留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单模态Lamb波检测板类结构损伤识别成像方法

田亮 王宇宁 樊立龙 赵健 司志远

田亮, 王宇宁, 樊立龙, 赵健, 司志远. 单模态Lamb波检测板类结构损伤识别成像方法[J]. 交通运输工程学报, 2024, 24(6): 121-134. doi: 10.19818/j.cnki.1671-1637.2024.06.008
引用本文: 田亮, 王宇宁, 樊立龙, 赵健, 司志远. 单模态Lamb波检测板类结构损伤识别成像方法[J]. 交通运输工程学报, 2024, 24(6): 121-134. doi: 10.19818/j.cnki.1671-1637.2024.06.008
TIAN Liang, WANG Yu-ning, FAN Li-long, ZHAO Jian, SI Zhi-yuan. Imaging method for damage inentification of plate structures detected by single mode Lamb waves[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 121-134. doi: 10.19818/j.cnki.1671-1637.2024.06.008
Citation: TIAN Liang, WANG Yu-ning, FAN Li-long, ZHAO Jian, SI Zhi-yuan. Imaging method for damage inentification of plate structures detected by single mode Lamb waves[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 121-134. doi: 10.19818/j.cnki.1671-1637.2024.06.008

单模态Lamb波检测板类结构损伤识别成像方法

doi: 10.19818/j.cnki.1671-1637.2024.06.008
基金项目: 

国家自然科学基金项目 51708346

中国铁建股份有限公司科技重大专项 2020-A01

中国铁建股份有限公司科研重大专项 2023-A01

中国铁建大桥工程局集团有限公司科技创新项目 DQJ-2024-B05

天津市科技计划项目 22YDTPJC00210

详细信息
    作者简介:

    田亮(1984-),男,河北石家庄人,天津城建大学副教授,工学博士,从事高性能钢桥结构疲劳与断裂研究

  • 中图分类号: U443.31

Imaging method for damage inentification of plate structures detected by single mode Lamb waves

Funds: 

National Natural Science Foundation of China 51708346

Major Science and Technology Project of China Railway Construction Corporation Limited 2020-A01

Major Scientific Research Project of China Railway Construction Corporation Limited 2023-A01

Technology Innovation Project of China Railway Construction Bridge Engineering Bureau Group Co., Ltd. DQJ-2024-B05

Science and Technology Project of Tianjin 22YDTPJC00210

More Information
    Author Bio:

    TIAN Liang(1984-), male, associate professor, PhD, sjtu_tl@126.com

  • 摘要: 采用单模态Lamb波对带矩形预制贯穿裂缝的钢板进行了损伤检测,将激励和接收换能器以稀疏阵列的形式布置于带损伤钢板上,基于ABAQUS软件建立了Lamb波在钢板中传播的数值模型,搭建了相应的试验平台,并通过数值模拟与试验分析了Lamb波在钢板中的传播特征;基于MATLAB开发了钢板损伤定位程序,根据激励-接收换能器阵列的差值信号确定了椭圆轨迹,进而通过多组椭圆轨迹的交汇点确定了钢板的损伤位置,将多组椭圆轨迹进行数据融合,实现了钢板损伤定位并将其图像化显示;结合Lamb波损伤检测的数值仿真结果和试验数据,进一步对比了不同数据融合方法对钢板损伤定位精度的影响。研究结果表明:采用200 kHz的激励信号频率和双侧对称激励方式可以有效保证Lamb波的单模态特征,从而避免Lamb波传播时的频散效应和多模态干扰;对于单损伤钢板,幅值全加法和幅值全乘法的损伤成像误差均在5 mm以内, 对于双损伤钢板,幅值全加法的成像结果出现难以区分的赝像,损伤成像误差高达30 mm,而幅值全乘法的成像结果接近真实损伤位置,最大误差仅为4 mm,且损伤成像对比度更明显,表明幅值全乘法在预测钢板多损伤时更有优势;数值模拟与试验信号得到的双损伤钢板的定位误差在2 mm以内,验证了数值模型具有良好的损伤预测精度。

     

