Monitoring method reconfiguration of expressway transportation volume after significant adjustment of toll collection mode
-
摘要: 阐明了高速公路联网收费数据结构的新变化,改进了运输量监测指标体系;鉴于车货总质量和车型识别数据可靠性严重降低,重构了运输量监测方法;建立了29×29省际客运和货运交流矩阵,分析了京津冀、长三角、珠三角3个经济区的区内运量比;提出了新形势下运输量统计基数调查方法和速度统计中干扰因素的排除方法;通过对比2009~2019年运输量的同比增长率和2019~ 2021年的年均增长率,验证了运输量监测方法的可行性和延续性;分析了旅客行程和货物运距的省内和跨省全路径特征。研究结果表明:2009~2019年货运量、货物周转量的平均同比增长率较2019~2021年的年均增长率分别偏离了2.59%、2.19%;1类客车客运量、旅客周转量分别占总客运量、总旅客周转量的比例在2019~2021年的年均增长率较2009~2019年的平均同比增长率分别提升了0.32%、0.25%,证明重构的运输量监测方法可行,指标延续性良好;限定206 km以内的省内ETC客货车流为约束条件可有效排除速度统计中的干扰因素,客车和货车平均速度分别提升了1.76%、10.38%;根据2021年车辆全路径行驶里程数据,88.86%的旅客行程和81.67%的货物运距分布集中在200 km以内,200 km以内的旅客行程和货物运距集中在50 km以内,集中度为58.09%~67.76%;收费模式调整后,3类货车省内车流的货物运距提升了9.06%,其他车型省内车流的货物运距降低了6.27%~16.81%,6类货车跨省车流的货物运距降低了4.60%,而其他车型跨省车流的货物运距提升了3.21%~8.89%。Abstract: The new changes in the data structure of expressway network toll collection were clarified, and the index system of transportation volume monitoring (TVM) was improved. In view of the serious reduction in the reliability of gross mass and vehicle type identification data, the method of TVM was reconfigured. The 29×29 interprovincial passenger transport and freight transport exchange matrix was established, and the regional transportation volume rates of the economic zones of Jing-Jin-Ji, Yangtze River Delta, and Pearl River Delta were analyzed. The investigation method of the cardinal number of transportation volume statistics and the elimination method of interference factors in speed statistics under new situation were proposed. By comparing the year-on-year (YoY) growth rates of transport volume from 2009 to 2019 with the average annual growth rates from 2019 to 2021, the feasibility and continuity of the method of TVM were verified, and the characteristics of the whole route within and across the province for passenger trips and freight distance were analyzed. Analysis results show that the average YoY increase rates of freight volume and freight turnover from 2009 to 2019 have a deviation of 2.59% and 2.19% from the average annual growth rates from 2019 to 2021. The proportions of the average annual growth rates of passenger transport volume and passenger turnover of Class 1 cars from 2019 to 2021 in total passenger transport volume and passenger turnover are 0.32% and 0.25% higher than the average YoY growth rates from 2009 to 2019, respectively. It proves that the reconfigured method of TVM is feasible, and the indicator continuity is good. The electronic toll collection (ETC) passenger car and truck flow limited to 206 km within the province can effectively eliminate the interference factors in speed statistics, and the average speeds of passenger cars and trucks increase by 1.76% and 10.38%, respectively. According to the full path data of vehicles in 2021, 88.86% of passenger trips and 81.67% of freight distances are concentrated within 200 km. The passenger trips and freight distances within 200 km are concentrated within 50 km, with concentration rates of 58.09%-67.76%. After the adjustment of the toll collection mode, the freight distance of Class 3 trucks within the province increases by 9.06%, and those of other class trucks within the province decrease by 6.27%-16.81%. The freight distance of Class 6 trucks across the province decreases by 4.60%, and those of other class trucks increase by 3.21%-8.89%.
