-
摘要: 为提高虚拟编组列车的协同跟踪效率和编队的稳定性,提出了一种基于分布式模型预测控制(DMPC)的多列车交互协同跟踪控制方法,基于单元列车动力学分析建立了虚拟编组领导者-跟随者列车双向拓扑结构的状态空间模型,以改善单向拓扑结构的局限性,使得通信结构更稳固;在代价指标函数中引入邻接系统状态信息,并与自身状态信息进行加权融合,设计了改进的DMPC算法,在运行速度限制、距离限制和控制量限制等约束条件下,通过求解改进的代价指标函数得到了列车最优控制量和最优状态量,实现了虚拟编组列车的分布式协同控制,并从理论上证明了算法的可行性与闭环稳定性;采用实验室配备的列车追踪运行半实物仿真系统进行仿真,以4列CRH380A单元列车组成的虚拟编组列车为控制对象,使其跟踪设定的期望速度曲线,并与其他传统算法进行了对比。仿真结果表明:在不同初始条件下,虚拟编组列车的距离误差和速度误差均能在300 s后收敛,控制输出能满足乘客舒适性要求,且各单元列车在收到速度调整指令后仍可保持稳定编组队形;采用提出的方法得到的虚拟编组列车的速度和距离均方根误差分别为3.32×10-8 km·h-1和6.11×10-7 m,相比传统方法均降低了99.99%,可见,提出的方法的控制跟踪性能优于传统控制方法,且各单元列车的采样时刻仿真时长均能保证在3 ms内,满足高速列车控制系统的要求。Abstract: To improve the cooperative tracking efficiency and stability of virtual coupled trains, a multi-train interactive cooperative tracking control method was proposed based on the distributed model predictive control (DMPC). A state-space model of virtual coupled leader-follower trains bidirectional topology was established based on the unit train dynamics analysis, so as to improve the limitation of unidirectional topology and make the communication structure more stable. The improved DMPC algorithm was designed by introducing the neighboring system state information into the cost index function and weighting it with the self-state information. Under the constraints of running velocity limit, distance limit, and control quantity limit, the optimal control quantity and state quantity of trains were obtained by solving the improved cost index function, the distributed cooperative control of virtual coupled trains was realized, and the feasibility and closed-loop stability of the algorithm were theoretically proven. The semi-physical simulation system for train tracking and running in the laboratory was used for simulation. The virtual coupled trains consisting of four CRH380A unit trains were controlled to track a specified velocity curve and compared the proposed algorithm with other traditional algorithms. Simulation results indicate that under different initial conditions, the distance and velocity errors of virtual coupled trains can converge after 300 s, the control output can meet the requirements of passenger comfort, and each unit train can still maintain a stable coupled formation after receiving the velocity adjustment instruction. The root mean square errors of velocity and distance of virtual coupled trains obtained by the proposed method are 3.32×10-8 km·h-1 and 6.11×10-7 m, respectively, which are 99.99% lower than traditional methods. Therefore, the control and tracking performance of the proposed method is superior to that of traditional control methods, and the sampling time simulation duration of each unit train can be guaranteed within 3 ms, meeting the requirements of high-speed train control system.