  • 图  1  Lamb波传播示意

    Figure  1.  Schematics of Lamb wave propagations

    图  2  Lamb波频散曲线

    Figure  2.  Lamb wave dispersion curves

    图  3  椭圆定位法原理

    Figure  3.  Principle of elliptic localization method

    图  4  Hanning窗函数时域

    Figure  4.  Time-domain of Hanning window function

    图  5  钢板换能器及损伤布置

    Figure  5.  Transducer and damage arrangements on steel plates

    图  6  Lamb波激励信号

    Figure  6.  Lamb wave excitation signal

    图  7  仿真模型接收信号

    Figure  7.  Simulation model receiving signals

    图  8  Lamb波在单损伤钢板中的传播过程

    Figure  8.  Propagation processes of Lamb waves in steel plate with single damage

    图  9  Lamb波在双损伤钢板中的传播过程

    Figure  9.  Propagation processes of Lamb waves in steel plate with double damages

    图  10  数值模拟单损伤成像

    Figure  10.  Numerical simulations of single damage imaging

    图  11  数值模拟双损伤成像

    Figure  11.  Numerical simulations of double damages imaging

    图  12  Lamb波检测试验装置

    Figure  12.  Lamb wave detection experiment device

    图  13  试验接收信号

    Figure  13.  Experimental reception signals

    图  14  差信号包络

    Figure  14.  Differential signal envelopes

    图  15  试验单损伤成像

    Figure  15.  Experimental single damage imagings

    图  16  试验双损伤成像

    Figure  16.  Experimental double damages imagings

    表  1  钢材尺寸及性能参数

    Table  1.   Steel dimensions and performance parameters

    参数 尺寸/mm 杨氏模量/GPa 泊松比 密度/(kg·m-3)
    数值 500(长)×500(宽)×5(厚) 206 0.33 7 850
    下载: 导出CSV

    表  2  换能器在钢板中的坐标

    Table  2.   Coordinates of transducers in steel plates

    换能器编号 x/mm y/mm
    T1(T1’) 160 340
    T2(T2’) 250 340
    T3(T3’) 340 340
    T4(T4’) 160 250
    T5(T5’) 340 250
    T6(T6’) 160 160
    T7(T7’) 250 160
    T8(T8’) 340 160
    下载: 导出CSV
  • [1] TUA P S, QUEK S T, WANG Q. Detection of cracks in plates using piezo-actuated Lamb waves[J]. Smart Materials and Structures, 2004, 13(4): 643-660. doi: 10.1088/0964-1726/13/4/002
    [2] GANGADHARAN R, BHATM R M, MURTHY C R L, et al. A geodesic-based triangulation technique for damage location in metallic and composite plates[J]. Smart Materials and Structures, 2010, 19(11): 115010. doi: 10.1088/0964-1726/19/11/115010
    [3] HONG Ming, SU Zhong-qing, LU Ye, et al. Locating fatigue damage using temporal signal features of nonlinear Lamb waves[J]. Mechanical Systems and Signal Processing, 2015, 60/61: 182-197. doi: 10.1016/j.ymssp.2015.01.020
    [4] WU Zhan-jun, LIU Ke-hai, WANG Yi-shou, et al. Validation and evaluation of damage identification using probability-based diagnostic imaging on a stiffened composite panel[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(16): 2181-2195. doi: 10.1177/1045389X14549873
    [5] LIU Ke-hai, MA Shu-yi, WU Zhan-jun, et al. A novel probability-based diagnostic imaging with weight compensation for damage localization using guided waves[J]. Structural Health Monitoring, 2016, 15(2): 162-173. doi: 10.1177/1475921715627491
    [6] SU Chen-hui, JIANG Ming-shun, LIANG Jian-ying, et al. Damage localization of composites based on difference signal and Lamb wave tomography[J]. Materials, 2020, 13(1): 218-218. doi: 10.3390/ma13010218
    [7] LI Jun-han, WANG Shao-feng, MAO Xin, et al. Accelerating algorithm for total focusing method imaging based on optimization of full matrix data[J]. Russian Journal of Nondestructive Testing, 2023, 59(2): 161-170. doi: 10.1134/S1061830922600642
    [8] MANSUR RODRIGUES FILHO J F, BÉLANGER P. Global total focusing method through digital twin and robotic automation for ultrasonic phased array inspection of complex components[J]. NDT and E International, 2023, 137: 102833. doi: 10.1016/j.ndteint.2023.102833
    [9] LUO Zhong-bing, ZHANG Song, JIN Shi-jie, et al. Heterogeneous ultrasonic time-of-flight distribution in multidirectional CFRP corner and its implementation into total focusing method imaging[J]. Composite Structures, 2022, 294: 115789. doi: 10.1016/j.compstruct.2022.115789
    [10] 张海燕, 孙修立, 曹亚萍, 等. 基于时间反转理论的聚焦Lamb波结构损伤成像[J]. 物理学报, 2010, 59(10): 7111-7119. doi: 10.7498/aps.59.7111