-
表 1 高速公路运输量基础指标层重构
Table 1. Reconfiguration on basic indice set of expressway transportation volume
统计指标 统计方法 统计依据 客运量 $P=\sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} c_{j k} Q_{1 j k}+\sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} c_{j k} Q_{3 j k}$ 出入口站、客车车型、终点省份、省界门架、每车平均载客量 旅客周转量 $T_{\mathrm{P}}=\sum\limits_{i=1}^2 \sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} c_{j k} Q_{i j k} M_{i j k}$ 出入口站、客车车型、终点省份、省界门架、行驶里程、每车平均载客量 货运量 $F=\sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} f_{j k} Q_{1 j k}+\sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} f_{j k} Q_{3 j k}$ 出入口站、货车车型、终点省份、省界门架、总质量、每车平均载货量 货物周转量 $T_F=\sum\limits_{i=1}^2 \sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} f_{j k} Q_{i j k} M_{i j k}$ 出入口站、货车车型、终点省份、省界门架、总质量、行驶里程、每车平均载货量 运输密度 DP=TP/L;DF=TF/L 旅客周转量、货物周转量、通车里程 旅客行程、货物运距 SP=TP/P;SF=TF/F 旅客周转量、货物周转量、客运量、货运量 客车平均运行速度 $V_{\mathrm{P}}=\sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} M_{3 j k} / \sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} \Delta t_{3 j k}$ 出入口站、出入口时间、客车车型、行驶里程(206 km以内)、省界门架、ETC标识 货车平均运行速度 $V_{\mathrm{F}}=\sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} M_{3 j k} / \sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} \Delta t_{3 j k}$ 出入口站、出入口时间、货车车型、行驶里程(206 km以内)、省界门架、ETC标识 表 2 2012年与2021年京津冀高速公路cjk
Table 2. cjk on expressway Jing-Jin-Ji region in 2012 and 2021
年份 省(市) 不同车型的cjk 平均每站可采集的最低样本数/个 1 2 3 4 2012 北京 2.61 11.65 28.22 34.33 788 天津 2.53 4.97 23.75 41.33 482 河北 2.91 5.66 27.04 34.47 677 2021 北京 1.84 3.00 14.00 32.00 730 天津 2.20 4.51 16.22 31.23 529 河北 2.05 6.00 15.62 21.00 711 表 3 2019、2021年车辆运行速度统计结果对比
Table 3. Comparison of statistical results of vehicle speed in 2019 and 2021
车辆分类 车型分类 2019年平均速度/(km·h-1) 2021年平均速度/(km·h-1) 同比增长率/% 客车 1 85.64 87.05 1.65 2 78.24 80.00 2.25 3 78.85 80.18 1.69 4 78.72 78.49 -0.29 货车 1 74.40 74.76 0.48 2 66.72 71.17 6.67 3 63.79 69.83 9.47 4 62.39 68.86 10.37 5 61.17 67.62 10.54 6 62.26 68.84 10.57 表 4 2009~2019年高速公路运输量同比增长率
Table 4. Year-on-year growth rates of expressway transportation volume from 2009 to 2019
% 年份 客运量增长率 旅客周转量增长率 货运量增长率 货物周转量增长率 2009 15.60 16.47 11.48 12.83 2010 19.27 16.48 27.90 29.10 2011 16.76 19.30 13.37 13.46 2012 12.94 7.48 3.16 2.39 2013 11.85 10.04 11.46 12.06 2014 15.00 12.07 5.02 2.35 2015 8.71 -0.59 10.46 -1.68 2016 13.01 5.91 16.36 8.07 2017 11.72 9.13 15.33 16.17 2018 7.01 4.64 7.98 4.25 2019 11.87 5.73 8.72 3.62 表 5 2019、2021年省内车流和跨省车流的货物运距对比
Table 5. Comparison of provincial and interprovincial transportation distances in 2019 and 2021
km 车型分类 2019年货物运距 2021年货物运距 省内车流 跨省车流 省内车流 跨省车流 1 59.35 414.25 54.04 449.42 2 71.88 387.48 65.86 421.94 3 75.61 427.84 82.46 465.37 4 63.49 536.17 59.37 553.39 5 73.39 553.79 67.29 601.95 6 78.21 450.54 73.31 429.83 -
[1] 郭沛鑫. 车型收费模式下高速公路货车装载趋势研究[D]. 西安: 长安大学, 2021.GUO Pei-xin. Analysis and study on the trend of truck loading on expressway under the toll-by-type mode[D]. Xi'an: Chang'an University, 2021. (in Chinese) [2] PEREDERIEIEVA O, RAITH A, SCHMIDT M. Non- additive shortest path in the context of traffic assignment[J]. European Journal of Operational Research, 2018, 268(1): 325-338. doi: 10.1016/j.ejor.2018.01.017 [3] 徐进, 丁瑞, 李诗佳, 等. 山区高速公路车辆速度特性与区间限速方法[J]. 