI Min. Application of solar PV grid-connected power generation system in Shanghai rail transit[C]//IEEE. 2018 China International Conference on Electricity Distribution. New York: IEEE, 2018: 110-113.
    [5] ZHONG Zhi-ming, ZHANG Yong-xin, HONG Shen, et al. Optimal planning of distributed photovoltaic generation for the traction power supply system of high-speed railway[J]. Journal of Cleaner Production, 2020, 263: 121394. doi: 10.1016/j.jclepro.2020.121394
    [6] NING Fu-wei, JI Li, MA Jing, et al. Research and analysis of a flexible integrated development model of railway system and photovoltaic in China[J]. Renewable Energy, 2021, 175: 853-867. doi: 10.1016/j.renene.2021.04.119
    [7] CHEN Zhu-jun, JIANG Ming-kun, QI Ling-fei, et al. Using existing infrastructures of high-speed railways for photovoltaic electricity generation[J]. Resources, Conservation and Recycling, 2022, 178: 106091. doi: 10.1016/j.resconrec.2021.106091
    [8] TANG Yu-qi, ZHANG Liang-pei. Urban change analysis with multi-sensor multispectral imagery[J]. Remote Sensing, 2017, 9(3): 252. doi: 10.3390/rs9030252
    [9] WU Lin-shan, LU Ming, FANG Le-yuan. Deep covariance alignment for domain adaptive remote sensing image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11.
    [10] PAN Shao-ming, TAO Yu-long, NIE Cong-chong, et al. PEGNet: progressive edge guidance network for semantic segmentation of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2020(99): 1-5.
    [11] 常秀红, 李纯斌, 吴静, 等. 基于优化HRNetV2的高分辨率遥感影像土地利用自动分类[J]. 中国土地科学, 2022, 36(2): 96-105.

    CHANG Xiu-hong, LI Chun-bin, WU Jing, et al. Automatic land use classification based on optimized HRNetV2 High-resolution remote sensing images[J]. China Land Science, 2022, 36(2) : 96-105. (in Chinese)
    [12] RADMAN A, ZAINAL N, SUANDI S A. Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and GrowCut[J]. Digital Signal Processing, 2017, 64: 60-70. doi: 10.1016/j.dsp.2017.02.003
    [13] THANH NOI P, KAPPAS M. Comparison of random forest, K-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery[J]. Sensors, 2017, 18(1): 18. doi: 10.3390/s18010018
    [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [15] LIN Guo-sheng, MILAN A, SHEN Chun-hua, et al. Refinenet: multi-path refinement networks for high-resolution semantic segmentation[C]//IEEE. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 1925-1934.
    [16] ZHAO Heng-shuang, SHI Jian-ping, QI Xiao-juan, et al. Pyramid scene parsing network[C]//IEEE. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 2881-2890.
    [17] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
    [18] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv, 2017, DOI: 10.48550/arXiv.1706.05587.
    [19] CHEN L C, ZHU Yu-kun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//ECCV. Proceedings of the 2018 European Conference on Computer Vision. Munich: ECCV, 2018: 801-818.
    [20] WANG Jing-dong, SUN Ke, CHENG Tian-heng, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. doi: 10.1109/TPAMI.2020.2983686
    [21] BAI Hai-wei, CHENG Jian, HUANG Xia, et al. HCANet: a hierarchical context aggregation network for semantic segmentation of high-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
    [22] PANG Shi-yan, SHI Ye-peng, HU Han-chun, et al. PTRSegNet: a patch-to-region bottom-up pyramid framework for the semantic segmentation of large-format remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 3664-3673. doi: 10.1109/JSTARS.2024.3352578
    [23] WANG Xiao-feng, KANG Meng-lei, CHEN Yan, et al. Adaptive local cross-channel vector pooling attention module for semantic segmentation of remote sensing imagery[J]. Remote Sensing, 2023, 15(8): 1980. doi: 10.3390/rs15081980
    [24] GUO Yong-jie, WANG Feng, XIANG Yu-ming, et al. Semisupervised semantic segmentation with certainty-aware consistency training for remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2900-2914. doi: 10.1109/JSTARS.2023.3255553
    [25] SUN Ke, XIAO Bin, LIU Dong, et al. Deep high-resolution representation learning for human pose estimation[C]//IEEE. Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 5693-5703.
    [26] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//IEEE. Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 7132-7141.
    [27] LUO Xiang-de, WANG Guo-tai, LIAO Wen-jun, et al. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency[J]. Medical Image Analysis, 2022, 80: 102517. doi: 10.1016/j.media.2022.102517
    [28] CHENG Gong, HAN Jun-wei, LU Xiao-qiang. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883. doi: 10.1109/JPROC.2017.2675998
    [29] TENG Jing, LI Long-kai, JIANG Ya-jun, et al. A review of clean energy exploitation for railway transportation systems and its enlightenment to China[J]. Sustainability, 2022, 14(17): 10740. doi: 10.3390/su141710740
    [30] JIANG Bao-de, AN Xiao-ya, XU Shao-fen, et al. Intelligent image semantic segmentation: a review through deep learning techniques for remote sensing image analysis[J]. Journal of the Indian Society of Remote Sensing, 2023, 51(9): 1865-1878. doi: 10.1007/s12524-022-01496-w
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-09
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回