留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风环境下明线运行列车动力包通风和烟气扩散特性

朱奋田 郑琦耀 许良中 昌超 牛纪强

朱奋田, 郑琦耀, 许良中, 昌超, 牛纪强. 风环境下明线运行列车动力包通风和烟气扩散特性[J]. 交通运输工程学报, 2024, 24(5): 248-258. doi: 10.19818/j.cnki.1671-1637.2024.05.016
引用本文: 朱奋田, 郑琦耀, 许良中, 昌超, 牛纪强. 风环境下明线运行列车动力包通风和烟气扩散特性[J]. 交通运输工程学报, 2024, 24(5): 248-258. doi: 10.19818/j.cnki.1671-1637.2024.05.016
ZHU Fen-tian, ZHENG Qi-yao, XU Liang-zhong, CHANG Chao, NIU Ji-qiang. Ventilation and exhaust gas diffusion characteristics of power pack for trains running on open lines in wind environment[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 248-258. doi: 10.19818/j.cnki.1671-1637.2024.05.016
Citation: ZHU Fen-tian, ZHENG Qi-yao, XU Liang-zhong, CHANG Chao, NIU Ji-qiang. Ventilation and exhaust gas diffusion characteristics of power pack for trains running on open lines in wind environment[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 248-258. doi: 10.19818/j.cnki.1671-1637.2024.05.016

风环境下明线运行列车动力包通风和烟气扩散特性

doi: 10.19818/j.cnki.1671-1637.2024.05.016
基金项目: 

国家自然科学基金项目 52172359

详细信息
    作者简介:

    朱奋田(1996-),男,安徽阜阳人,西南交通大学工学博士研究生,从事列车空气动力学研究

    牛纪强(1988-),男,山东临沂人,西南交通大学副教授,工学博士

  • 中图分类号: U266.1

Ventilation and exhaust gas diffusion characteristics of power pack for trains running on open lines in wind environment

Funds: 

National Natural Science Foundation of China 52172359

More Information
  • 摘要: 针对内燃机车动力包通风性能以及烟气扩散特性,采用稳态雷诺时均方程和剪切应力运输湍流模型,模拟了横风下内燃动车组流场特性,分析了车速、横风、裙板对动力包通风性能和车顶烟气扩散特性的影响。研究结果表明:列车在明线无横风环境下运行时动力包通风性能最好,随着车速增大,车顶多数空调新风系统进气口烟气浓度上升;强横风可以提升列车动力包中迎风侧风机流量,尤其是同一动力包下游的风机,相比无横风状态,横风下头车风机通风量增幅可达2.35倍,尾车风机通风量增幅可达3.82倍,而背风侧风机流量降低,尤其是位于头车动力包背风侧风机,甚至出现流量丢失,最大风机通风量的反方向增幅可达1.21倍;裙板可有效抑制横风对动力包风机流量的干扰,相比无横风状态,在强横风环境下,有裙板动力包风机通风量的波动幅值最大为28%;无横风环境下,车顶排烟口下游空调新风口中烟气含量最大增幅接近80%,横风可有效改善多数空调新风中的烟气含量,使迎风侧和背风侧新风进气口烟气含量出现明显差异,横风导致烟气偏转使得列车顶部多数新风进气口烟气含量显著降低,甚至可减至0。

     

  • 图  1  列车模型

    Figure  1.  Train model

    图  2  计算域网格划分

    Figure  2.  Grid division of calculation domain

    图  3  流场计算域

    Figure  3.  Flow field calculation domain

    图  4  计算域示意

    Figure  4.  Calculation domain diagram

    图  5  底面中心线处CO2浓度

    Figure  5.  CO2 concentration at bottom center line

    图  6  列车顶部新风口分布

    Figure  6.  Distributions of fresh air inlets on roof of trains

    图  7  列车动力包冷却风机分布

    Figure  7.  Distribution of cooling fans for train power packs

    图  8  横风下无裙板列车动力包截面速度云图

    Figure  8.  Speed cloud images of power pack section of train without skirt plate under crosswind