东南大学学报(自然科学版), 2022, 52(2): 352-361.XU Jin, DING Rui, LI Shi-jia, et al. Speed behavior of mountain expressway and determination method of interval speed limit[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(2): 352-361. (in Chinese) [4] 陈荫三. 运用经济杠杆长效治理超载超限运输[J]. 中国公路学报, 2004, 17(2): 94-99.CHEN Yin-san. Long-term effective solution to the overload transportation with economic lever[J]. China Journal of Highway and Transport, 2004, 17(2): 94-99. (in Chinese) [5] AHMED ALKHOORI F, KUMAR MAGHELAL P. Regulating the overloading of heavy commercial vehicles: assessment of land transport operators in Abu Dhabi[J]. Transportation Research Part A: Policy and Practice, 2021, 154(12): 287-299. [6] U.S. Census Bureau. 2017 Commodity flow survey methodology[R]. Washinton DC: U.S. Census Bureau, 2020. [7] U.S. Department of Transportation. National freight strategic plan[R]. Washinton DC: U.S. Department of Transportation, 2020. [8] U.S. Department of Transportation. Transportation statistics annual report[R]. Washinton DC: U.S. Department of Transportation, 2017. [9] 梁仁鸿, 仵思燃. 公路货物运输量统计新试行方案问题及完善思路研究[J]. 公路交通科技, 2018, 35(7): 151-158.LIANG Ren-hong, WU Si-ran. Study on problems and improvement of highway freight volume statistics trial scheme[J]. Journal of Highway and Transportation Research and Development, 2018, 35(7): 151-158. (in Chinese) [10] 秦芬芬, 王屾, 段新. 利用专项调查修正运输量历史数据的方法[J]. 统计与决策, 2019, 35(5): 17-22.QIN Fen-fen, WANG Shen, DUAN Xin. Use of special surveys to revise historical data of transportation volume[J]. Statistics and Decision, 2019, 35(5): 17-22. (in Chinese) [11] 陈小叶. 公路运输量抽样误差控制研究[D]. 西安: 长安大学, 2015.CHEN Xiao-ye. The research on controlling sampling error of road transportation volume[D]. Xi'an: Chang'an University, 2015. (in Chinese) [12] 韩大章, 周军勇, 朱荣, 等. 基于计重收费数据的大跨径桥梁荷载效应评估[J]. 桥梁建设, 2018, 48(4): 27-32.HAN Da-zhang, ZHOU Jun-yong, ZHU Rong, et al. Assessment of traffic load effects of long span bridge based on toll-by-weight data[J]. Bridge Construction, 2018, 48(4): 27-32. (in Chinese) [13] 赖见辉, 齐悦, 王扬, 等. 基于收费数据的交通运行参数估计方法[J]. 中国公路学报, 2022, 35(3): 205-215.LAI Jian-hui, QI Yue, WANG Yang, et al. Estimation method of traffic state parameters based on toll data[J]. China Journal of Highway and Transport, 2022, 35(3): 205-215. (in Chinese) [14] 杨铭, 秦华容, 陈荫三. 区域公路货物周转量结构分析与推算方法[J]. 交通运输工程学报, 2011, 11(5): 93-100. doi: 10.19818/j.cnki.1671-1637.2011.05.015YANG Ming, QIN Hua-rong, CHEN Yin-san. Structure analysis and calculation method of freight turnover for regional highway[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 93-100. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2011.05.015 [15] 闫晟煜, 肖润谋. 基于收费数据的高速公路运输量指标特征[J]. 交通运输工程学报, 2018, 18(6): 112-120. doi: 10.3969/j.issn.1671-1637.2018.06.012YAN Sheng-yu, XIAO Run-mou. Index characteristics of expressway transportation volume based on toll collection data[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 112-120. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.06.012 [16] 张彭, 霍恩泽, 王英平, 等. 自动化公路货物运输量统计方法[J]. 中国公路学报, 2021, 34(12): 302-312.ZHANG Peng, HUO En-ze, WANG Ying-ping, et al. Automated statistical methods for highway freight volume[J]. China Journal of Highway and Transport, 2021, 34(12): 302-312. (in Chinese) [17] 姚振兴, 许心越, 邵海鹏, 等. 基于手机GPS定位数据的交通方式换乘点识别方法研究[J]. 