留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向交通与能源融合需求的高速公路设施用能负荷预测

张宇飞 蒋玮 张硕 王腾 肖晶晶 袁东东

张宇飞, 蒋玮, 张硕, 王腾, 肖晶晶, 袁东东. 面向交通与能源融合需求的高速公路设施用能负荷预测[J]. 交通运输工程学报, 2024, 24(5): 40-53. doi: 10.19818/j.cnki.1671-1637.2024.05.004
引用本文: 张宇飞, 蒋玮, 张硕, 王腾, 肖晶晶, 袁东东. 面向交通与能源融合需求的高速公路设施用能负荷预测[J]. 交通运输工程学报, 2024, 24(5): 40-53. doi: 10.19818/j.cnki.1671-1637.2024.05.004
ZHANG Yu-fei, JIANG Wei, ZHANG Shuo, WANG Teng, XIAO Jing-jing, YUAN Dong-dong. Energy load forecasting of highway facilities in response to integration transportation and energy needs[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 40-53. doi: 10.19818/j.cnki.1671-1637.2024.05.004
Citation: ZHANG Yu-fei, JIANG Wei, ZHANG Shuo, WANG Teng, XIAO Jing-jing, YUAN Dong-dong. Energy load forecasting of highway facilities in response to integration transportation and energy needs[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 40-53. doi: 10.19818/j.cnki.1671-1637.2024.05.004

面向交通与能源融合需求的高速公路设施用能负荷预测

doi: 10.19818/j.cnki.1671-1637.2024.05.004
基金项目: 

国家重点研发计划 2021YFB1600200

国家自然科学基金项目 52122809

陕西省重点研发计划 2024SF-YBXM-577

陕西省秦创原“科学家+工程师”队伍建设项目 2024QCY-KXJ-020

详细信息
    作者简介:

    张宇飞(1992-),男,甘肃陇南人,长安大学工学博士研究生,从事交通与能源融合研究

    蒋玮(1983-),男,安徽宣城人,长安大学教授,工学博士

    通讯作者:

    蒋玮(1983-),男,安徽宣城人,长安大学教授,工学博士

  • 中图分类号: U417.9

Energy load forecasting of highway facilities in response to integration transportation and energy needs

Funds: 

National Key Research and Development Program of China 2021YFB1600200

National Natural Science Foundation of China 52122809

Key Research and Development Program of Shaanxi Province 2024SF-YBXM-577

Shaanxi Province Qin Chuangyuan "Scientist+Engineer" Team Construction Project 2024QCY-KXJ-020

More Information
  • 摘要: 为准确预测用能负荷,通过调研高速公路典型构造物用能负荷历史数据,分析了交通量、天气状况、星期、月份以及节假日/工作日等多重因素对用能负荷的影响,采用主成分分析(PCA)方法对这些影响因素进行降维处理,消除原始序列的冗余性;分析了节假日/工作日属性和天气状况等因素对用能负荷特征的影响,提出了高速公路用能负荷预测模型候选数据集(CD)构建策略,在此基础上,采用长短时记忆(LSTM)网络模型对多变量用能负荷预测进行了动态时间建模,并依托广西桂柳高速公路实测数据对提出的预测模型进行了验证。分析结果表明:交通量、天气状况、星期、月份、节假日/工作日这5个主成分累计贡献率为85.54%,是高速公路用能负荷主要影响因素;隧道、收费站和服务区用能负荷的高峰时段分布各异,隧道用能负荷高峰时间波动较小,收费站用能负荷高峰集中在10:00~21:00,服务区用能负荷高峰时间段最短,仅集中出现在11:00~12:00;在不同季节测试日中,采用候选数据集构建策略及PCA处理后,提升了训练集数据的针对性,预测结果的精度也得到了提高,平均绝对百分比误差不超过12.33%,均方根误差不超过3.86,提出的预测模型在不同典型场景的负荷预测中均具有良好的适用性,可为高速公路自洽能源系统设计提供理论支撑。

     

  • 图  1  用能负荷预测建模思路

    Figure  1.  Modeling idea for energy load forecasting

    图  2  高速公路典型场景

    Figure  2.  Typical scenes of highways

    图  3  LSTM细胞结构

    Figure  3.  LSTM cell structure

    图  4  数据集构建流程

    Figure  4.  Dataset construction process

    图  5  基于LSTM的用能负荷预测流程

    Figure  5.  Energy load forecasting process based on LSTM

    图  6  隧道不同节假日/工作日用能负荷曲线

    Figure  6.  Energy load curves of tunnels on different holidays/weekdays

    图  7  收费站不同节假日/工作日用能负荷曲线

    Figure  7.  Energy load curves of toll stations on different holidays/weekdays

    图  8  服务区不同节假日/工作日用能负荷曲线

    Figure  8.  Energy load curves of different holidays/weekdays in service areas

    图  9  十月三日用能负荷预测曲线

    Figure  9.  Energy load forecasting curves on October 3

    表  1  季节对称性参照

    Table  1.   Seasonal symmetry reference

    月份 2 3 4 5 6 7
    季节对称月份 1 12 11 10 9 8
    下载: 导出CSV

    表  2  不同日期属性对应天气的天数

    Table  2.   Numbers of days corresponding to different date attributes for weather  d

