留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

闽浙编木拱桥燕尾榫节点力学模型

杨艳 郑裔 黄聪燕 韦建刚 吴庆雄 陈宝春

杨艳, 郑裔, 黄聪燕, 韦建刚, 吴庆雄, 陈宝春. 闽浙编木拱桥燕尾榫节点力学模型[J]. 交通运输工程学报, 2024, 24(5): 113-130. doi: 10.19818/j.cnki.1671-1637.2024.05.008
引用本文: 杨艳, 郑裔, 黄聪燕, 韦建刚, 吴庆雄, 陈宝春. 闽浙编木拱桥燕尾榫节点力学模型[J]. 交通运输工程学报, 2024, 24(5): 113-130. doi: 10.19818/j.cnki.1671-1637.2024.05.008
YANG Yan, ZHENG Yi, HUANG Cong-yan, WEI Jian-gang, WU Qing-xiong, CHEN Bao-chun. Mechanical model of dovetail joints of Min-Zhe woven timber arch bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 113-130. doi: 10.19818/j.cnki.1671-1637.2024.05.008
Citation: YANG Yan, ZHENG Yi, HUANG Cong-yan, WEI Jian-gang, WU Qing-xiong, CHEN Bao-chun. Mechanical model of dovetail joints of Min-Zhe woven timber arch bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 113-130. doi: 10.19818/j.cnki.1671-1637.2024.05.008

闽浙编木拱桥燕尾榫节点力学模型

doi: 10.19818/j.cnki.1671-1637.2024.05.008
基金项目: 

国家自然科学基金项目 51408129

国家自然科学基金项目 52278158

福建省科技计划项目 2022H6009

福州大学科研启动基金项目 XRC-23047

详细信息
    作者简介:

    杨艳(1979-),女,福建邵武人,福州大学副研究员,工学博士,从事拱结构、组合结构与木结构研究

  • 中图分类号: U443.22

Mechanical model of dovetail joints of Min-Zhe woven timber arch bridges

Funds: 

National Natural Science Foundation of China 51408129

National Natural Science Foundation of China 52278158

Science and Technology Plan Project of Fujian Province 2022H6009

Fuzhou University Research Start-Up Fund XRC-23047

More Information
  • 摘要: 开展了闽浙编木拱桥燕尾榫节点足尺模型拟静力试验,分析了闽浙编木拱桥与古建筑木结构中燕尾榫节点受力机理的异同,探讨了燕尾榫节点受力模型应用于闽浙编木拱桥燕尾榫节点的适用性;根据力学平衡和变形协调条件,建立了考虑节点拔榫量与榫卯口缝隙的闽浙编木拱桥燕尾榫节点弯矩转角力学模型与计算公式,并通过试验数据和有限元分析验证了闽浙编木拱桥燕尾榫节点力学模型和节点刚度,揭示了转角位移和加载行程对拔榫量的影响和榫卯口缝隙与两端轴力对燕尾榫节点刚度的影响。研究结果表明:弹性阶段闽浙编木拱桥燕尾榫节点滞回耗能能力随两端轴力增加而增大,转角大于0.04 rad时构件进入屈服阶段,挤压变形不能恢复,转角达到0.06 rad时滞回曲线斜率停止增长,加载结束后燕尾榫节点未破坏;由于闽浙编木拱桥与古建筑木结构中燕尾榫节点受力机理不同,古建筑木结构中的燕尾榫节点受力模型不适用于闽浙编木拱桥燕尾榫节点,有限元计算所得闽浙编木拱桥燕尾榫节点弯矩转角与试验结果的误差仅为3.2%,弹性正、负最大弯矩与试验值的误差分别为16.7%与-5.2%,说明建立的弯矩转角力学模型可精准反映出节点在转动过程中的弯矩转角变化规律;拔榫量在弹性阶段主要受转角影响,弹塑性阶段则主要受加载控制位移和加载级数影响;榫卯口缝隙从0.06 mm减小至0.01 mm时,节点刚度从29.46 kN·m·rad-1增加至52.24 kN·m·rad-1,反映了燕尾榫节点刚度随榫卯口缝隙的减小而增大的趋势。综上所述,提出的力学模型可为现存闽浙编木拱桥保护、修缮和全桥结构抗震性能研究提供参考。