    图  9  横风下无裙板列车风机流量

    Figure  9.  Airflow of fans of train without skirt plate under crosswind

    图  10  横风下有裙板列车动力包截面速度云图

    Figure  10.  Speed cloud images of power pack section of train with skirt plate under crosswind

    图  11  横风下有裙板列车风机流量

    Figure  11.  Airflow of fans of train with skirt plate under crosswind

    图  12  不同车速下每对新风口烟气浓度分布

    Figure  12.  Exhaust gas concentration distributions of each pair of fresh air inlets at different train speeds

    图  13  头车空调截面速度流线

    Figure  13.  Speed streamlines of lead car air conditioning section

    图  14  不同横风速度下各新风口烟气浓度分布

    Figure  14.  Exhaust gas concentration distributions at each fresh air inlet under different crosswind speeds

    图  15  不同横风速度下烟气流线

    Figure  15.  Exhaust gas streamlines under different crosswind speeds

  • [1] 吴杨俊. 内燃动车组动力包隔振参数灵敏度分析及优化设计[D]. 成都: 西南交通大学, 2020.

    WU Yang-jun. The study of sensitivity analysis and optimized design of vibration isolation parameter of powerpack in diesel railcar[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [2] 董鹏, 吴国栋, 赵全福, 等. 速度160 km/h动力集中型内燃动车组动力车空气制动系统[J]. 铁道机车与动车, 2021(1): 38-41, 6.

    DONG Peng, WU Guo-dong, ZHAO Quan-fu, et al. An air brake system in motor car of 160 km/h power concentrated DMU[J]. Railway Locomotive and Motor Car, 2021(1): 38-41, 6. (in Chinese)
    [3] TICA M L, VRCAN Ž, TROHA S, et al. Reversible planetary gearsets controlled by two brakes, for internal combustion railway vehicle transmission applications[J]. Acta Polytechnica Hungarica, 2023, 20(1): 95-108. doi: 10.12700/APH.20.1.2023.20.7
    [4] ONDRIGA J, ZVOLENSKÝ P, HRČEK S. Application of technical diagnostics in the maintenance of the internal combustion engine of diesel multiple units 812 series[J]. Transportation Research Procedia, 2021, 55: 637-644. doi: 10.1016/j.trpro.2021.07.030
    [5] 曹晓龙, 李雪飞, 李文勇, 等. 混合动力动车组的内燃电传动动力包[J]. 铁道机车与动车, 2018(5): 21-24, 4.

    CAO Xiao-long, LI Xue-fei, LI Wen-yong, et al. Diesel-electric power package for hybrid MUs[J]. Railway Locomotive and Motor Car, 2018(5): 21-24, 4. (in Chinese)
    [6] 汤启源. 几种内燃机车冷却技术的比较[J]. 内燃机车, 1997(3): 1-5, 43.

    TANG Qi-yuan. Comparison of several cooling technologies for internal combustion locomotives[J]. Internal Combustion Locomotives, 1997(3): 1-5, 43. (in Chinese)
    [7] ЛАПТЕВ B A, HOCKOB И M, TIAN Rui. The influence of water temperature and flow rate on the thawing process of radiator pipes in the cooling system of diesel locomotives[J]. Foreign Journal of Internal Combustion Locomotives, 2012(1): 12-14. (in Chinese)
    [8] 魏洋波, 梁习锋. 线间距对交会压力波的影响研究[J]. 铁道科学与工程学报, 2017, 14(12): 2525-2531.

    WEI Yang-bo, LIANG Xi-feng. Influence of line spacing on the intersection pressure wave[J]. Journal of Railway Science and Engineering, 2017, 14(12): 2525-2531. (in Chinese)
    [9] 周丽名, 陈春俊. 普通快速列车与动车组明线交会压力波特性分析[J]. 机械设计与制造, 2017(增1): 88-91.

