留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车车体疲劳剩余寿命精准预测与状态修程制定方法

卢耀辉 艾进鹏 张雅东

卢耀辉, 艾进鹏, 张雅东. 高速列车车体疲劳剩余寿命精准预测与状态修程制定方法[J]. 交通运输工程学报, 2024, 24(5): 234-247. doi: 10.19818/j.cnki.1671-1637.2024.05.015
引用本文: 卢耀辉, 艾进鹏, 张雅东. 高速列车车体疲劳剩余寿命精准预测与状态修程制定方法[J]. 交通运输工程学报, 2024, 24(5): 234-247. doi: 10.19818/j.cnki.1671-1637.2024.05.015
LU Yao-hui, AI Jin-peng, ZHANG Ya-dong. Accurate prediction of remaining fatigue life and formulation of condition repair procedure of high-speed train body[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 234-247. doi: 10.19818/j.cnki.1671-1637.2024.05.015
Citation: LU Yao-hui, AI Jin-peng, ZHANG Ya-dong. Accurate prediction of remaining fatigue life and formulation of condition repair procedure of high-speed train body[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 234-247. doi: 10.19818/j.cnki.1671-1637.2024.05.015

高速列车车体疲劳剩余寿命精准预测与状态修程制定方法

doi: 10.19818/j.cnki.1671-1637.2024.05.015
基金项目: 

国家自然科学基金项目 52375160

四川省科技计划项目 2022YFG0251

详细信息
    作者简介:

    卢耀辉(1973-),男,甘肃民勤人,西南交通大学教授,工学博士,从事车辆结构振动疲劳与焊接疲劳断裂研究

  • 中图分类号: U270.32

Accurate prediction of remaining fatigue life and formulation of condition repair procedure of high-speed train body

Funds: 

National Natural Science Foundation of China 52375160

Science and Technology Plan Project of Sichuan Province 2022YFG0251

More Information
  • 摘要: 为降低高速列车运维成本,提高运行安全性,延长结构的使用寿命,考虑了高速列车服役劣化因素,采用车辆系统动力学方法,计算并编制了车体剩余寿命预测的载荷谱;建立了车体有限元模型和关注点裂纹扩展驱动力的代理模型,实现劣化载荷谱与裂纹动态驱动力的映射;基于先进的CJP模型,建立了考虑裂尖闭合效应和应力比的裂纹扩展模型,并拟合了CJP应力强度因子范围与传统应力强度因子范围的关系;采用Kriging代理模型对裂纹扩展寿命进行了精确积分,进一步提升了寿命预测精度;在车体剩余寿命预测的基础上,使用模态应变能作为指标对高速列车车体的裂纹状态进行监测,构建了状态等级函数,建立了剩余寿命与裂纹状态的对应关系;依据裂纹监测结果评定出状态等级,采用风险评估的方式预测持续运行将造成的后果,根据风险等级制定高速列车车体最经济的维修策略和修程。研究结果表明:空簧左右侧劣化后的载荷幅值最小为107 kN,最大为122 kN,最大劣化程度下载荷谱最大值增大了6.16%;车顶空调安装座(关注点1)和车门角位置(关注点2)的结构应力变化趋势一致,从12.4 MPa增加至15.8 MPa,表明随着部件性能劣化,关注点处应力增大,导致更大的失效概率;根据CJP模型和国际焊接学会(IIW)标准,参数计算的最短剩余寿命里程均位于车体一位端底架横梁与纵向型材连接位置(关注点3),分别为6.781×106和1.128×107 km,表明使用CJP模型计算的剩余寿命更偏于保守。通过对高速列车的服役性能劣化、结构寿命演化、状态历程恶化等进行系统性研究,建立剩余寿命与疲劳状态的映射关系,提出结合车体剩余寿命与运维策略制定车体状态修程的方法,为推进高速列车维修模式从计划修、故障修到状态修的变革转型提供重要的科学指导价值。

     