     

  • 图  1  现存闽浙编木拱桥

    Figure  1.  Existing Min-Zhe woven timber arch bridges

    图  2  编木拱桥体系

    Figure  2.  System of woven timber arch bridge

    图  3  等效模型

    Figure  3.  Equivalent model

    图  4  燕尾榫节点试件

    Figure  4.  Dovetail joint specimen

    图  5  构件构造(单位:mm)

    Figure  5.  Structure of specimen (unit: mm)

    图  6  加载示意

    Figure  6.  Schematic of loading

    图  7  测量装置

    Figure  7.  Measurement set-up

    图  8  试验现象

    Figure  8.  Test phenomena

    图  9  试验滞回曲线

    Figure  9.  Hysteretic curves of test

    图  10  试验骨架曲线

    Figure  10.  Skeleton curves of test

    图  11  文献[14]、[16]与[23]中试验结果对比

    Figure  11.  Comparison of test results among references [14], [16] and [23]

    图  12  文献[16]中力学模型骨架曲线与试验结果对比

    Figure  12.  Comparison of mechanical model skeleton curves between reference [16] and test results

    图  13  古建筑木结构榫卯节点

    Figure  13.  Mortise and tenon joint of ancient timber buildings

    图  14  古建筑木结构燕尾榫节点受力分析

    Figure  14.  Force analysis on dovetail joint in ancient timber buildings

    图  15  编木拱桥榫卯节点

    Figure  15.  Mortise and tenon joint of woven timber arch bridge

    图  16  编木拱桥燕尾榫节点受力分析

    Figure  16.  Force analysis for dovetail joints of woven timber arch bridge

    图  17  木材横纹受压双折线本构模型

    Figure  17.  Double-line constitutive model of wood under transverse compression

    图  18  节点变形

    Figure  18.  Joint deformations

    图  19  正向加载时节点受力状态

    Figure  19.  Forward-loading state of joint

    图  20  反向加载时节点受力状态

    Figure  20.  Reverse-loading state of joint

    图  21  弹塑性阶段正向加载节点变形

    Figure  21.  Joint deformation during elastoplastic phase under forward-loading

    图  22  拔榫量计算值与试验值对比

    Figure  22.  Comparison of tenon pull-out distances between calculation and test values

    图  23  骨架曲线对比

    Figure  23.  Comparison of skeleton curves

    图  24  屈服点确定

    Figure  24.  Yield point determination

    图  25  有限元模型

    Figure  25.  Finite element model

    图  26  有限元模型骨架曲线与力学模型骨架曲线、试验骨架曲线对比

    Figure  26.  Comparison of skeleton curves among finite element model, mechanical model and test

    图  27  模型预测的弹性阶段不同榫卯口缝隙的骨架曲线

    Figure  27.  Skeleton curves for different mortise gaps at elastic phase predicted by model

    图  28  不同轴力下模型预测值与试验骨架曲线对比

    Figure  28.  Comparison of skeleton curves between model predictions and test values under different axial forces

    表  1  构件尺寸

    Table  1.   Sizes of specimen m

    构件 横梁 拱肋直径Ds 燕尾榫
    宽度b 高度h 榫高hs 榫头宽bt 榫颈宽bs 榫长Ls
    尺寸 250 250 220 140 160 140 140
    下载: 导出CSV

    表  2  有限元模型中杉木材性参数

    Table  2.   Material property parameters of Chinese fir for finite element model

    参数 ER/ MPa EL/ MPa ET/ MPa μLT μRT μLR GLR/ MPa GLT/ MPa GRT/ MPa
    取值 934.9 9 349 467.5 0.2 0.47 0.43 701 561 168
    下载: 导出CSV

