-
摘要: 开展了闽浙编木拱桥燕尾榫节点足尺模型拟静力试验,分析了闽浙编木拱桥与古建筑木结构中燕尾榫节点受力机理的异同,探讨了燕尾榫节点受力模型应用于闽浙编木拱桥燕尾榫节点的适用性;根据力学平衡和变形协调条件,建立了考虑节点拔榫量与榫卯口缝隙的闽浙编木拱桥燕尾榫节点弯矩转角力学模型与计算公式,并通过试验数据和有限元分析验证了闽浙编木拱桥燕尾榫节点力学模型和节点刚度,揭示了转角位移和加载行程对拔榫量的影响和榫卯口缝隙与两端轴力对燕尾榫节点刚度的影响。研究结果表明:弹性阶段闽浙编木拱桥燕尾榫节点滞回耗能能力随两端轴力增加而增大,转角大于0.04 rad时构件进入屈服阶段,挤压变形不能恢复,转角达到0.06 rad时滞回曲线斜率停止增长,加载结束后燕尾榫节点未破坏;由于闽浙编木拱桥与古建筑木结构中燕尾榫节点受力机理不同,古建筑木结构中的燕尾榫节点受力模型不适用于闽浙编木拱桥燕尾榫节点,有限元计算所得闽浙编木拱桥燕尾榫节点弯矩转角与试验结果的误差仅为3.2%,弹性正、负最大弯矩与试验值的误差分别为16.7%与-5.2%,说明建立的弯矩转角力学模型可精准反映出节点在转动过程中的弯矩转角变化规律;拔榫量在弹性阶段主要受转角影响,弹塑性阶段则主要受加载控制位移和加载级数影响;榫卯口缝隙从0.06 mm减小至0.01 mm时,节点刚度从29.46 kN·m·rad-1增加至52.24 kN·m·rad-1,反映了燕尾榫节点刚度随榫卯口缝隙的减小而增大的趋势。综上所述,提出的力学模型可为现存闽浙编木拱桥保护、修缮和全桥结构抗震性能研究提供参考。Abstract: The pseudo-static tests on full-scale models of dovetail joints of Min-Zhe woven timber arch bridges were conducted, the similarities and differences in the force mechanisms of dovetail joints between Min-Zhe woven timber arch bridges and ancient timber buildings were analyzed, and the applicability of the dovetail joint mechanical model in dovetail joints of Min-Zhe woven timber arch bridges was explored. According to the mechanical equilibrium and deformation coordination, the bending moment-rotation mechanical model and calculation formulas of dovetail joints of Min-Zhe woven timber arch bridges were proposed considering the tenon pull-out distance and mortise gap of joints. Through the test data and finite element analysis, the mechanical model and stiffness of dovetail joints of Min-Zhe woven timber arch bridges were verified. The effect of rotation and loading trips on the tenon pull-out distance and that of the mortise gap and axial force on the stiffness of dovetail joints were revealed. Research results show that the hysteresis energy dissipation of the dovetail joints of Min-Zhe woven timber arch bridges increases with the increase in the axial force in elastic stage. When the rotation is greater than 0.04 rad, the component enters the yield phase, and extrusion deformation cannot recover. When the rotation reaches 0.06 rad, the slope of the hysteresis curve stops growing. The dovetail joints are not damaged after loading. Due to the different force mechanisms of dovetail joints between Min-Zhe woven timber arch bridges and ancient timber buildings, the dovetail joint mechanical model of ancient timber buildings is not suitable for dovetail joints of Min-Zhe woven timber arch bridges. The error of bending moment-rotation of dovetail joints of Min-Zhe woven timber arch bridges between the finite element value and test value is only 3.2%, and the errors of positive and negative elastic maximum bending moments between finite element values and test values are 16.7% and -5.2%, respectively, indicating that the established bending moment-rotation mechanical model can accurately reflect the bending moment-rotation change law of joints during rotation. The tenon pull-out distance is influenced by the rotation in elastic phase and by the loading control displacement and loading stages in elastoplastic phase. The joint stiffness increases from 29.46 kN·m·rad-1 to 52.24 kN·m·rad-1 when the mortise gap reduces from 0.06 mm to 0.01 mm, indicating that the stiffness of dovetail joints increases with the decrease in the mortise gap. In summary, the proposed mechanical model can provide a reference for protection, repair, and research on the seismic performance of existing Min-Zhe woven timber arch bridges.
