-
摘要: 针对四轮毂驱动电动汽车中局部轮毂电机发生故障后存在的安全隐患问题,提出了一种基于模型预测控制-多系统协同分配(MPC-MSCA)的容错控制方法,以应对局部轮毂电机发生故障后输出能力不足的运行工况;搭建了14自由度四轮毂驱动车辆动力学模型,包括六自由度车身模型和4个二自由度车轮模型;参考二自由度车辆模型设计了容错控制方法,包括运动跟踪层和力矩分配层,运动跟踪层用于计算车辆正常行驶所需的总纵向力和附加横摆力矩,力矩分配层设计了优化分配方案和MSCA方案,分别应对局部轮毂电机发生故障后输出能力充足和不足2种运行工况,重点研究了MSCA控制方法的目标函数、约束条件和控制变量;利用Simulink/MATLAB和CarSim联合仿真,分别设置了直线行驶和双移线行驶2种运行环境,验证了所提MPC-MSCA控制方法的有效性。研究结果表明:相较于传统方法,在直线行驶环境下,MPC-MSCA控制方法可使车辆横摆角速度平均误差降低了31.6%,有效保障了局部轮毂电机故障时车辆的直线行驶能力;在双移线行驶环境下,质心侧偏角和横摆角速度平均误差分别降低了7.4%和6.9%,提高了局部轮毂电机故障时车辆的操纵稳定性。可见,所提容错控制方法可以确保四轮毂驱动电动汽车在1个或2个轮毂电机故障工况下满足操纵稳定性和安全性要求。Abstract: In response to the safety hazards posed by local in-wheel motor failures in four-wheel hub-drive electric vehicles, a fault-tolerant control method based on model predictive control-multi system collaborative allocation (MPC-MSCA) was proposed. The method was designed to address operating conditions characterized by insufficient output capacity following local in-wheel motor failures. A 14-degree-of-freedom (DOF) four-wheel hub-drive vehicle dynamics model was constructed, comprising a 6-DOF vehicle body model and four 2-DOF wheel models. A fault-tolerant control method was designed by referencing a 2-DOF vehicle model, which included a motion tracking layer and a torque distribution layer. The motion tracking layer was utilized to calculate the total longitudinal force and additional yaw moment required for normal vehicle operations. In the torque distribution layer, an optimization allocation scheme and a MSCA scheme were designed to respectively address operating conditions of sufficient and insufficient output capacity following local in-wheel motor failures. The objective function, constraints, and control variables of the MSCA control strategy were highlighted. The proposed MPC-MSCA control method was validated through co-simulation with Simulink/MATLAB and CarSim under two operating conditions: straight-line driving and double lane change driving. Research results show that the method reduces the average yaw velocity error of vehicles by 31.6% compared with the traditional method in a straight-line driving environment, effectively ensuring the vehicle's ability to drive straight when there is a local in-wheel motor failure. In a double lane change driving environment, the average sideslip angle error and average yaw velocity error reduce by 7.4% and 6.9%, respectively, improving the vehicle's handling stability when there is a local in-wheel motor failure. Therefore, the proposed fault-tolerant controller can ensure the four-wheel hub-drive electric vehicle meeting the handling stability and safety requirements under the condition of one or two in-wheel motor failure.
-
表 1 车辆主要参数
Table 1. Main parameters of vehicle
参数 数值 m/kg 1 240 ms /kg 1 110 a/m 1.04 b/m 1.56 hg/m 0.52 Ix/(kg·m2) 460 Iy/(kg·m2) 1 343.1 Iz/(kg·m2) 1 343.1 Bf/m 1.48 Ksfl(Ksfr)/(N·m-1) 34 950 Ksrl(Ksrr) /(N·m-1) 34 950 Csfl(Csfr)/(N·s·m-1) 2 100 Csrl(Csrr)/(N·s·m-1) 2 000 Cf /(N·rad-1) 75 700 Cr /(N·rad-1) 75 700 表 2 直线行驶环境下车辆行驶状态的量化评价
Table 2. Quantitative evaluation of vehicle driving status in straight-line driving environment
方案 质心侧偏角平均误差/(°) 横摆角速度平均误差/(°·s-1) 平均车速/(km·h-1) 质心侧偏角最大偏差/(°) 横摆角速度最大偏差/(°·s-1) CBDSA 0.052 0.038 109.13 0.073 0 0.195 CSDSA 0.020 0.038 109.71 0.038 9 0.153 MSCA 0.022 0.026 109.69 0.038 6 0.135 表 3 双移线环境下车辆行驶状态的量化评价
Table 3. Quantitative evaluation of vehicle driving status in double lane change environment
方案 质心侧偏角平均误差/(°) 横摆角速度平均误差/(°·s-1) 平均车速/(km·h-1) 质心侧偏角最大偏差/(°) 横摆角速度最大偏差/(°·s-1) CBDSA 0.208 5.136 69.60 0.54 10.76 CSDSA 0.215 5.443 69.82 0.40 9.77 MSCA 0.199 5.066 69.83 0.37 9.37 -
