-
摘要: 为评估和校核沥青路面在复杂应力状态下的失效模式和失效特征,采用经典五大强度理论和统一强度理论分析了等效应力在路面结构内的分布特性,考虑半刚性基层沥青路面、柔性基层沥青路面和倒装式沥青路面这3种典型路面结构方案,通过数值计算解析了各种强度理论所表征的路面结构失效形态。研究结果表明:各种强度理论表征的某种特定路面的结构失效模式和失效层位不同,对于半刚性基层沥青路面,第一、第二和莫尔强度理论主要表征基层底部的弯拉失效,第三、第四强度理论主要表征沥青面层的剪切屈服失效,而统一强度理论主要表征面层和基层的拉、剪组合开裂失效,最大等效应力出现在沥青面层内,可达到0.8 MPa;特定的强度理论在不同路面结构中可能表征为差异性的失效模式,第四强度理论在半刚性基层沥青路面中主要表征沥青面层的剪切屈服失效,而在柔性基层沥青路面中主要表征沥青面层的剪切开裂失效;第四强度理论和统一强度理论所提示的路面结构破坏特征更为合理,反映的路面结构失效信息也更为丰富,这2种强度理论的结合应用可以表征基层、面层开裂和面层车辙等常见病害,从而全面控制路面结构载荷型疲劳破坏;统一强度理论揭示了面层优先发生开裂破坏的力学机理,为实际工程中常见的路面自上而下开裂、纵向开裂等病害提供了新的理论解释机制,并为独立控制面层开裂失效提供了一个可供选择的强度校核指标。Abstract: To evaluate and verify the failure modes and characteristics of asphalt pavements under complex stress states, the distribution characteristics of equivalent stress within the pavement structure were analyzed by using the classical five strength theories and the unified strength theory. Three typical pavement structure schemes, namely semi-rigid base asphalt pavement, flexible base asphalt pavement, and inverted asphalt pavement, were considered. The failure modes of pavement structures characterized by various strength theories were analyzed through numerical calculations. Research results indicate that structural failure modes and failure layers of a specific pavement characterized by various strength theories are different. For the semi-rigid base asphalt pavement, the first, second, and Mohr's strength theories mainly characterize the bending and tensile failure at the bottom of the base layer, while the third and fourth strength theories mainly characterize the shear yield failure of the asphalt surface layer. The unified strength theory mainly characterizes the tensile and shear combined cracking failure of the surface layer and base layer, and the maximum equivalent stress occurs within the asphalt surface layer, which can reach 0.8 MPa. A specific strength theory may be characterized as differential failure modes in different pavement structures. The fourth strength theory mainly characterizes the shear yield failure of the asphalt surface layer in the semi-rigid base asphalt pavement, and the shear cracking failure of the asphalt surface layer in the flexible base asphalt pavement. The fourth strength theory and the unified strength theory suggest more reasonable characteristics of pavement structure failure and reflect richer information on pavement structure failure. The combination of these two strength theories can characterize common distresses such as cracking in base and surface layers and rutting in surface layer, thus comprehensively controlling the load-type fatigue failure of pavement structures. The unified strength theory reveals the mechanical mechanism of surface layer preferentially cracking and failure, providing a new theoretical explanation mechanism for common pavement distresses such as top-down cracking and longitudinal cracking in practical engineering and proposing an optional strength verification index for independent control of surface layer cracking failure.