-
表 1 构件尺寸
Table 1. Sizes of specimen
m 构件 横梁 拱肋直径Ds 燕尾榫 宽度b 高度h 榫高hs 榫头宽bt 榫颈宽bs 榫长Ls 尺寸 250 250 220 140 160 140 140 表 2 有限元模型中杉木材性参数
Table 2. Material property parameters of Chinese fir for finite element model
参数 ER/ MPa EL/ MPa ET/ MPa μLT μRT μLR GLR/ MPa GLT/ MPa GRT/ MPa 取值 934.9 9 349 467.5 0.2 0.47 0.43 701 561 168 表 3 拔榫量计算参数
Table 3. Calculation parameters for tenon pull-out distance
加载级次 Δi/mm δ0/mm θ/rad 1 2 按式(30)确定 0.000 58 2 4 0.000 58 3 6 0.001 20 4 8 0.002 41 5 10 0.003 61 6 12 0.004 81 7 14 0.006 00 8 28 0.007 19 28 0.008 42 28 0.016 81 9 42 0.025 23 42 0.033 62 42 1.45 0.042 03 10 56 1.45 0.050 42 56 1.52 0.058 81 56 1.63 0.067 17 70 1.75 表 4 燕尾榫节点力学参数
Table 4. Mechanical parameters of dovetail joint
参数名称 kc/(N·mm-3) ER/MPa fcu, R/MPa h′/mm μ 数值 6 934.9 3 0.05 0.4 表 5 燕尾榫节点试验与模型结果对比
Table 5. Comparison between test and modelling results for dovetail joint
项目 刚度/(kN·m·rad-1) 相对误差/% 正向弯矩/(kN·m) 相对误差/% 反向弯矩/(kN·m) 相对误差/% 试验 27.74 1.26 -1.55 有限元 30.88 11.3 1.34 6.4 -1.47 -5.2 力学模型 26.85 -3.2 1.47 16.7 -1.47 -5.2 -
[1] CHEN Pei-shan. A study report on an ancient Chinese wooden bridge Hongqiao[J]. Structural Engineering International, 2008, 18(1): 84-87. doi: 10.2749/101686608783726614 [2] ZHOU Hai-fei, LENG Jia-wei, ZHOU Man, et al. China's unique woven timber arch bridges[J]. Proceedings of the Institution of Civil Engineers—Civil Engineering, 2018, 171(3): 115-120. doi: 10.1680/jcien.17.00046 [3] 曹春平. 闽浙木拱桥[J]. 中国名城, 2009(8): 36-40.CAO Chun-ping. Min-Zhe timber arch bridge[J]. China Ancient City, 2009(8): 36-40. (in Chinese) [4] YANG Yan, NAKAMURA S, CHEN Bao-chun. Traditional construction technology of China timber arch bridges[J]. Journal of Structural Engineering, 2012, 58: 777-784. [5] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.002 [6] YANG Yan, NAKAMURA S, CHEN Bao-chun, et al. Mechanical behavior of Chinese woven timber arch bridges[J]. Engineering Structures, 2019, 195: 340-357. doi: 10.1016/j.engstruct.2019.05.068 [7] YANG Yan, NAKAMURA S, CHEN Bao-chun, et al. The origin of timber arch bridges in China[J]. Journal of JSCE, 2014, 2(1): 54-61. doi: 10.2208/journalofjsce.2.1_54 [8] 刘建新. 闽浙木拱桥受力行为研究[D]. 福州: 福州大学, 2011.LIU Jian-xin. Research on structural behavior of timber arch bridges in Fujian and Zhejiang[D]. Fuzhou: Fuzhou University, 2011. (in Chinese) [9] 纪丹琳. 闽浙木拱桥受力性能试验研究[D]. 福州: 福州大学, 2013.JI Dan-lin. Experimental research on structural behavior of Min-Zhe timber arch bridge[D]. Fuzhou: Fuzhou University, 2013. (in Chinese) [10] 欧加加. 木拱廊桥受力机理的有限元分析[D]. 