-
表 1 系统参数
Table 1. System parameters
参数 取值 单元列车质量m/t 480 单元列车车长L/m 100 基本运行阻力系数c0/(N·kg-1) 0.755 0 基本运行阻力系数c1/(N·h·kg-1·km-1) 0.006 36 基本运行阻力系数c2/(N·h2·kg-1·km-2) 0.000 115 最大加速度Umax(t)/(m·s-2) 1 最小加速度Umin(t)/(m·s-2) 1 表 2 测试参数
Table 2. Test parameters
试验编号 初始速度误差/(km·h-1) 初始距离误差/m ev0, 1(0) ev1, 2(0) ev2, 3(0) es0, 1(0) es1, 2(0) es2, 3(0) 1 -5 10 -5 10 20 10 2 5 -10 10 15 25 10 3 -10 5 5 -5 10 -20 4 10 -5 -5 -10 5 10 表 3 列车性能调整比较
Table 3. Comparison of train performance adjustment
试验编号 性能 初始状态 稳定状态 1 各单元列车速度/(km·h-1) v0(t) 280 280 v1(t) 285 280 v2(t) 275 280 v3(t) 280 280 各单元列车间距/m es0, 1(t) 110 100 es1, 2(t) 120 100 es2, 3(t) 110 100 2 各单元列车速度/(km·h-1) v0(t) 280 280 v1(t) 275 280 v2(t) 285 280 v3(t) 275 280 各单元列车间距/m es0, 1(t) 115 100 es1, 2(t) 125 100 es2, 3(t) 110 100 3 各单元列车速度/(km·h-1) v0(t) 280 280 v1(t) 290 280 v2(t) 285 280 v3(t) 280 280 各单元列车间距/m es0, 1(t) 95 100 es1, 2(t) 110 100 es2, 3(t) 80 100 4 各单元列车速度/(km·h-1) v0(t) 280 280 v1(t) 270 280 v2(t) 275 280 v3(t) 280 280 各单元列车间距/m es0, 1(t) 90 100 es1, 2(t) 105 100 es2, 3(t) 110 100 表 4 算法性能指标对比
Table 4. Comparison of algorithm performance indexes
算法 Mev/(km·h-1) Mes/m W/(m2·s-4) CMPC 1.08×10-3 0.140 2 5.959 2 DMPC 8.12×10-6 2.80×10-4 3.772 5 IMDMPC 3.32×10-8 6.11×10-7 3.579 4 -
[1] DI MEO C, DI VAIO M, FLAMMINI F, et al. ERTMS/ETCS virtual coupling: proof of concept and numerical analysis[J]. IEEE transactions on intelligent transportation systems, 2019, 21(6): 2545-2556. [2] FLAMMINI F, MARRONE S, NARDONE R, et al. Towards railway virtual coupling[C]//IEEE. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference (ESARS-ITEC). New York: IEEE, 2018: 1-6. [3] 曹源, 温佳坤, 马连川. 重大疫情下的列车动态编组与调度[J]. 交通运输工程学报, 2020, 20(3): 120-128. doi: 10.19818/j.cnki.1671-1637.2020.03.011CAO Yuan, WEN Jia-kun, MA Lian-chuan. Dynamic marshalling and scheduling of trains in major epidemics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 120-128. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.03.011 [4] BOCK U, BIKKER G. Design and development of a future freight train concept—"virtually coupled train formations"[J]. IFAC Proceedings Volumes, 2000, 33(9): 395-400. doi: 10.1016/S1474-6670(17)38176-4 [5] STÄNDER T, DREWES J, BRAUN I, et al. Operational and safety concepts for railway operation with virtual train-sets[J]. IFAC Proceedings Volumes, 2006, 39(12): 261-266. doi: 10.3182/20060829-3-NL-2908.00046 [6] DUAN Hua-yu, SCHMID F. Optimised headway distance moving block with capacity analysis[C]//IEEE. 2018 International Conference on Intelligent Rail Transportation (ICIRT). New York: IEEE, 2018: 1-5. [7] 刘岭. 基于虚拟耦合的列车群体智能控制技术研究及展望[J]. 铁路通信信号工程技术, 2020, 17(2): 1-9. doi: 10.3969/j.issn.1673-4440.2020.02.001LIU Ling. Research and prospect of intelligent control technology for virtually coupled train formation[J]. Railway Signalling and Communication, 2020, 17(2): 1-9. (in Chinese) doi: 10.3969/j.issn.1673-4440.2020.02.001 [8] KAVATHEKAR P, CHEN Y Q. Vehicle platooning: a brief survey and categorization[C]//ASME. Proceedings of ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Washington DC: ASME, 2011: 829-845. [9] 刘亚飞. 干扰条件下虚拟编组列车队形稳定的控制方法[D]. 北京: 北京交通大学, 2022.LIU Ya-fei. Stable platoon control for virtually coupled train set under interference conditions[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese) [10] NAUS G J L, VUGTS R P A, PLOEG J, et al. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279. doi: 10.1109/TVT.2010.2076320 [11] KNORN S, DONAIRE A, AGÜERO J C, et al. Passivity-based control for multi-vehicle systems subject to string constraints[J]. Automatica, 2014, 50(12): 3224-3230. doi: 10.1016/j.automatica.2014.10.038 [12] 朱旭, 张泽华, 闫茂德. 含输入时延与通信时延的车辆队列PID控制系统稳定性[J]. 交通运输工程学报, 2022, 22(3): 184-198. doi: 10.19818/j.cnki.1671-1637.2022.03.015ZHU Xu, ZHANG Ze-hua, YAN Mao-de. Stability of PID control system for vehicle platoon with input delay and communication delay[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 184-198. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.03.015 [13] FELEZ J, KIM Y, BORRELLI F. A model predictive control approach for virtual coupling in railways[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2728-2739. doi: 10.1109/TITS.2019.2914910 [14] LIU Ya-fei, ZHOU Yang, SU Shuai, et al. An analytical optimal control approach for virtually coupled high-speed trains with local and string stability[J]. Transportation Research Part C: Emerging Technologies, 2021, 125: 102886. doi: 10.1016/j.trc.2020.102886 [15] 张友兵, 刘岭. 基于虚拟编组的列车控制系统研究[J]. 铁道工程学报, 2022, 39(3): 94-100.ZHANG You-bing, LIU Ling. Research on the train control system based on virtual[J]. Journal of Railway Engineering, 2022, 39(3): 94-100. (in Chinese) [16] 宋志丹, 徐效宁, 李辉, 等. 面向虚拟编组的列控技术研究[J]. 铁道标准设计, 2019, 63(6): 155-159.SONG Zhi-dan, XU Xiao-ning, LI Hui, et al. Study on virtual-coupling-orientated train control technique[J]. Railway Standard Design, 2019, 63(6): 155-159. (in Chinese) [17] SU Shuai, LIU Wen-tao, ZHU Qing-yang, et al. A cooperative collision-avoidance control methodology for virtual coupling trains[J]. Accident Analysis and Prevention, 2022, 173: 106703. doi: 10.1016/j.aap.2022.106703 [18] SU Shuai, SHE Jiang-feng, WANG Di, et al. A stabilized virtual coupling scheme for a train set with heterogeneous braking dynamics capability[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103947. doi: 10.1016/j.trc.2022.103947 [19] XUN Jing, LI Yan-yan, LIU Rong-hui, et al. A survey on control methods for virtual coupling in railway operation[J]. IEEE Open Journal of Intelligent Transportation Systems, 2022, 3: 838-855. doi: 10.1109/OJITS.2022.3228077 [20] WU Qing, GE Xiao-hua, HAN Qing-long, et al. Railway virtual coupling: a survey of emerging control techniques[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(5): 3239-3255. [21] WANG Xi, HU Ming-yao, WANG Hong-wei, et al. Formation control for virtual coupling trains with parametric uncertainty and unknown disturbances[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2023, 70(9): 3429-3433. [22] LIU Yu, OU Dong-xiu, YANG Yuan-xiang, et al. A method for maintaining virtually coupled states of train convoys[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(2): 243-252. [23] WANG Hong-wei, ZHAO Qian-qian, LIN Si-yu, et al. A reinforcement learning empowered cooperative control approach for ⅡoT-based virtually coupled train sets[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4935-4945. [24] XUN Jing, YIN Jia-teng, LIU Rong-hui, et al. Cooperative control of high-speed trains for headway regulation: a self-triggered model predictive control based approach[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 106-120. [25] CHEN Ming-liang, XUN Jing, LIU Ya-fei. A coordinated collision mitigation approach for virtual coupling trains by using model predictive control[C]//IEEE. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2020: 1-6. [26] SU Shai, SHE Jiang-feng, LI Kai-cheng, et al. A nonlinear safety equilibrium spacing-based model predictive control for virtually coupled train set over gradient terrains[J]. IEEE Transactions on Transportation Electrification, 2021, 8(2): 2810-2824. [27] XUN Jing, CHEN Ming-liang, LIU Ya-fei, et al. An overspeed protection mechanism for virtual coupling in railway[J]. IEEE Access, 2020, 8: 187400-187410. [28] 杨辉, 张芳, 张坤鹏, 等. 基于分布式模型的动车组预测控制方法[J]. 自动化学报, 2014, 40(9): 1912-1921.YANG Hui, ZHANG Fang, ZHANG Kun-peng, et al. Predictive control using a distributed model for electric multiple unit[J]. Acta Automatica Sinica, 2014, 40(9): 1912-1921. (in Chinese) [29] 李中奇, 金柏, 杨辉, 等. 高速动车组强耦合模型的分布式滑模控制策略[J]. 自动化学报, 2020, 46(3): 495-508.LI Zhong-qi, JIN Bai, YANG Hui, et al. Distributed sliding mode control strategy for high-speed EMUs with strong coupling model[J]. Acta Automatica Sinica, 2019, 46(3): 495-508. (in Chinese) [30] 赵凯辉, 邱鹏旗, 张昌凡, 等. 高速列车分布式速度协同跟踪控制方法研究[J]. 电子测量与仪器学报, 2022, 36(9): 12-20.ZHAO Kai-hui, QIU Peng-qi, ZHANG Chang-fan, et al. Research on distributed speed coordinated tracking control for high-speed train[J]. Journal of Electronic Measurement and Instrument, 2022, 36(9): 12-20. (in Chinese) [31] 赵超轮, 戴邵武, 赵国荣, 等. 基于分布式模型预测控制的无人机编队控制[J]. 控制与决策, 2022, 37(7): 1763-1771.ZHAO Chao-lun, DAI Shao-wu, ZHAO Guo-rong, et al. Formation control of multi-UAV based on distributed model predictive control algorithm[J]. Control and Decision, 2022, 37(7): 1763-1771. (in Chinese) [32] 陈龙, 何德峰, 李壮. 约束非线性车辆队列分布式多目标模型预测控制[J]. 控制与决策, 2022, 37(12): 3122-3128.CHEN Long, HE De-feng, LI Zhuang. Distributed multi-objective model predictive control for constrained nonlinear vehicle platoons[J]. Control and Decision, 2022, 37(12): 3122-3128. (in Chinese) [33] 戴邵武, 赵超轮, 李飞, 等. 一种多约束下无人机编队的模型预测控制算法[J]. 控制与决策, 2023, 38(3): 706-714.DAI Shao-wu, ZHAO Chao-lun, LI Fei, et al. An algorithm of model predictive control for formation control of a multi-UAV system considering multiple constraints[J]. Control and Decision, 2023, 38(3): 706-714. (in Chinese) [34] LIU Ya-fei, LIU Rong-hui, WEI Chong-feng, et al. Distributed model predictive control strategy for constrained high-speed virtually coupled train set[J]. IEEE Transactions on Vehicular Technology, 2021, 71(1): 171-183. [35] 李中奇, 周靓, 杨辉, 等. 基于预测控制的动车组迭代学习控制方法[J]. 交通运输工程学报, 2023, 23(1): 280-290. doi: 10.19818/j.cnki.1671-1637.2023.01.021LI Zhong-qi, ZHOU Liang, YANG Hui, et al. Iterative learning control method for EMUs based on predictive control[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 280-290. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.01.021 [36] LIU Ya-fei, ZHOU Yang, SU Shuai, et al. Control strategy for stable formation of high-speed virtually coupled trains with disturbances and delays[J]. Computer-Aided Civil and Infrastructure Engineering, 2023, 38(5): 621-639. [37] 罗啸林, 唐涛, 林炳跃, 等. 一种缩短虚拟编组列车追踪间距的鲁棒模型预测控制方法[J]. 铁道学报, 2023, 45(8): 68-76.LUO Xiao-lin, TANG Tao, LIN Bing-yue, et al. A robust model predictive control method to shorten the tracking distance of virtual marshalling trains[J]. Journal of the China Railway Society, 2023, 45(8): 68-76. (in Chinese) [38] SHANGGUAN Wei, LUO Rui, SONG Hong-yu, et al. High-speed train platoon dynamic interval optimization based on resilience adjustment strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(5): 4402-4414.