-
Key words:
- asphalt pavement /
- strength theory /
- failure criterion /
- pavement distress /
- structure design /
- design index
-
表 1 半刚性基层沥青路面结构组合方案和材料刚度参数
Table 1. Structure combination schemes and material stiffness parameters for semi-rigid base asphalt pavement
结构层 材料 厚度/mm 抗压模量/MPa 抗拉模量/MPa 抗压泊松比 抗拉泊松比 面层/表面层 SMA13 40 11 000 5 500 0.25 0.125 面层/中面层 改性AC20 60 8 000 4 000 0.25 0.125 面层/下面层 AC25 100 9 000 4 000 0.25 0.111 半刚性基层 水泥稳定碎石 450 20 000 11 000 0.25 0.137 底基层 级配砂砾 200 160 0.35 土基 黏质土 65 0.40 表 2 沥青路面材料强度参数
Table 2. Material strength parameters of asphalt pavement
材料类型 抗拉强度/MPa 抗压强度/MPa 剪切强度/MPa SMA13 1.953 9.226 0.543 改性AC20 1.622 7.423 0.438 AC25 1.753 8.864 0.496 ATB25 1.826 9.148 0.542 水泥稳定碎石 1.522 5.345 0.316 表 3 几种强度理论和失效准则对半刚性基层沥青路面结构失效现象的解释
Table 3. Explanations for failure phenomena of semi-rigid base asphalt pavement structure by several strength theories and failure criteria
强度理论/失效准则 基层底部应力水平参数 路面结构内的破坏源和破坏特征 主要破坏特征 次要破坏特征 *最大拉应力准则 1.000 基层底部弯拉开裂 *最大压应力准则 不能合理描述面层的车辙失效 第一强度理论 1.000 基层底部弯拉开裂 第二强度理论 0.774 基层底部弯拉开裂 第三强度理论 1.042 面层车辙(中、下面层剪切屈服) 基层底部弯拉开裂 第四强度理论 1.005 面层车辙(中、下面层剪切屈服) 基层底部弯拉开裂 莫尔强度理论 1.009 基层底部弯拉开裂 统一强度理论 3.184 面层内部拉、剪组合开裂 基层上部和底部拉、剪组合开裂 表 4 柔性基层沥青路面结构组合方案和材料刚度参数
Table 4. Structure combination schemes and material stiffness parameters for flexible base asphalt pavement
结构层 材料 厚度/mm 抗压模量/MPa 抗拉模量/MPa 抗压泊松比 抗拉泊松比 面层/上面层 SMA13 40 11 000 5 500 0.25 0.125 面层/下面层 改性AC20 100 8 000 4 000 0.25 0.125 沥青结合料基层 ATB25 250 10 000 5 000 0.25 0.125 底基层 级配砂砾 380 160 0.35 土基 黏质土 65 0.40 表 5 几种强度理论和失效准则对柔性基层沥青路面结构失效现象的解释
Table 5. Explanations for failure phenomenon of flexible base asphalt pavement structure by several strength theories and failure criteria
强度理论/失效准则 基层底部应力水平参数 路面结构内的破坏源及破坏特征 主要破坏特征 次要破坏特征 *最大拉应变准则 基层底部弯拉失效 *最大压应力准则 不能合理描述车辙失效 *最大压应变准则 土基变形 粒料底基层变形 第一强度理论 1.000 基层底部弯拉开裂 第二强度理论 0.805 基层底部弯拉开裂 面层剪切开裂(迹象) 第三强度理论 1.055 面层贯穿至基层顶部的开裂 基层底部弯拉开裂 第四强度理论 0.981 面层贯穿至基层顶部的开裂 基层底部弯拉开裂 莫尔强度理论 1.009 基层底部弯拉开裂 统一强度理论 2.895 面层至基层的拉、剪组合开裂 基层底部拉、剪组合开裂 表 6 倒装式沥青路面结构组合方案及材料刚度参数
Table 6. Structure combination schemes and material stiffness parameters for inverted asphalt pavement
结构层 材料 厚度/mm 抗压模量/MPa 抗拉模量/MPa 抗压泊松比 抗拉泊松比 面层/上面层 SMA13 40 11 000 5 500 0.25 0.125 面层/下面层 改性AC20 80 8 000 4 000 0.25 0.125 沥青结合料基层 ATB25 160 10 000 5 000 0.25 0.125 半刚性底基层 水泥稳定碎石 450 20 000 11 000 0.25 0.137 土基 黏质土 65 0.40 表 7 几种强度理论和失效准则对倒装式沥青路面结构失效现象的解释
Table 7. Explanations for failure phenomena of inverted asphalt pavement structure by several strength theories and failure criteria