杭州: 浙江大学, 2014.OU Jia-jia. The finite element analysis of mechanical mechanism on the covered timber arch bridge[D]. Hangzhou: Zhejiang University, 2014. (in Chinese) [11] DENG Hua, YANG Shun-li. Geometric construction and static analysis on timber-arched structural system of Shouning Timber-Arched Lounge Bridge[J]. IOP Conference Series: Earth and Environmental Science, 2019, 371(2): 022049. doi: 10.1088/1755-1315/371/2/022049 [12] HAN Yi-dan, CHUN Qing, WANG Hao-yu. Quantitative safety evaluation of ancient Chinese timber arch lounge bridges[J]. Journal of Wood Science, 2022, 68(1): 4. doi: 10.1186/s10086-022-02011-y [13] 谢启芳, 杜彬, 张风亮, 等. 古建筑木结构燕尾榫节点弯矩-转角关系理论分析[J]. 工程力学, 2014, 31(12): 140-146.XIE Qi-fang, DU Bin, ZHANG Feng-liang, et al. Theoretical analysis on moment-rotation relationship of dovetail joints for Chinese ancient timber structure buildings[J]. Engineering Mechanics, 2014, 31(12): 140-146. (in Chinese) [14] 谢启芳, 杜彬, 钱春宇, 等. 古建筑木结构燕尾榫节点弯矩-转角模型研究[J]. 工程力学, 2016, 33(8): 39-44.XIE Qi-fang, DU Bin, QIAN Chun-yu, et al. Study on the moment-rotation model of the dovetail mortise-tenon joint of ancient timber buildings[J]. Engineering Mechanics, 2016, 33(8): 39-44. (in Chinese) [15] 徐明刚. 中国古建筑木结构榫卯节点抗震性能研究[D]. 南京: 东南大学, 2011.XU Ming-gang. Study of aseismatic behavior of mortise-tenon joints in Chinese ancient timber buildings[D]. Nanjing: Southeast University, 2011. (in Chinese) [16] 潘毅, 张启, 王晓玥, 等. 古建筑木结构燕尾榫节点力学模型研究[J]. 建筑结构学报, 2021, 42(8): 151-159.PAN Yi, ZHANG Qi, WANG Xiao-yue, et al. Research on mechanical model of dovetail joint for Chinese ancient timber structures[J]. Journal of Building Structures, 2021, 42(8): 151-159. (in Chinese) [17] 潘毅, 安仁兵, 王晓玥, 等. 古建筑木结构透榫节点力学模型研究[J]. 土木工程学报, 2020, 53(4): 61-70.PAN Yi, AN Ren-bing, WANG Xiao-yue, et al. Study on mechanical model of through-tenon joints in ancient timber structures[J]. China Civil Engineering Journal, 2020, 53(4): 61-70. (in Chinese) [18] 黄聪燕. 考虑榫卯节点实际刚度的闽浙木拱桥受力性能研究[D]. 福州: 福州大学, 2018,HUANG Cong-yan. Research on the mechanical performance of Min-Zhe timber arch bridges with the actual-rigid characteristic of mortise and tenon joints[D]. Fuzhou: Fuzhou University, 2018. (in Chinese) [19] 张海彦. 木结构古建筑的结构动力特性分析[D]. 西安: 西安建筑科技大学, 2008.ZHANG Hai-yan. Dynamic analysis of the Chinese historical timber buildings[D]. Xi'an: Xi'an University of Architecture and Technology, 2008. (in Chinese) [20] 张利朋, 谢启芳, 刘伊津, 等. 循环荷载作用下木材顺纹受力特性与本构模型研究[J]. 土木工程学报, 2024, 57(3): 42-58.ZHANG Li-peng, XIE Qi-fang, LIU Yi-jin, et al. Research on the mechanical properties and constitutive model of wood under parallel-to-grain cyclic loading[J]. China Civil Engineering Journal, 2024, 57(3): 42-58. (in Chinese) [21] 王春生, 陈惟珍, 陈艾荣. 桥梁损伤安全评定与维护管理策略[J]. 