[1] 邹渊, 郭宁远, 张旭东, 等. 分布式电驱动车辆力矩分配控制研究现状综述[J]. 中国公路学报, 2021, 34(9): 1-25. doi: 10.3969/j.issn.1001-7372.2021.09.001ZOU Yuan, GUO Ning-yuan, ZHANG Xu-dong, et al. Review of torque allocation control for distributed-drive electric vehicles[J]. China Journal of Highway and Transport, 2021, 34(9): 1-25. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.09.001 [2] 柴凤, 于雁磊, 裴宇龙. 电传动车辆永磁轮毂电机技术现状及展望[J]. 兵工学报, 2021, 42(10): 2060-2074. doi: 10.3969/j.issn.1000-1093.2021.10.002CHAI Feng, YU Yan-lei, PEI Yu-long. State-of-the-art technology and prospects of permanent magnet in-wheel motors for electric drive vehicles[J]. Acta Armamentarii, 2021, 42(10): 2060-2074. (in Chinese) doi: 10.3969/j.issn.1000-1093.2021.10.002 [3] 王军年, 张春林, 赵梦圆, 等. 轮毂电机两挡变速器协同无动力中断换挡控制[J]. 汽车工程, 2023, 45(10): 1885-1896.WANG Jun-nian, ZHANG Chun-lin, ZHAO Meng-yuan, et al. Coordinated shift control of hub-motor two-speed transmission without power interruption[J]. Automotive Engineering, 2023, 45(10): 1885-1896. (in Chinese) [4] XUE Hong-tao, DING Dian-yong, ZHANG Zi-ming, et al. A fuzzy system of operation safety assessment using multimodel linkage and multistage collaboration for in-wheel motor[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(4): 999-1013. doi: 10.1109/TFUZZ.2021.3052092 [5] XUE Hong-tao, WU Meng, ZHANG Zi-ming, et al. Intelligent diagnosis of mechanical faults of in-wheel motor based on improved artificial hydrocarbon networks[J]. ISA Transactions, 2022, 120: 360-371. doi: 10.1016/j.isatra.2021.03.015 [6] XUE Hong-tao, SONG Zi-wei, WU Meng, et al. Intelligent diagnosis based on double-optimized artificial hydrocarbon networks for mechanical faults of in-wheel motor[J]. Sensors, 2022, 22(16): 6316. doi: 10.3390/s22166316 [7] QU Wen-tai, WU Fei-qing. Subsection nonsingular terminal sliding mode control for single winding broken fault of in-wheel-motor of electric vehicle[C]//IEEE. IEEE International Conference on Information and Automation (ICIA). New York: IEEE, 2016: 573-578. [8] CHEN Hui-peng, CHEN Xuan-wei, CHEN Chang, et al. Multidisciplinary design optimization for vehicle handling stability of steering-by-wire system[J]. The Journal of Supercomputing, 2019, 75: 2964-2985. doi: 10.1007/s11227-017-2208-2 [9] YIM S, KIM S, YUN H. Coordinated control with electronic stability control and active front steering using the optimum yaw moment distribution under a lateral force constraint on the active front steering[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230(5): 581-592. doi: 10.1177/0954407015590037 [10] 胡云, 江发潮, 陈锐, 等. 分布式电动车辆驱动系统MFAC主动容错控制[J]. 汽车工程, 2019, 41(9): 983-989, 1005.HU Yun, JIANG Fa-chao, CHEN Rui, et al. Active fault-tolerant control based on MFAC for 4 WID EV driving system[J]. Automotive Engineering, 2019, 41(9): 983-989, 1005. (in Chinese) [11] LIU Liang-jiang, SHI Ke, YUAN Xiao-fang, et al. Multiple model-based fault-tolerant control system for distributed drive electric vehicle[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41: 531. doi: 10.1007/s40430-019-2047-6 [12] ZHANG Bo-han, LU Shao-bo. Fault-tolerant control for four-wheel independent actuated electric vehicle using feedback linearization and cooperative game theory[J]. Control Engineering Practice, 2020, 101: 104510. doi: 10.1016/j.conengprac.2020.104510 [13] 肖祥慧, 史可, 袁小芳. 基于模型预测控制的电动汽车轮毂电机转矩控制研究[J]. 电子学报, 2020, 48(5): 953-959.XIAO Xiang-hui, SHI Ke, YUAN Xiao-fang. Model predictive controller-based in-wheel motor torque control system for distributed drive electric vehicle[J]. Acta Electronica Sinica, 2020, 48(5): 953-959. (in Chinese) [14] TANG Hui, CHEN Yong, ZHOU An-jian. Actuator fault- tolerant control for four-wheel-drive-by-wire electric vehicle[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 2361-2373. doi: 10.1109/TTE.2021.3136893 [15] ZHAO Qiang, ZHU Bao-quan, PEI Yu-long, et al. Integrated control of electric power steering and active suspension systems based on model predictive algorithm[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 65(4): 681-701. doi: 10.3233/JAE-201519 [16] 彭晓燕, 邢星飞, 崔庆佳, 等. 分布式电动汽车驱动力分配控制方法研究[J]. 