  • 图  1  列车重要部件的性能劣化

    Figure  1.  Performance deteriorations of critical train components

    图  2  车辆系统动力学模型

    Figure  2.  Dynamics model of train system

    图  3  车体垂向载荷谱

    Figure  3.  Vertical load spectra of train body

    图  4  位移场计算

    Figure  4.  Displacement field calculation

    图  5  三种模型的应力场计算

    Figure  5.  Stress field calculation for three models

    图  6  裂纹弹-塑性场受力示意

    Figure  6.  Force schematic of elastic-plastic field of crack

    图  7  裂纹扩展速率与传统应力强度因子范围关系

    Figure  7.  Relationship between crack growth rates and conventional stress intensity factor ranges

    图  8  裂纹扩展速率与CJP应力强度因子范围关系

    Figure  8.  Relationship between crack growth rates and CJP stress intensity factor ranges

    图  9  车体关注点分布

    Figure  9.  Distribution of focus points of train body

    图  10  车体边界条件与加载示意

    Figure  10.  Train body boundary conditions and loading scheme

    图  11  关注点1的结构应力历程

    Figure  11.  Structural stress history of focus point 1

    图  12  关注点2的结构应力历程

    Figure  12.  Structural stress history of focus point 2

    图  13  裂纹扩展寿命预测积分

    Figure  13.  Crack extension life prediction integral

    图  14  关注点2在不同裂纹尺寸下的裂纹扩展寿命

    Figure  14.  Crack extension lives at different crack sizes of focus point 2

    图  15  高速列车车体的疲劳状态检测流程

    Figure  15.  Fatigue state detection process of high-speed train body

    图  16  运行里程与状态修程关系

    Figure  16.  Relationship between operation mileage and condition repair procedure

    图  17  某风险范围下某一状态的维修示意

    Figure  17.  Maintenance schematic for certain state under certain risk range

    表  1  关注点的疲劳裂纹扩展寿命结果

    Table  1.   Fatigue crack propagation life results of focus points

    关注点 CJP模型计算结果/km IIW参数计算结果/km
    1 7.775×106 2.839×108
    2 3.100×107 4.313×108
    3 6.781×106 1.128×107
    4 3.494×107 6.192×108
    5 9.279×106 8.541×108
    下载: 导出CSV
  • [1] 张卫华, 李权福, 宋冬利. 关于铁路机车车辆健康管理与状态修的思考[J]. 中国机械工程, 2021, 32(4): 379-389.

    ZHANG Wei-hua, LI Quan-fu, SONG Dong-li. Thoughts on health management and condition-based maintenance of rolling stocks[J]. China Mechanical Engineering, 2021, 32(4): 379-389. (in Chinese)
    [2] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学报, 2016, 51(2): 209-226.

    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese)
    [3] 李权福, 邵文东, 王洪昆, 等. 状态修检修技术在神华重载铁路货车上的应用探讨[J]. 铁道车辆, 2021, 59(2): 115-118.

    LI Quan-fu, SHAO Wen-dong, WANG Hong-kun, et al. Discussion of application of maintenance technology of state-overhaul in Shenhua Heavy Haul Railway freight car[J]. Rolling Stock, 2021, 59(2): 115-118. (in Chinese)
    [4] 王华胜, 钱小磊, 朱庆龙, 等. 动车组设计寿命中后期运维策略研究[J]. 中国铁路, 2023(7): 60-65.

    WANG Hua-sheng, QIAN Xiao-lei, ZHU Qing-long. et al. Research on O&M strategy in the middle and later stages of EMU design life[J]. China Railway, 2023(7): 60-65. (in Chinese)
    [5] LU Y H, XIANG P L, DONG P, et al. Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames[J]. Engineering Failure Analysis, 2018, 89: 222-241. doi: 10.1016/j.engfailanal.2018.02.025
    [6] 李鹏, 彭嘉潮, 黄培炜, 等. 基于双目标传感器分布优化的转向架构架状态监测[J]. 中国测试, 2020, 46(9): 131-135, 147.

    LI Peng, PENG Jia-chao, HUANG Pei-wei, et al. Condition monitoring for bogie frame based on two-objective sensor distribution optimization[J]. China Measurement and Test, 2020, 46(9): 131-135, 147. (in Chinese)
    [7] 钱铭. 我国铁路机车车辆修程修制改革初探[J]. 中国铁路, 2019(10): 1-5.