中国公路学报, 2021, 34(12): 276-287.YAO Zhen-xing, XU Xin-yue, SHAO Hai-peng, et al. Method for traffic mode transfer behavior identification by using smartphone GPS data[J]. China Journal of Highway and Transport, 2021, 34(12): 276-287. (in Chinese) [18] ZHOU C R, JIA H F, JUAN Z C, et al. A data-driven method for trip ends identification using large-scale smartphone-based GPS tracking data[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 2096-2110. doi: 10.1109/TITS.2016.2630733 [19] 夏晶, 于丹阳, 郑鑫臻, 等. 基于手机信令的全社会公路旅客出行量测算方法[J]. 交通运输研究, 2021, 7(3): 102-110.XIA Jing, YU Dan-yang, ZHENG Xin-zhen, et al. Calculation method of social highway passenger trip volume based on mobile signaling[J]. Transport Research, 2021, 7(3): 102-110. (in Chinese) [20] ALEXANDER L, JIANG S, MURGA M, et al. Origin-destination trips by purpose and time of day inferred from mobile phone data[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 240-250. doi: 10.1016/j.trc.2015.02.018 [21] 余绪金, 许俊. 一种基于有向图的高速公路多义性路径贝叶斯识别方法[J]. 公路交通科技, 2018, 35(11): 110-115.YU Xu-jin, XU Jun. A Bayesian recognition method for expressway ambiguity path identification based on digraph[J]. Journal of Highway and Transportation Research and Development, 2018, 35(11): 110-115. (in Chinese) [22] SHAYGAN M, MEESE C, LI W X, et al. Traffic prediction using artificial intelligence: review of recent advances and emerging opportunities[J]. Transportation Research Part C: Emerging Technologies, 2022, 145(12): 103921. [23] 杨鹏飞. 取消省界收费站对高速公路车辆运行影响分析研究[D]. 西安: 长安大学, 2021.YANG Peng-fei. Analysis and research on the influence of canceling provincial border toll stations on expressway vehicle operation[D]. Xi'an: Chang'an University, 2021. (in Chinese) [24] 陈荫三, 肖润谋, 闫晟煜, 等. 2019中国高速公路运输量统计调查分析报告[M]. 北京: 人民交通出版社股份有限公司, 2020.CHEN Yin-san, XIAO Run-mou, YAN Sheng-yu, et al. Statistics and Analysis Report of Expressway of China in 2019[M]. Beijing: China Communications Press Co., Ltd., 2020. (in Chinese) [25] ABUZWIDAH M, ABDEL-ATY M. Safety assessment of the conversion of toll plazas to all-electronic toll collection system[J]. Accident Analysis and Prevention, 2015, 80(7): 153-161. [26] 闫晟煜, 肖润谋, 刘继祥, 等. 高速公路货车空驶指标统计与规律分析[J]. 铁道运输与经济, 2022, 44(8): 83-90.YAN Sheng-yu, XIAO Run-mou, LIU Ji-xiang, et al. Index statistics and law analysis of unloaded truck on expressways in China[J]. Railway Transport and Economy, 2022, 44(8): 83-90. (in Chinese) [27] 徐进, 杨子邈, 陈钦, 等. 基于电子不停车收费数据的山区高速公路车速分布与车型分类研究[J]. 交通运输系统工程与信息, 2022, 22(5): 75-84, 116.XU Jin, YANG Zi-miao, CHEN Qin, et al. Speed distribution and vehicle type classification of mountain expressway based on electronic toll collection data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 7 5-84, 116. (in Chinese) [28] 王翠, 胡昊天, 邓三鸿. 面向道路交通违法行为的事理图谱构建技术[J]. 交通信息与安全, 2022, 40(1): 36-44.WANG Cui, HU Hao-tian, DENG San-hong. Development of a knowledge base for reasoning penalty for traffic violations based on event evolutionary graph[J]. Journal of Transport Information and Safety, 2022, 40(1): 36-44. (in Chinese) [29] VALLEJO-BORDA J A, GIESEN R, BASNAK P, et al. Characterising public transport shifting to active and private modes in South American capitals during the COVID-19 pandemic[J]. Transportation Research Part A: Policy and Practice, 2022, 164(10): 186-205. [30] MASIERO L, HENSHER D A. Freight transport distance and weight as utility conditioning effects on a stated choice experiment[J]. Journal of Choice Modelling, 2012, 5(1): 64-76.