    ZHANG Hai-yan, SUN Xiu-li, CAO Ya-ping, et al. Structural damage imaging based on time-reversal theory for focusing of Lamb waves[J]. Acta Physica Sinica, 2010, 59(10): 7111-7119. (in Chinese) doi: 10.7498/aps.59.7111
    [11] IHN J B, CHANG Fu-kuo. Pitch-catch active sensing methods in structural health monitoring for aircraft structures[J]. Structural Health Monitoring, 2008, 7(1): 5-19. doi: 10.1177/1475921707081979
    [12] HAMEEDM S, LI Zheng, CHEN Jian-lin, et al. Lamb-wave- based multistage damage detection method using an active PZT sensor network for large structures[J]. Sensors, 2019, 19: 2010-2010. doi: 10.3390/s19092010
    [13] DAI Wei, WANG Xiang-yu, ZHANG Meng, et al. Corrosion monitoring method of porous aluminum alloy plate hole edges based on piezoelectric sensors[J]. Sensors, 2019, 19: 1106. doi: 10.3390/s19051106
    [14] KIM S, KIM N H, LEE S. Study on Lamb wave propagation in a cracked plate using numerical simulations[J]. Journal of Mechanical Science and Technology, 2023, 37(8): 4217-4225. doi: 10.1007/s12206-023-0737-6
    [15] SHI Lin-ze, CHENG Bin, LI De-rui, et al. Fatigue crack monitoring in OSDs using Lamb wave longitudinal transmission[J]. Journal of Constructional Steel Research, 2024, 212: 108245. doi: 10.1016/j.jcsr.2023.108245
    [16] 杨晓华, 刘学君, 马广婷. 基于多频率数据融合的Lamb波损伤定位研究[J]. 声学技术, 2017, 36(2): 133-139.

    YANG Xiao-hua, LIU Xue-jun, MA Guang-ting. Research on multi-frequency data fusion based Lamb wave damage localization[J]. Technical Acoustics, 2017, 36(2): 133-139. (in Chinese)
    [17] 许颖, 陈锐, 卢苗苗, 等. 考虑材料各向异性的纤维增强聚合物基复合材料板损伤Lamb波检测和定位[J]. 复合材料学报, 2019, 36(2): 389-399.

    XU Ying, CHEN Rui, LU Miao-miao, et al. Detection and location of damage in fiber reinforced plastics plates by Lamb wave considering material anisotropy[J]. Acta Materiae Compositae Sinica, 2017, 36(2): 389-399. (in Chinese)
    [18] 骆英, 毛雨欣. 一种基于Lamb波的智能结构损伤识别方法[J]. 实验力学, 2022, 37(3): 305-314.

    LUO Ying, MAO Yu-xin. An intelligent structural damage recognition method based on Lamb wave[J]. Journal of Experimental Mechanics, 2022, 37(3): 305-314. (in Chinese)
    [19] 姜跃栋, 张伦伟, 杨国标. 基于Lamb波的金属薄板载荷定位方法[J]. 无损检测, 2016, 38(4): 26-30.

    JIANG Yue-dong, ZHANG Lun-wei, YANG Guo-biao. Load localization method for a metallic plate based on Lamb wave[J]. Nondestructive Testing, 2016, 38(4): 26-30. (in Chinese)
    [20] 王高平, 李波, 徐志勇, 等. 基于ABAQUS的Lamb波时间反转薄板损伤研究[J]. 压电与声光, 2021, 43(3): 346-351.

    WANG Gao-ping, LI Bo, XU Zhi-yong, et al. Study on damge detection of thin plate by time reversal method based on ABAQUS[J]. Piezoelectrics and Acoustiooptics, 2021, 43(3): 346-351. (in Chinese)
    [21] 石林泽, 程斌, 董华能, 等. 基于卷积神经网络的钢桥面板疲劳裂纹识别方法研究[J]. 桥梁建设, 2023, 53(4): 62-69.

    SHI Lin-ze, CHENG Bin, DONG Hua-neng, et al. A research on fatigue crack identification for steel bridge deck plates based on convolutional neural network[J]. Bridge Construction, 2023, 53(4): 62-69. (in Chinese)
    [22] 许西宁, 余祖俊, 朱力强. 图解法求解Lamb波频散方程[J]. 电子测量与仪器学报, 2012, 26(11): 966-971.