    QIAN Ming. Study on the reform of maintenance system and cycle for China's railway locomotive and car[J]. China Railway, 2019(10): 1-5. (in Chinese)
    [8] 唐涛, 张飞庆, 佘玲娟. 基于名义应力法的高强钢泵车臂架疲劳寿命研究[J]. 工程机械, 2016, 47(3): 12-17.

    TANG Tao, ZHANG Fei-qing, SHE Ling-juan. A study on fatigue life of high strength steel used in pump truck boom frames as based on nominal stress process[J]. Construction Machinery and Equipment, 2016, 47(3): 12-17. (in Chinese)
    [9] 方仁贵, 郑露, 刘洋, 等. 吊机主结构疲劳剩余寿命计算方法研究与应用[J]. 石油和化工设备, 2019, 22(5): 53-55.

    FANG Ren-gui, ZHENG Lu, LIU Yang, et al. Research and application of calculation method for fatigue residual life of crane structure[J]. Petro and Chemical Equipment, 2019, 22(5): 53-55. (in Chinese)
    [10] 卢耀辉, 向鹏霖, 曾京, 等. 高速列车转向架构架动应力计算与疲劳全寿命预测[J]. 交通运输工程学报, 2017, 17(1): 62-70. doi: 10.3969/j.issn.1671-1637.2017.01.008

    LU Yao-hui, XIANG Peng-lin, ZENG Jing, et al. Dynamic stress calculation and fatigue whole life prediction of bogie frame for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 62-70. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.01.008
    [11] 熊勋, 杨莹, 汪舟, 等. 基于FRANC3D和ABAQUS联合仿真三维疲劳裂纹扩展分析及寿命预测[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(3): 506-512.

    XIONG Xun, YANG Ying, WANG Zhou, et al. Three-dimensional fatigue crack propagation analysis and life prediction based on co-simulation of FRANC3D and ABAQUS[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2020, 44(3): 506-512. (in Chinese)
    [12] JUN H K, JUNG H S, LEE D H, et al. Fatigue crack evaluation on the underframe of EMU carbody[J]. Procedia Engineering, 2010, 2(1): 893-900. doi: 10.1016/j.proeng.2010.03.096
    [13] 何龙龙, 刘志芳, 顾俊杰, 等. 基于XFEM的疲劳裂纹扩展路径和寿命预测[J]. 西北工业大学学报, 2019, 37(4): 737-743.

    HE Long-long, LIU Zhi-fang, GU Jun-jie, et al. Fatigue crack propagation path and life prediction based on XFEM[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 737-743. (in Chinese)
    [14] 左旸, 杨蓉萍, 马浩钦, 等. 基于径向基神经网络的桥式起重机剩余寿命评估[J]. 机械强度, 2021, 43(6): 1450-1455.

    ZUO Yang, YANG Rong-ping, MA Hao-qin, et al. Evaluation for remaining life of bridge crane based on radial basis neural network[J]. Journal of Mechanical Strength, 2021, 43(6): 1450-1455. (in Chinese)
    [15] 曾声奎, MICHAEL G P, 吴际. 故障预测与健康管理(PHM)技术的现状与发展[J]. 航空学报, 2005, 26(5): 626-632.

    ZENG Sheng-kui, MICHAEL G P, WU Ji. Status and perspectives of prognostics and health management technologies[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5): 626-632. (in Chinese)
    [16] VERMEIJ I, BONTEKOE T, LIEFTING G, et al. Optimisation of rolling stock wheelset life through better understanding of wheel tyre degradation[J]. International Journal of Railway, 2008, 1(3): 83-88.
    [17] ANDRADE A R, STOW J. Assessing the potential cost savings of introducing the maintenance option of 'Economic Tyre Turning' in Great Britain railway wheelsets[J]. Reliability Engineering and System Safety, 2017, 168: 317-325. doi: 10.1016/j.ress.2017.05.033
    [18] 姚芳芳. 基于故障树的HXD3型电力机车转向架轴承故障分析[J]. 机械制造, 2017, 55(5): 86-88.

    YAO Fang-fang. Fault analysis of bogie bearing of HXD3 electric locomotive based on fault tree[J]. Machinery, 2017, 55(5): 86-88. (in Chinese)
    [19] 曾元辰, 张卫华, 宋冬利. 高速列车踏面凹形磨耗及其动力学影响规律[J]. 铁道机车车辆, 2018, 38(4): 5-9, 17.