    表  3  拔榫量计算参数

    Table  3.   Calculation parameters for tenon pull-out distance

    加载级次 Δi/mm δ0/mm θ/rad
    1 2 按式(30)确定 0.000 58
    2 4 0.000 58
    3 6 0.001 20
    4 8 0.002 41
    5 10 0.003 61
    6 12 0.004 81
    7 14 0.006 00
    8 28 0.007 19
    28 0.008 42
    28 0.016 81
    9 42 0.025 23
    42 0.033 62
    42 1.45 0.042 03
    10 56 1.45 0.050 42
    56 1.52 0.058 81
    56 1.63 0.067 17
    70 1.75
    下载: 导出CSV

    表  4  燕尾榫节点力学参数

    Table  4.   Mechanical parameters of dovetail joint

    参数名称 kc/(N·mm-3) ER/MPa fcu, R/MPa h′/mm μ
    数值 6 934.9 3 0.05 0.4
    下载: 导出CSV

    表  5  燕尾榫节点试验与模型结果对比

    Table  5.   Comparison between test and modelling results for dovetail joint

    项目 刚度/(kN·m·rad-1) 相对误差/% 正向弯矩/(kN·m) 相对误差/% 反向弯矩/(kN·m) 相对误差/%
    试验 27.74 1.26 -1.55
    有限元 30.88 11.3 1.34 6.4 -1.47 -5.2
    力学模型 26.85 -3.2 1.47 16.7 -1.47 -5.2
    下载: 导出CSV
  • [1] CHEN Pei-shan. A study report on an ancient Chinese wooden bridge Hongqiao[J]. Structural Engineering International, 2008, 18(1): 84-87. doi: 10.2749/101686608783726614
    [2] ZHOU Hai-fei, LENG Jia-wei, ZHOU Man, et al. China's unique woven timber arch bridges[J]. Proceedings of the Institution of Civil Engineers—Civil Engineering, 2018, 171(3): 115-120. doi: 10.1680/jcien.17.00046
    [3] 曹春平. 闽浙木拱桥[J]. 中国名城, 2009(8): 36-40.

    CAO Chun-ping. Min-Zhe timber arch bridge[J]. China Ancient City, 2009(8): 36-40. (in Chinese)
    [4] YANG Yan, NAKAMURA S, CHEN Bao-chun. Traditional construction technology of China timber arch bridges[J]. Journal of Structural Engineering, 2012, 58: 777-784.
    [5] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002

    CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.002
    [6] YANG Yan, NAKAMURA S, CHEN Bao-chun, et al. Mechanical behavior of Chinese woven timber arch bridges[J]. Engineering Structures, 2019, 195: 340-357. doi: 10.1016/j.engstruct.2019.05.068
    [7] YANG Yan, NAKAMURA S, CHEN Bao-chun, et al. The origin of timber arch bridges in China[J]. Journal of JSCE, 2014, 2(1): 54-61. doi: 10.2208/journalofjsce.2.1_54
    [8] 刘建新. 闽浙木拱桥受力行为研究[D]. 福州: 福州大学, 2011.

    LIU Jian-xin. Research on structural behavior of timber arch bridges in Fujian and Zhejiang[D]. Fuzhou: Fuzhou University, 2011. (in Chinese)
    [9] 纪丹琳. 闽浙木拱桥受力性能试验研究[D]. 福州: 福州大学, 2013.

    JI Dan-lin. Experimental research on structural behavior of Min-Zhe timber arch bridge[D]. Fuzhou: Fuzhou University, 2013. (in Chinese)
    [10] 欧加加. 木拱廊桥受力机理的有限元分析[D]. 杭州: 浙江大学, 2014.