    XU Xi-ning, YU Zu-jun, ZHU Li-qiang. A graphical method to solve a dispersion equation of Lamb wave[J]. Journal of Electronic Measurement and Instrumentation, 2012, 26(11): 966-971. (in Chinese)
    [23] 关立强, 祝伟光, 李义丰. Lamb波时间反转椭圆定位和层析成像混合技术研究[J]. 南京大学学报(自然科学), 2019, 55(2): 191-201.

    GUAN Li-qiang, ZHU Wei-guang, LI Yi-feng. Research on hybrid techniques of time-reversal ellipse location and tomographic imaging of Lamb wave[J]. Journal of Nanjing University (Natural Sciences), 2019, 55(2): 191-201. (in Chinese)
    [24] 刘增华, 樊军伟, 何存富, 等. 基于全向型S0模态磁致伸缩传感器的无参考缺陷成像方法研究[J]. 机械工程学报, 2015, 51(10): 8-16.

    LIU Zeng-hua, FAN Jun-wei, HE Cun-fu, et al. Research on baseline-free damage imaging method employing omni-directional S0 mode magnetostrictive transducers[J]. Journal of Mechanical Engineering, 2015, 51(10): 8-16. (in Chinese)
    [25] 刘增华, 穆云龙, 宋国荣, 等. 复合材料板Chirp激励的Lamb波成像技术研究[J]. 仪器仪表学报, 2015, 36(9): 1961-1971. doi: 10.3969/j.issn.0254-3087.2015.09.006

    LIU Zeng-hua, MU Yun-long, SONG Guo-rong, et al. Research on Lamb wave imaging technique for composite plate based on chirp excitation[J]. Chinese Journal of Scientific Instrumentation, 2015, 36(9): 1961-1971. (in Chinese) doi: 10.3969/j.issn.0254-3087.2015.09.006
    [26] LIU Zeng-hua, YU Feng-xiang, WEI Ru, et al. Image fusion based on single-frequency guided wave mode signals for structural health monitoring in composite plates[J]. Materials Evaluation, 2013, 71(12): 1434-1443. http://cekong.bjut.edu.cn/uploads/soft/140708/7-Imaging%20fusion%20based%20on%20single-frequency%20guided%20wave%20mode%20signals%20for%20structural%20health%20monitoring%20in%20composite%20plates.pdf
    [27] 骆英, 徐彩军, 徐晨光, 等. 去除Lamb波频散的线性映射法[J]. 实验力学, 2018, 33(5): 734-742.

    LUO Ying, XU Cai-jun, XU Chen-guang, et al. On the linear mapping method for removing frequency dispersion of Lamb wave[J]. Journal of Experimental Mechanics, 2018, 33(5): 734-742. (in Chinese)
    [28] 张伟晔. 基于S0模态Lamb波的钢结构裂纹损伤识别研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    ZHANG Wei-ye. Research on crack damage identification on steel structures based on S0 mode of Lamb waves[D]. Harbin: Harbin Engineering University, 2019. (in Chinese)
    [29] YANG Bin, XUAN Fu-zhen, CHEN Shao-jie, et al. Damage localization and identification in WGF/epoxy composite laminates by using Lamb waves: experiment and simulation[J]. Composite Structures, 2017, 165: 138-147. doi: 10.1016/j.compstruct.2017.01.015
    [30] 杨斌, 胡超杰, 轩福贞, 等. 基于超声导波的压力容器健康监测Ⅰ: 波传导行为及损伤定位[J]. 机械工程学报, 2020, 56(4): 1-10.

    YANG Bin, HU Chao-jie, XUAN Fu-zhen, et al. Structural health monitoring of pressure vessel based on guided wave technology. Part Ⅰ: wave propagating and damage localization[J]. Journal of Mechanical Engineering, 2020, 56(4): 1-10. (in Chinese)
    [31] 胡暮平. 基于Lamb波非线性指标的裂纹扩展监测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.

    HU Mu-ping. Study on the crack propagation monitoring technique based on nonlinear index of Lamb wave[D]. Harbin: Harbin Engineering University, 2020. (in Chinese)
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  14
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-01
  • 刊出日期:  2024-12-25

目录

    /

    返回文章
    返回