    ZHOU Li-ming, CHEN Chun-jun. Analysis of passing pressure wave characteristics of ordinary fast train and EMU[J]. Machinery Design and Manufacture, 2017(S1): 88-91. (in Chinese)
    [10] 李伟鹏. 高速动车组隧道交会空气动力学数值模拟[D]. 大连: 大连交通大学, 2011.

    LI Wei-peng. Aerodynamic numerical simulation for EMU passing each other in tunnel[D]. Dalian: Dalian Jiaotong University, 2011. (in Chinese)
    [11] NIU Ji-qiang, ZHANG Ying-chao, LI Rui, et al. Aerodynamic simulation of effects of one-and two-side windbreak walls on a moving train running on a double track railway line subjected to strong crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 221: 104912. doi: 10.1016/j.jweia.2022.104912
    [12] NIU Ji-qiang, WANG Yue-ming, WU Dan, et al. Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 655-668. doi: 10.1080/19942060.2020.1756414
    [13] NIU Ji-qiang, WANG Yue-ming, CHEN Zhen-wei, et al. Numerical study on the effect of braking plates on flow structure and vehicle and enhanced braking of vehicles inside and outside tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 214: 104670. doi: 10.1016/j.jweia.2021.104670
    [14] ZHU Fen-tian, XIE Jia-wang, LYU Da-zhou, et al. Transient aerodynamic behavior of a high-speed maglev train in plate braking under crosswind[J]. Physics of Fluids, 2024, 36(3): 035133. doi: 10.1063/5.0189686
    [15] DONG Hai-peng, ZHU Fen-tian, LIU Yong, et al. Improved delayed detached eddy simulation-based investigation of aerodynamic performance and flow field characteristics of high-speed trains with plate brakes[J]. Mechanics Based Design of Structures and Machines, 2024, 52(7): 4599-4615. doi: 10.1080/15397734.2023.2232848
    [16] LYU Da-zhou, LIU Yong, ZHENG Qi-yao, et al. Unsteady aerodynamic characteristics and dynamic performance of high-speed trains during plate braking under crosswind[J]. Nonlinear Dynamics, 2023, 111(15): 13919-13938. doi: 10.1007/s11071-023-08608-2
    [17] NIU Ji-qiang, ZHANG Ying-chao, CHEN Zheng-wei, et al. Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind[J]. Wind and Structures, 2022, 35(6): 405-418.
    [18] NIU Ji-qiang, ZHOU Dan, WANG Yue-ming. Numerical comparison of aerodynamic performance of stationary and moving trains with or without windbreak wall under crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 1-15. doi: 10.1016/j.jweia.2018.09.011
    [19] NIU Ji-qiang, WANG Yue-ming, ZHANG Lei, et al. Numerical analysis of aerodynamic characteristics of high-speed train with different train nose lengths[J]. International Journal of Heat and Mass Transfer, 2018, 127: 188-199. doi: 10.1016/j.ijheatmasstransfer.2018.08.041
    [20] GUO Zi-jian, LIU Tang-hong, CHEN Zheng-wei, et al. Aerodynamic influences of bogie's geometric complexity on high-speed trains under crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 196: 104053. doi: 10.1016/j.jweia.2019.104053
    [21] ZHANG Jie, WANG Jia-bin, WANG Qian-xuan, et al. A study of the influence of bogie cut outs' angles on the aerodynamic performance of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175: 153-168. doi: 10.1016/j.jweia.2018.01.041
    [22] LIU Ye-bo, LIU Zhi-ming. Aerodynamic simulation of the air flow beneath the high speed train[J]. Applied Mechanics and Materials, 2013, 253/254/255: 2035-2040.
    [23] 陈羽, 杨志刚, 高喆, 等. 底部结构对高速列车流场及气动优化规律的影响[J]. 同济大学学报(自然科学版), 2016, 44(6): 930-936.