    OU Jia-jia. The finite element analysis of mechanical mechanism on the covered timber arch bridge[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
    [11] DENG Hua, YANG Shun-li. Geometric construction and static analysis on timber-arched structural system of Shouning Timber-Arched Lounge Bridge[J]. IOP Conference Series: Earth and Environmental Science, 2019, 371(2): 022049. doi: 10.1088/1755-1315/371/2/022049
    [12] HAN Yi-dan, CHUN Qing, WANG Hao-yu. Quantitative safety evaluation of ancient Chinese timber arch lounge bridges[J]. Journal of Wood Science, 2022, 68(1): 4. doi: 10.1186/s10086-022-02011-y
    [13] 谢启芳, 杜彬, 张风亮, 等. 古建筑木结构燕尾榫节点弯矩-转角关系理论分析[J]. 工程力学, 2014, 31(12): 140-146.

    XIE Qi-fang, DU Bin, ZHANG Feng-liang, et al. Theoretical analysis on moment-rotation relationship of dovetail joints for Chinese ancient timber structure buildings[J]. Engineering Mechanics, 2014, 31(12): 140-146. (in Chinese)
    [14] 谢启芳, 杜彬, 钱春宇, 等. 古建筑木结构燕尾榫节点弯矩-转角模型研究[J]. 工程力学, 2016, 33(8): 39-44.

    XIE Qi-fang, DU Bin, QIAN Chun-yu, et al. Study on the moment-rotation model of the dovetail mortise-tenon joint of ancient timber buildings[J]. Engineering Mechanics, 2016, 33(8): 39-44. (in Chinese)
    [15] 徐明刚. 中国古建筑木结构榫卯节点抗震性能研究[D]. 南京: 东南大学, 2011.

    XU Ming-gang. Study of aseismatic behavior of mortise-tenon joints in Chinese ancient timber buildings[D]. Nanjing: Southeast University, 2011. (in Chinese)
    [16] 潘毅, 张启, 王晓玥, 等. 古建筑木结构燕尾榫节点力学模型研究[J]. 建筑结构学报, 2021, 42(8): 151-159.

    PAN Yi, ZHANG Qi, WANG Xiao-yue, et al. Research on mechanical model of dovetail joint for Chinese ancient timber structures[J]. Journal of Building Structures, 2021, 42(8): 151-159. (in Chinese)
    [17] 潘毅, 安仁兵, 王晓玥, 等. 古建筑木结构透榫节点力学模型研究[J]. 土木工程学报, 2020, 53(4): 61-70.

    PAN Yi, AN Ren-bing, WANG Xiao-yue, et al. Study on mechanical model of through-tenon joints in ancient timber structures[J]. China Civil Engineering Journal, 2020, 53(4): 61-70. (in Chinese)
    [18] 黄聪燕. 考虑榫卯节点实际刚度的闽浙木拱桥受力性能研究[D]. 福州: 福州大学, 2018,

    HUANG Cong-yan. Research on the mechanical performance of Min-Zhe timber arch bridges with the actual-rigid characteristic of mortise and tenon joints[D]. Fuzhou: Fuzhou University, 2018. (in Chinese)
    [19] 张海彦. 木结构古建筑的结构动力特性分析[D]. 西安: 西安建筑科技大学, 2008.

    ZHANG Hai-yan. Dynamic analysis of the Chinese historical timber buildings[D]. Xi'an: Xi'an University of Architecture and Technology, 2008. (in Chinese)
    [20] 张利朋, 谢启芳, 刘伊津, 等. 循环荷载作用下木材顺纹受力特性与本构模型研究[J]. 土木工程学报, 2024, 57(3): 42-58.