    ZENG Yuan-chen, ZHANG Wei-hua, SONG Dong-li. Wheel profile concave wear and its effect law on vehicle dynamics of high-speed trains[J]. Railway Locomotive and Car, 2018, 38(4): 5-9, 17. (in Chinese)
    [20] ZENG Yuan-chen, ZHANG Wei-hua, SONG Dong-li, et al. Response prediction of stochastic dynamics by neural networks: theory and application on railway vehicles[J]. Computing in Science and Engineering, 2019, 21(3): 18-30.
    [21] 梁建英. 高速列车智能诊断与故障预测技术研究[J]. 北京交通大学学报, 2019, 43(1): 63-70.

    LIANG Jian-ying. Research on intelligent diagnosis and fault prediction technology for high speed trains[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 63-70. (in Chinese)
    [22] 卢耀辉, 李振生, 尹小春, 等. 动车组铝合金车体焊缝质量等级评价的应力因数计算方法[J]. 交通运输工程学报, 2022, 22(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2022.01.011

    LU Yao-hui, LI Zhen-sheng, YIN Xiao-chun, et al. Calculation methods of stress factor in welding seam quality grade evaluation of EMUs aluminum alloy car body[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 133-140. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.01.011
    [23] 樊云杰, 张晓鹏, 蔺高, 等. 城轨车辆用空气弹簧寿命及性能评估方法研究[J]. 铁道车辆, 2022, 60(3): 77-80.

    FAN Yun-jie, ZHANG Xiao-peng, LIN Gao, et al. Research on remaining useful life and performance evaluation method of air spring for urban rail vehicles[J]. Rolling Stock, 2022, 60(3): 77-80. (in Chinese)
    [24] CHEN Mei, SUN Yu, GUO Yu, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 432/433: 102914. http://www.xueshufan.com/publication/2946910015
    [25] 高闯, 孙守光, 任尊松, 等. 车轮多边形对高速列车车轴疲劳强度影响研究[J]. 机械工程学报, 2023, 59(6): 185-193.

    GAO Chuang, SUN Shou-guang, REN Zun-song, et al. Study on the influence of wheel polygon on the fatigue strength of high-speed train axle[J]. Journal of Mechanical Engineering, 2023, 59(6): 185-193. (in Chinese)
    [26] 陈杨, 宁静, 王靖铭, 等. 轨道不平顺对高速列车小幅蛇行运动的影响[J]. 现代制造工程, 2019(7): 55-59.

    CHEN Yang, NING Jing, WANG Jing-ming, et al. Influence of track irregularity on small hunting of high-speed trains[J]. Modern Manufacturing Engineering, 2019(7): 55-59. (in Chinese)
    [27] GRASSIE S L, KALOUSEK J. Rail corrugation: characteristics causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 57-68.
    [28] CHRISTOPHER C J, JAMES M N, PATTERSON E A, et al. Towards a new model of crack tip stress fields[J]. International Journal of Fracture, 2007, 148: 361-371.
    [29] 王欣, 范雯霖, 顾迪民. 起重机长细臂架结构应力解析法的适用性[J]. 中国工程机械学报, 2018, 16(5): 389-393.

    WANG Xin, FAN Wen-lin, GU Di-min. Applicability analysis of theoretical method for crane boom stress[J]. Chinese Journal of Construction Machinery, 2018, 16(5): 389-393. (in Chinese)
    [30] PAIS M J, VIANA F A C, KIM N H. Enabling high-order integration of fatigue crack growth with surrogate modeling[J]. International Journal of Fatigue, 2012, 43: 150-159.
    [31] 缪炳荣, 张盈, 黄仲, 等. 利用模态应变能变化率的结构损伤识别优化方法[J]. 振动工程学报, 2023, 36(2): 477-486.

    MIAO Bing-rong, ZHANG Ying, HUANG Zhong, et al. Structural damage identification optimization method using change rate of modal strain energy[J]. Journal of Vibration Engineering, 2023, 36(2): 477-486. (in Chinese)
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-09
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回