    CHEN Yu, YANG Zhi-gang, GAO Zhe, et al. Influences of underbody structures on flow field and aerodynamic optimization laws of high speed train[J]. Journal of Tongji University (Natural Science), 2016, 44(6): 930-936. (in Chinese)
    [24] 于庆斌, 邵晴. 动车组设备舱内流场计算分析[J]. 城市轨道交通研究, 2021, 24(2): 56-59.

    YU Qing-bin, SHAO Qing. Calculation and analysis of EMU equipment compartment flow field[J]. Urban Mass Transit, 2021, 24(2): 56-59. (in Chinese)
    [25] 何守宝, 吴楠楠, 臧建彬. 高速列车设备舱底流场特性分析[J]. 铁道机车车辆, 2019, 39(4): 36-41, 47.

    HE Shou-bao, WU Nan-nan, ZANG Jian-bin. Analysis on flow field characteristics of the bottom of equipment compartment of high-speed train[J]. Railway Locomotive and Car, 2019, 39(4): 36-41, 47. (in Chinese)
    [26] 林鹏, 王维斌. 高速列车设备舱内大型设备通风方式的数值仿真研究[J]. 铁道机车车辆, 2018, 38(5): 15-21.

    LIN Peng, WANG Wei-bin. Numerical simulation research of different ventilation ways for major ventilating devices used in equipment bay for high-speed train[J]. Railway Locomotive and Car, 2018, 38(5): 15-21. (in Chinese)
    [27] 温立强, 杨美传. 风机布置方式对设备舱内外流场的影响研究[J]. 机械工程与自动化, 2018(5): 81-82.

    WEN Li-qiang, YANG Mei-chuan. Influence of fan arrangement on equipment cabin's internal and external flow fields[J]. Mechanical Engineering and Automation, 2018(5): 81-82. (in Chinese)
    [28] 吴飞, 庞博, 冯崎源. 基于CFD仿真的列供离心风机风道分析与改进[J]. 机电设备, 2016, 33(4): 24-29.

    WU Fei, PANG Bo, FENG Qi-yuan. Analysis and improved design of centrifugal fan and air duct used in train cabinet based on CFD simulation[J]. Mechanical and Electrical Equipment, 2016, 33(4): 24-29. (in Chinese)
    [29] 吴世先, 杨会, 朱辉. 隧道风对隧道火灾烟气扩散的影响研究[J]. 铁道科学与工程学报, 2017, 14(4): 801-810.

    WU Shi-xian, YANG Hui, ZHU Hui. Research on impacts of tunnel wind on fire smoke spreading in an urban road tunnel[J]. Journal of Railway Science and Engineering, 2017, 14(4): 801-810. (in Chinese)
    [30] 毛军, 王少华, 郗艳红, 等. 地铁列车运行速度对客室内火灾烟气扩散的影响[J]. 城市轨道交通研究, 2021, 24(9): 186-190.

    MAO Jun, WANG Shao-hua, XI Yan-hong, et al. Influence of metro train running speed on fire smoke diffusion in passenger compartment[J]. Urban Mass Transit, 2021, 24(9): 186-190. (in Chinese)
    [31] 李田, 吴松波, 张继业. 送风方式对高速列车通风和呼吸污染物扩散特性的影响[J]. 西南交通大学学报, 2024, 59(1): 94-103.

    LI Tian, WU Song-bo, ZHANG Ji-ye. Effects of air supply modes on ventilation and respiratory pollutant dispersion characteristics of high-speed trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 94-103. (in Chinese)
    [32] XING Ji, LIU Zhen-yi, HUANG Ping, et al. Experimental and numerical study of the dispersion of carbon dioxide plume[J]. Journal of Hazardous Materials, 2013, 256/257: 40-48. doi: 10.1016/j.jhazmat.2013.03.066
  • 加载中
图(15)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-27
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回