汽车工程, 2022, 44(7): 1059-1068.PENG Xiao-yan, XING Xing-fei, CUI Qing-jia, et al. Research on driving force distribution control method of distributed electric vehicles[J]. Automotive Engineering, 2022, 44(7): 1059-1068. (in Chinese) [17] SETIAWAN J D, SAFARUDIN M, SINGH A. Modeling, simulation and validation of 14 DOF full vehicle model[C]//IEEE. International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering. New York: IEEE, 2009: 1-6. [18] 刘迎康. 分布式电驱动车辆多目标转矩优化分配与控制研究[D]. 南昌: 南昌大学, 2020.LIU Ying-kang. Research on multi-objective torque optimal distribution and control of distributed electric drive vehicles[D]. Nanchang: Nanchang University, 2020. (in Chinese) [19] WANG Jun-nian, GAO Shou-lin, WANG Kai, et al. Wheel torque distribution optimization of four-wheel independent-drive electric vehicle for energy efficient driving[J]. Control Engineering Practice, 2021, 110: 104779. doi: 10.1016/j.conengprac.2021.104779 [20] WANG Pang-wei, DENG Hui, ZHANG Juan, et al. Model predictive control for connected vehicle platoon under switching communication topology[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7817-7830. doi: 10.1109/TITS.2021.3073012 [21] CHEN Jian, LIN Cheng, LIANG Sheng, et al. A MPC-based torque distribution strategy for distributed drive electric vehicles[C]//ICEEE. International Conference on Energy, Ecology and Environment. Melbourne: ICEEE, 2018: 1-6. [22] SCHWENZER M, AY M, BERGS T, et al. Review on model predictive control: an engineering perspective[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(5): 1327-1349. doi: 10.1007/s00170-021-07682-3.pdf [23] ZHANG Hou-zhong, LIANG Jia-sheng, JIANG Hao-bin, et al. Stability research of distributed drive electric vehicle by adaptive direct yaw moment control[J]. IEEE Access, 2019, 7: 106225-106237. doi: 10.1109/ACCESS.2019.2933016 [24] 庞辉, 刘楠, 刘敏豪, 等. 基于线性时变模型预测控制的自主车辆轨迹跟踪控制器设计与验证[J]. 机械工程学报, 2022, 58(24): 264-274.PANG Hui, LIU Nan, LIU Min-hao, et al. Design and validation of trajectory tracking controller for autonomous vehicle based on linear time-varying MPC method[J]. Journal of Mechanical Engineering, 2022, 58(24): 264-274. (in Chinese) [25] 田彬, 姚柯, 王孜健, 等. 基于模型预测控制的CACC系统通信延时补偿方法[J]. 交通运输工程学报, 2022, 22(4): 361-381. doi: 10.19818/j.cnki.1671-1637.2022.04.028 TIAN Bin, YAO Ke, WANG Zi-jian, et al. Communication delay compensation method of CACC platooning system based on model predictive control[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 361-381. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.028 [26] TCHOŃ K, GÓRAL I. Optimal motion planning for non- holonomic robotic systems[J]. IFAC-Papers OnLine, 2017, 50(1): 1910-1915. doi: 10.1016/j.ifacol.2017.08.264 [27] LI Yong, ZHANG Bo-han, XU Xing. Robust control for permanent magnet in-wheel motor in electric vehicles using adaptive fuzzy neural network with inverse system decoupling[J]. Transactions of the Canadian Society for Mechanical Engineering, 2018, 42(3): 286-297. doi: 10.1139/tcsme-2018-0027 [28] 金立生, 谢宪毅, 高琳琳, 等. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.JIN Li-sheng, XIE Xian-yi, GAO Lin-lin, et al. Distributed electric vehicle stability control based on quadratic programming[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1349-1359. (in Chinese) [29] 马卫华, 李腾飞, 胡俊雄, 等. 超导EDS磁浮列车多级悬挂方案优化与动力学性能[J]. 交通运输工程学报, 2023, 23(6): 168-179. doi: 10.19818/j.cnki.1671-1637.2023.06.010 MA Wei-hua, LI Teng-fei, HU Jun-xiong, et al. Optimization on multi-stage suspension scheme and dynamics performance of superconducting EDS maglev train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 168-179. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.06.010 [30] CESPI R, GALLUZZI R, RAMIREZ-MENDOZA R A, et al. Artificial intelligence for stability control of actuated in-wheel electric vehicles with CarSim validation[J]. Mathematics, 2021, 9(23): 3120. doi: 10.3390/math9233120 -