交通运输工程学报, 2002, 2(4): 21-28. doi: 10.3321/j.issn:1671-1637.2002.04.005WANG Chun-sheng, CHEN Wei-zhen, CHEN Ai-rong. Damage safety assessment and maintenance management strategy of bridges[J]. Journal of Traffic and Transportation Engineering, 2002, 2(4): 21-28. (in Chinese). doi: 10.3321/j.issn:1671-1637.2002.04.005 [22] 薛建阳, 张鹏程, 赵鸿铁. 古建木结构抗震机理的探讨[J]. 西安建筑科技大学学报(自然科学版), 2000, 32(1): 8-11.XUE Jian-yang, ZHANG Peng-cheng, ZHAO Hong-tie. Study on the aseismic mechanism of historic timber structural building[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2000, 32(1): 8-11. (in Chinese) [23] 谢启芳, 杜彬, 向伟, 等. 古建筑木结构燕尾榫节点抗震性能及尺寸效应试验研究[J]. 建筑结构学报, 2015, 36(3): 112-120.XIE Qi-fang, DU Bin, XIANG Wei, et al. Experimental study on seismic behavior and size effect of dovetail mortise-tenon joints of ancient timber buildings[J]. Journal of Building Structures, 2015, 36(3): 112-120. (in Chinese) [24] 隋䶮, 赵鸿铁, 薛建阳, 等. 中国古建筑木结构铺作层与柱架抗震试验研究[J]. 土木工程学报, 2011, 44(1): 50-57.SUI Yan, ZHAO Hong-tie, XUE Jian-yang, et al. Experimental study of the seismicity of dougong and wooden frame in Chinese historic buildings[J]. China Civil Engineering Journal, 2011, 44(1): 50-57. (in Chinese). [25] 薛建阳, 赵鸿铁, 张鹏程. 中国古建筑木结构模型的振动台试验研究[J]. 土木工程学报, 2004, 37(6): 6-11.XUE Jian-yang, ZHAO Hong-tie, ZHANG Peng-cheng. Study on the seismic behaviors of Chinese ancient wooden building by shaking table test[J]. China Civil Engineering Journal, 2004, 37(6): 6-11. (in Chinese). [26] 杨艳华, 王俊鑫, 徐彬. 古木建筑榫卯连接M-θ相关曲线模型研究[J]. 昆明理工大学学报(理工版), 2009, 34(1): 72-76.YANG Yan-hua, WANG Jun-xin, XU Bin. Research of interaction curves model of mortise-tenon joint in historic timber buildings[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2009, 34(1): 72-76. (in Chinese) [27] 潘毅, 王超, 唐丽娜, 等. 古建筑木结构直榫节点力学模型的研究[J]. 工程力学, 2015, 32(2): 82-89.PAN Yi, WANG Chao, TANG Li-na, et al. Study on mechanical model of straight-tenon joints in ancient timber Structure[J]. Engineering Mechanics, 2015, 32(2): 82-89. (in Chinese) [28] 高永林, 陶忠, 叶燎原, 等. 传统木结构典型榫卯节点基于摩擦机理特性的低周反复加载试验研究[J]. 建筑结构学报, 2015, 36(10): 139-145.GAO Yong-lin, TAO Zhong, YE Liao-yuan, et al. Low-cycle reversed loading tests study on typical mortise-tenon joints of traditional timber building based on friction mechanism[J]. Journal of Building Structures, 2015, 36(10): 139-145. (in Chinese) [29] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36-46.FENG Peng, QIANG Han-lin, YE Lie-ping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46. (in Chinese) [30] WU Ming-tao, MEI Li-dan, GUO Nan, et al. Mechanical properties and failure mechanisms of engineering bamboo scrimber[J]. Construction and Building Materials, 2022, 344: 128082.