强度理论/失效准则 底基层底部应力水平参数 路面结构内的破坏源及破坏特征 主要破坏特征 次要破坏特征 *最大拉应力准则 1.000 半刚性底基层底部弯拉失效 第一强度理论 1.000 半刚性底基层底部弯拉失效 第二强度理论 0.772 半刚性底基层底部弯拉失效 面层剪切开裂 第三强度理论 1.040 面层车辙失效 半刚性底基层底部弯拉失效 第四强度理论 1.015 面层车辙失效 半刚性底基层底部弯拉失效 莫尔强度理论 1.011 半刚性底基层底部弯拉失效 统一强度理论 3.143 面层拉、剪组合失效 半刚性底基层顶部和底部失效 -
[1] 郑健龙, 吕松涛, 刘超超. 长寿命路面的技术体系及关键科学问题与技术前沿[J]. 科学通报, 2020, 65(30): 3219-3227.ZHENG Jian-long, LYU Song-tao, LIU Chao-chao. Technical system, key scientific problems and technical frontier of long-life pavement[J]. Chinese Science Bulletin, 2020, 65(30): 3219-3227. (in Chinese) [2] 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. doi: 10.3969/j.issn.1001-7372.2020.10.001Editorial Department of China Journal of Highway and Transport. Review on China's pavement engineering research· 2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.001 [3] 王旭东, 周兴业. 基于材料非线性的沥青路面结构当量力学分析方法[J]. 中国公路学报, 2019, 32(8): 25-34.WANG Xu-dong, ZHOU Xing-ye. Equivalent mechanical method for asphalt pavement structure based on material nonlinearity[J]. China Journal of Highway and Transport, 2019, 32(8): 25-34. (in Chinese) [4] 俞茂宏. 强度理论百年总结[J]. 力学进展, 2004, 34(4): 529-560. doi: 10.3321/j.issn:1000-0992.2004.04.009YU Mao-hong. Advances in strength theories for materials under complex stress state in the 20th century[J]. Advances in Mechanics, 2004, 34(4): 529-560. (in Chinese) doi: 10.3321/j.issn:1000-0992.2004.04.009 [5] 张起森, 李雪连. 70年来中国沥青路面结构设计方法发展沿革[J]. 中外公路, 2019, 39(6): 30-38.ZHANG Qi-sen, LI Xue-lian. Development and evolution of structural design methods for asphalt pavements in China over past 70 years[J]. Journal of China and Foreign Highway, 2019, 39(6): 30-38. (in Chinese) [6] 姚祖康. 对国外沥青路面设计指标的评述[J]. 公路, 2003(3): 18-25.YAO Zu-kang. A review of foreign asphalt pavement design indicators[J]. Highway, 2003(3): 18-25. (in Chinese) [7] 姚祖康, 刘伯莹. 沥青路面新设计指标和参数体系研究[J]. 公路交通科技, 2008, 25(9): 1-9.YAO Zu-kang, LIU Bo-ying. Research on new design indicators and parameter system of asphalt pavement[J]. Journal of Highway and Transportation Research and Development, 2008, 25(9): 1-9. (in Chinese) [8] ZHENG Jian-long, HUANG Tuo. Study on triaxial test method and failure criterion of asphalt mixture[J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(2): 93-106. doi: 10.1016/j.jtte.2015.02.003 [9] 关宏信, 李连友, 杨慧游, 等. 低温下沥青混合料的中间主应力效应[J]. 中国公路学报, 2014, 27(11): 11-16, 45.GUAN Hong-xin, LI Lian-you, YANG Hui-you, et al. Intermediate principal stress effect on asphalt mixture at low temperature[J]. China Journal of Highway and Transport, 2014, 27(11): 11-16, 45. (in Chinese) [10] HUANG Tuo, CHEN Jie, LI Mi, et al. Investigation on three-dimensional failure criterion of asphalt mixture considering the effect of stiffness[J]. Construction and Building Materials, 2021, 285: 122431. doi: 10.1016/j.conbuildmat.2021.122431 [11] 黄拓, 昌振东, 杨毅姚. 