    天气 多云 阵雨 小雨 中雨 大雨 暴雨 总计
    工作日 23 116 13 21 44 14 9 3 243
    周末 9 46 3 5 17 2 1 1 84
    3天假期 7 2 9
    4天及以上假期 3 9 1 2 4 19
    特殊日 2 3 3 2 10
    合计 35 180 20 31 65 18 10 6 365
    下载: 导出CSV

    表  3  用能负荷影响因素

    Table  3.   Influencing factors of energy load

    名称 描述
    月份 1~12月
    季节 4个季节
    星期 周一至周日
    节假日/工作日 工作日/非工作日
    交通量 交通量数据
    最高温度 单日最高温度
    平均温度 单日平均温度
    最低温度 单日最低温度
    天气状况 晴、多云、阴、阵雨、小雨、中雨、大雨、暴雨等
    下载: 导出CSV

    表  4  用能负荷影响因素主成分分析

    Table  4.   Principal component analysis of influencing factors of energy load

    主成分排名 名称 特征值 贡献率/%
    1 交通量 3.75 37.60
    2 天气状况 1.50 15.04
    3 星期 1.26 12.64
    4 月份 1.03 10.36
    5 节假日/工作日 0.98 9.90
    下载: 导出CSV

    表  5  前5个主成分特征值对应的特征向量

    Table  5.   Eigenvectors corresponding to first five principal component eigenvalues

    主成分1 主成分2 主成分3 主成分4 主成分5
    0.368 0.142 0.256 -0.408 0.079
    -0.010 0.113 0.467 0.654 0.253
    0.095 -0.250 -0.621 -0.073 -0.058
    0.004 -0.079 -0.260 -0.028 0.944
    -0.196 -0.614 -0.083 0.382 -0.106
    0.284 -0.527 0.170 0.016 -0.044
    -0.489 -0.014 0.095 -0.189 0.034
    -0.495 0.044 -0.001 -0.095 0.001
    -0.499 0.013 0.050 -0.147 0.018
    0.050 0.489 -0.462 0.430 -0.140
    下载: 导出CSV

    表  6  用能负荷预测模型参数

    Table  6.   Parameters of energy load forecasting model

    参数名称 输入层时间步数 输入层维数 隐藏层数目 每个隐藏层维数 输出变量维数
    参数值 5 5 1 100 24
    下载: 导出CSV

    表  7  隧道用能负荷预测结果

    Table  7.   Forecasting results of tunnels energy load

    预测模型 春季 夏季 秋季 冬季
    4月3日 6月3日 8月3日 10月3日 2月3日 12月3日
    M/% R M/% R M/% R M/% R M/% R M/% R
    LSTM 46.25 32.93 31.16 41.93 41.93 28.54 39.45 29.17 41.93 30.20 36.41 27.47
    PCA-LSTM 45.93 32.44 30.44 41.84 41.84 29.03 38.77 28.62 41.84 30.46 35.26 26.05
    CD-LSTM 7.85 2.17 4.88 7.64 7.64 3.12 6.88 2.47 7.64 2.53 3.98 1.37
    CD-PCA-LSTM 7.15 2.07 2.42 5.00 5.00 2.22 4.12 1.33 5.00 1.54 3.26 0.99
    下载: 导出CSV

    表  8  收费站用能负荷预测结果

    Table  8.   Forecasting results of toll stations energy load

    预测模型 春季 夏季 秋季 冬季
    4月3日 6月3日 8月3日 10月3日 2月3日 12月3日
    M/% R M/% R M/% R M/% R M/% R M/% R
    LSTM 16.39 2.99 15.84 2.78 23.87 3.29 27.86 3.59 15.70 2.45 11.68 1.67
    PCA-LSTM 15.87 2.56 15.64 2.62 23.72 3.27 26.36 3.38 15.05 2.33 10.56 1.52
    CD-LSTM 13.51 1.26 4.48 0.68 3.09 0.48 4.77 0.52 10.60 1.69 2.61 0.33
    CD-PCA-LSTM 12.33 1.17 3.60 0.56 2.86 0.44 4.65 0.50 10.44 1.64 2.11 0.27
    下载: 导出CSV