    ZHANG Li-peng, XIE Qi-fang, LIU Yi-jin, et al. Research on the mechanical properties and constitutive model of wood under parallel-to-grain cyclic loading[J]. China Civil Engineering Journal, 2024, 57(3): 42-58. (in Chinese)
    [21] 王春生, 陈惟珍, 陈艾荣. 桥梁损伤安全评定与维护管理策略[J]. 交通运输工程学报, 2002, 2(4): 21-28. doi: 10.3321/j.issn:1671-1637.2002.04.005

    WANG Chun-sheng, CHEN Wei-zhen, CHEN Ai-rong. Damage safety assessment and maintenance management strategy of bridges[J]. Journal of Traffic and Transportation Engineering, 2002, 2(4): 21-28. (in Chinese). doi: 10.3321/j.issn:1671-1637.2002.04.005
    [22] 薛建阳, 张鹏程, 赵鸿铁. 古建木结构抗震机理的探讨[J]. 西安建筑科技大学学报(自然科学版), 2000, 32(1): 8-11.

    XUE Jian-yang, ZHANG Peng-cheng, ZHAO Hong-tie. Study on the aseismic mechanism of historic timber structural building[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2000, 32(1): 8-11. (in Chinese)
    [23] 谢启芳, 杜彬, 向伟, 等. 古建筑木结构燕尾榫节点抗震性能及尺寸效应试验研究[J]. 建筑结构学报, 2015, 36(3): 112-120.

    XIE Qi-fang, DU Bin, XIANG Wei, et al. Experimental study on seismic behavior and size effect of dovetail mortise-tenon joints of ancient timber buildings[J]. Journal of Building Structures, 2015, 36(3): 112-120. (in Chinese)
    [24] 隋䶮, 赵鸿铁, 薛建阳, 等. 中国古建筑木结构铺作层与柱架抗震试验研究[J]. 土木工程学报, 2011, 44(1): 50-57.

    SUI Yan, ZHAO Hong-tie, XUE Jian-yang, et al. Experimental study of the seismicity of dougong and wooden frame in Chinese historic buildings[J]. China Civil Engineering Journal, 2011, 44(1): 50-57. (in Chinese).
    [25] 薛建阳, 赵鸿铁, 张鹏程. 中国古建筑木结构模型的振动台试验研究[J]. 土木工程学报, 2004, 37(6): 6-11.

    XUE Jian-yang, ZHAO Hong-tie, ZHANG Peng-cheng. Study on the seismic behaviors of Chinese ancient wooden building by shaking table test[J]. China Civil Engineering Journal, 2004, 37(6): 6-11. (in Chinese).
    [26] 杨艳华, 王俊鑫, 徐彬. 古木建筑榫卯连接M-θ相关曲线模型研究[J]. 昆明理工大学学报(理工版), 2009, 34(1): 72-76.

    YANG Yan-hua, WANG Jun-xin, XU Bin. Research of interaction curves model of mortise-tenon joint in historic timber buildings[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2009, 34(1): 72-76. (in Chinese)
    [27] 潘毅, 王超, 唐丽娜, 等. 古建筑木结构直榫节点力学模型的研究[J]. 工程力学, 2015, 32(2): 82-89.

    PAN Yi, WANG Chao, TANG Li-na, et al. Study on mechanical model of straight-tenon joints in ancient timber Structure[J]. Engineering Mechanics, 2015, 32(2): 82-89. (in Chinese)
    [28] 高永林, 陶忠, 叶燎原, 等. 传统木结构典型榫卯节点基于摩擦机理特性的低周反复加载试验研究[J]. 建筑结构学报, 2015, 36(10): 139-145.

    GAO Yong-lin, TAO Zhong, YE Liao-yuan, et al. Low-cycle reversed loading tests study on typical mortise-tenon joints of traditional timber building based on friction mechanism[J]. Journal of Building Structures, 2015, 36(10): 139-145. (in Chinese)
    [29] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36-46.

    FENG Peng, QIANG Han-lin, YE Lie-ping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46. (in Chinese)
    [30] WU Ming-tao, MEI Li-dan, GUO Nan, et al. Mechanical properties and failure mechanisms of engineering bamboo scrimber[J]. Construction and Building Materials, 2022, 344: 128082.
  • 加载中
图(28) / 表(5)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-20
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回