三轴拉压应力状态下沥青混合料的破坏准则[J]. 中南大学学报(自然科学版), 2017, 48(7): 1908-1914.HUANG Tuo, CHANG Zhen-dong, YANG Yi-yao. Failure criterion of asphalt mixture in triaxial tension and compression state[J]. Journal of Central South University (Science and Technology), 2017, 48 (7): 1908-1914. (in Chinese) [12] 朱浩然, 杨军, 陈志伟. 沥青混合料抗剪性能的三轴剪切试验[J]. 交通运输工程学报, 2009, 9(3): 19-23.ZHU Hao-ran, YANG Jun, CHEN Zhi-wei. Triaxial shear test on anti-shear properties of asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 19-23. (in Chinese) [13] 俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10.YU Mao-hong. Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese) [14] 俞茂宏. 线性和非线性的统一强度理论[J]. 岩石力学与工程学报, 2007, 26(4): 662-669.YU Mao-hong. Linear and nonlinear unified strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 662-669. (in Chinese) [15] HUANG Wang, YANG Jian-jun, SLADEK J, et al. Semi-infinite structure analysis with bimodular materials with infinite element[J]. Materials, 2022, 15(2): 641. doi: 10.3390/ma15020641 [16] WEN P H, YANG J J, HUANG T, et al. Infinite element in meshless approaches[J]. European Journal of Mechanics—A/Solids, 2018, 72: 175-185. doi: 10.1016/j.euromechsol.2018.05.010 [17] HUANG T, PAN Q X, JIN J, et al. Continuous constitutive model for bimodulus materials with meshless approach[J]. Applied Mathematical Modelling, 2019, 66: 41-58. doi: 10.1016/j.apm.2018.09.004 [18] 王旭东. 足尺路面试验环道路面结构与材料设计[J]. 公路交通科技, 2017, 34(6): 30-37.WANG Xu-dong. Design of pavement structure and material for full-scale test track[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 30-37. (in Chinese) [19] 孙立军, 钱国平, 黄颂昌, 等. 道路基础设施服役性能的智能仿真理论和方法[J]. 中国基础科学, 2021, 23(1): 6-15.SUN Li-jun, QIAN Guo-ping, HUANG Song-chang, et al. Research progress on intelligent simulation theory and method for service performance of road infrastructure[J]. China Basic Science, 2021, 23(1): 6-15. (in Chinese) [20] 程怀磊, 孙立军, 郑健龙, 等. 沥青混合料动态压-拉双模量及其在路面响应分析中的应用[J]. 土木工程学报, 2022, 55(3): 105-116, 128.CHENG Huai-lei, SUN Li-jun, ZHENG Jian-long, et al. Dynamic compressive-tensile moduli of asphalt mixture and its applications to pavement response prediction[J]. China Civil Engineering Journal, 2022, 55(3): 105-116, 128. (in Chinese) [21] 吕松涛, 张乃天, 吴政达, 等. 三维应力状态下沥青混合料动态模量归一化[J]. 中国公路学报, 2023, 36(4): 27-37.LYU Song-tao, ZHANG Nai-tian, WU Zheng-da, et al. Normalization of dynamic modulus of asphalt mixture under three-dimensional stress state[J]. China Journal of Highway and Transport, 2023, 36(4): 27-37. (in Chinese) [22] 刘栋, 李立寒. 旋转压实成型水泥稳定类基层材料试验[J]. 