    表  9  服务区用能负荷预测结果

    Table  9.   Forecasting results of service area energy load

    预测模型 春季 夏季 秋季 冬季
    4月3日 6月3日 8月3日 10月3日 2月3日 12月3日
    M/% R M/% R M/% R M/% R M/% R M/% R
    LSTM 26.67 13.13 29.73 12.98 21.39 11.45 34.57 14.36 19.37 11.17 21.21 11.06
    PCA-LSTM 26.19 12.87 28.54 12.68 20.99 11.18 28.21 12.60 18.08 10.50 20.95 10.91
    CD-LSTM 5.84 2.03 16.17 4.61 6.10 2.09 7.76 2.24 7.66 2.74 14.58 3.88
    CD-PCA-LSTM 4.32 1.54 13.03 3.86 4.20 1.37 3.23 1.12 6.70 2.41 7.88 2.30
    下载: 导出CSV
  • [1] 贾利民, 师瑞峰, 吉莉, 等. 我国道路交通与能源融合发展战略研究[J]. 中国工程科学, 2022, 24(3): 163-172.

    JIA Li-min, SHI Rui-feng, JI Li, et al. Road transportation and energy integration strategy in China[J]. Strategic Study of CAE, 2022, 24(3): 163-172. (in Chinese)
    [2] ZHAO Shi-yong, XIAN Rong, JIAO Li-chao, et al. Analysis of energy consumption level and influencing factors of highway service area[J]. IOP Conference Series: Earth and Environmental Science, 2021, 825(1): 012005. doi: 10.1088/1755-1315/825/1/012005
    [3] QIU Feng, LI Wen-quan, XIE Qiu-feng, et al. Calculation and prediction of energy consumption for highway transportation[C]//IET. 7th Advanced Forum on Transportation of China (AFTC 2011). London: IET, 2011: 226-231.
    [4] CANSIZÖ F, ÜNEŞ F, ERGINER İ, et al. Modeling of highways energy consumption with artificial intelligence and regression methods[J]. International Journal of Environmental Science and Technology, 2022, 19(10): 9741-9756. doi: 10.1007/s13762-021-03813-1
    [5] KOU G, YVKÇEL S, DINSER H. Inventive problem-solving map of innovative carbon emission strategies for solar energy-based transportation investment projects[J]. Applied Energy, 2022, 311: 118680. doi: 10.1016/j.apenergy.2022.118680
    [6] ZHANG Tian-jian, ZHANG Jing-pei, LIU Yan-bo, et al. Design of linear regression scheme in real-time market load prediction for power market participants[C]//IEEE. 2021 11th International Conference on Power and Energy Systems (ICPES). New York: IEEE, 2021: 547-551.
    [7] JI Yu-qi, PANG Chen-yang, LIU Xiao-mei, et al. Combined forecasting model based on time series characteristics of power load curve[C]//IEEE. 2022 IEEE International Conference on Power Systems and Electrical Technology (PSET). New York: IEEE, 2022: 303-309.
    [8] SONG Feng, LIU Jun-xu, ZHANG Ting-ting, et al. The grey forecasting model for the medium-and long-term load forecasting[J]. IOP Conference Series: Materials Science and Engineering, 2020, 740(1): 012076. doi: 10.1088/1757-899X/740/1/012076
    [9] MI Jian-wei, FAN Li-bin, DUAN Xue-chao, et al. Short-term power load forecasting method based on improved exponential smoothing grey model[J]. Mathematical Problems in Engineering, 2018, 2018: 3894723.
    [10] WANG Zheng-yu, HUO Yue-ying, LIU Zhen-yu. Prediction model on energy consumption of highway transportation in inner Mongolia based on ARMA[C]//WANG W, BENGLE K, JIANG X. International Conference on Green Intelligent Transportation System and Safety. Berlin: Springer, 2018: 105-114.
    [11] 李钷, 李敏, 刘涤尘. 基于改进回归法的电力负荷预测[J]. 电网技术, 2006, 30(1): 99-104.

    LI Po, LI Min, LIU Di-chen. Power load forecasting based on improved regression[J]. Power System Technology, 2006, 30(1): 99-104. (in Chinese)
    [12] DAI Li-xin, HU Fang-fang. Application optimization of grey model in power load forecasting[J]. Advanced Materials Research. 2012, 347-353: 301-305.
    [13] JIN Xin, DONG Yao, WU Jie, et al. An improved combined forecasting method for electric power load based on autoregressive integrated moving average model[C]//IEEE. 2010 International Conference of Information Science and Management Engineering. New York: IEEE, 2010: 476-480.
    [14] 赵晓华, 姚莹, 伍毅平, 等. 基于主成分分析与BP神经元网络的驾驶能耗组合预测模型研究[J]. 交通运输系统工程与信息, 2016, 16(5): 185-191, 204.

    ZHAO Xiao-hua, YAO Ying, WU Yi-ping, et al. Prediction model of driving energy consumption based on PCA and BP network[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(5): 185-191, 204. (in Chinese)
    [15] LIU Chang, ZHANG Yuan-liang, CHEN Wei-song, et al. A short term forecasting method for regional power consumption considering related factors[J]. Journal of Physics: Conference Series, 2022, 2195(1): 012022. doi: 10.1088/1742-6596/2195/1/012022
    [16] CHEN Hua-xi. Prediction method of energy consumption in industrial production based on improved grey model[J]. International Journal of Global Energy Issues, 2023, 45(2): 101-112. doi: 10.1504/IJGEI.2023.129503
    [17] 李晓娟, 张芳媛, 喻玲. 基于主成分分析-BP神经网络的风电备件需求预测[J]. 科学技术与工程, 2024, 24(1): 281-288.

    LI Xiao-juan, ZHANG Fang-yuan, YU Ling. Wind power spare parts demand forecasting based on PCA-BP neural network[J]. Science Technology and Engineering, 2024, 24(1): 281-288. (in Chinese)
    [18] BIAN Hai-hong, WANG Qian, TIAN Lin-lin. Research on short-term load forecasting based on PCA-GM[C]//Springer. International Conference on Multimedia Technology and Enhanced Learning. Berlin: Springer, 2020: 169-177.
    [19] 石海波. PCA-SVM在电力负荷预测中的应用研究[J]. 计算机仿真, 2010, 27(10): 279-282.

    SHI Hai-bo. Power load forecasting based on principal component analysis and support vector machine[J]. Computer Simulation, 2010, 27(10): 279-282. (in Chinese)
    [20] 党存禄, 杨海兰, 武文成. 基于LSTM和CatBoost组合模型的短期负荷预测[J]. 电气工程学报, 2021, 16(3): 62-69.

    DANG Cun-lu, YANG Hai-lan, WU Wen-cheng. Short-term load forecasting based on LSTM and CatBoost combined model[J]. Journal of Electrical Engineering, 2021, 16(3): 62-69. (in Chinese)
    [21] YU Yong, SI Xiao-sheng, HU Chang-hua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. doi: 10.1162/neco_a_01199
    [22] BEZERRA F E, GRASSI F, DIAS C G, et al. A PCA-based variable ranking and selection approach for electric energy load forecasting[J]. International Journal of Energy Sector Management, 2022, 16(6): 1172-1191.
    [23] 商立群, 李洪波, 侯亚东, 等. 基于特征选择和优化极限学习机的短期电力负荷预测[J]. 西安交通大学学报, 2022, 56(4): 165-175.

    SHANG Li-qun, LI Hong-bo, HOU Ya-dong, et al. Short-term power load forecasting based on feature selection and optimized extreme learning machine[J]. Journal of Xi'an Jiaotong University, 2022, 56(4): 165-175. (in Chinese)
    [24] LUO Yi, WU Yong, YE Yan-feng, et al. Short-term load forecasting based on PCA-ILSTM[C]//IEEE. 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). New York: IEEE, 2023: 1075-1079.
    [25] CUI Can, HE Ming, DI Fang-chun, et al. Research on power load forecasting method based on LSTM model[C]//IEEE. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). New York: IEEE, 2020: 1657-1660.
    [26] HUANG Song-tao, SHEN Jun, LYU Qing-quan, et al. A novel NODE approach combined with LSTM for short-term electricity load forecasting[J]. Future Internet, 2023, 15(1): 15010022.
    [27] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137.

    LU Ji-xiang, ZHANG Qi-pei, YANG Zhi-hong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137. (in Chinese)
    [28] ZHANG Qing-hu, MAO Hai-bo, SHAN Ze-long, et al. An artificial intelligent load forecast method using image based LSTM[C]//IEEE. 2022 China Automation Congress (CAC). New York: IEEE, 2022: 5318-5321.
    [29] LI Shan, LU Xin, OUYANG Jian-na, et al. K-means clustering algorithm and LSTM based short-term load forecasting for distribution transformer[C]//IEEE. 2023 5th Asia Energy and Electrical Engineering Symposium. New York: IEEE, 2023: 1152-1156.
    [30] CHEN Kun-jin, CHEN Kun-long, WANG Qin, et al. Short-term load forecasting with deep residual networks[J]. IEEE Transactions on Smart Grid, 2018, 10(4): 3943-3952.
    [31] 徐先峰, 赵依, 刘状壮, 等. 用于短期电力负荷预测的日负荷特性分类及特征集重构策略[J]. 电网技术, 2022, 46(4): 1548-1556.

    XU Xian-feng, ZHAO Yi, LIU Zhuang-zhuang, et al. Daily load characteristic classification and feature set reconstruction strategy for short-term power load forecasting[J]. Power System Technology, 2022, 46(4): 1548-1556. (in Chinese)
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回