中国公路学报, 2019, 32(11): 118-128.LIU Dong, LI Li-han. Experiment on gyratory compaction of cement stabilized base course materials[J]. China Journal of Highway and Transport, 2019, 32(11): 118-128. (in Chinese) [23] 李明杰. 水泥稳定碎石强度影响因素的试验研究[J]. 公路交通科技, 2010, 27(4): 6-11, 43.LI Ming-jie. Experimental study on influencing factors of strength of cement stabilized macadam[J]. Journal of Highway and Transportation Research and Development, 2010, 27(4): 6-11, 43. (in Chinese) [24] 吴帮伟, 刘黎萍, 肖鹏, 等. 基于原生参数的沥青混合料抗剪强度预估[J]. 公路交通科技, 2022, 39(1): 1-9.WU Bang-wei, LIU Li-ping, XIAO Peng, et al. Prediction of shear strength of asphalt mixture based on primary parameters[J]. Journal of Highway and Transportation Research and Development, 2022, 39(1): 1-9. (in Chinese) [25] 周志刚, 刘鑫, 孙绪康. 低剂量水泥改性级配碎石抗剪强度分析[J]. 交通科学与工程, 2019, 35(1): 8-14.ZHOU Zhi-gang, LIU Xin, SUN Xu-kang. Analysis of shear strength of the low-dose cement-modified graded crushed rock[J]. Journal of Transport Science and Engineering, 2019, 35(1): 8-14. (in Chinese) [26] 周健民, 吴博. 长大纵坡路段沥青路面车辙规律和影响因素[J]. 公路交通科技, 2021, 38(7): 9-16, 158.ZHOU Jian-min, WU Bo. Rutting rule and influencing factors of asphalt pavement in large longitudinal slope section[J]. Journal of Highway and Transportation Research and Development, 2021, 38(7): 9-16, 158. (in Chinese) [27] 刘刚, 陈磊磊, 钱振东, 等. 车辙深度对沥青路面结构性能影响性分析[J]. 振动与冲击, 2021, 40(24): 36-40.LIU Gang, CHEN Lei-lei, QIAN Zhen-dong, et al. Influence of rutting depth on asphalt pavement structure performance[J]. Journal of Vibration and Shock, 2021, 40(24): 36-40. (in Chinese) [28] 叶亚丽, 徐全亮, 宁选杰, 等. 基于非均布荷载的柔性基层沥青路面纵向开裂分析[J]. 长安大学学报(自然科学版), 2019, 39(2): 35-46.YE Ya-li, XU Quan-liang, NING Xuan-jie, et al. Analysis on longitudinal cracking of flexible base asphalt pavement under non-uniform distributed tire pressure[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(2): 35-46. (in Chinese) [29] 徐鸥明, 郝培文. 厚沥青路面Top-Down裂缝分析及对路面设计的启示[J]. 中外公路, 2006, 26(5): 133-137.XU Ou-ming, HAO Pei-wen. Top-down crack analysis of thick asphalt pavement and its enlightenment to pavement design[J]. Journal of China and Foreign Highway, 2006, 26(5): 133-137. (in Chinese) [30] 白璐, 申爱琴, 李涵. 柔性基层沥青路面在动荷载作用下Top-Down开裂模拟研究[J]. 公路交通科技, 2017, 34(9): 22-29.BAI Lu, SHEN Ai-qin, LI Han. Simulation of top-down cracking on flexible base asphalt pavement under dynamic loading[J]. Journal of Highway and Transportation Research and Development, 2017, 34(9): 22-29. (in Chinese) [31] 王旭东, 张蕾, 周兴业. 沥青路面的双向疲劳损伤[J]. 中国公路学报, 2023, 36(5): 21-37.WANG Xu-dong, ZHANG Lei, ZHOU Xing-ye. Bidirectional fatigue damage analysis of asphalt pavement[J]. China Journal of Highway and Transport, 2023, 36(5): 21-37. (in Chinese)