留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层非线性扣件系统频变特性对轮轨动力特性的影响

李霞 唐伟 戴佳宇 圣小珍 王安斌

李霞, 唐伟, 戴佳宇, 圣小珍, 王安斌. 双层非线性扣件系统频变特性对轮轨动力特性的影响[J]. 交通运输工程学报, 2024, 24(6): 159-171. doi: 10.19818/j.cnki.1671-1637.2024.06.011
引用本文: 李霞, 唐伟, 戴佳宇, 圣小珍, 王安斌. 双层非线性扣件系统频变特性对轮轨动力特性的影响[J]. 交通运输工程学报, 2024, 24(6): 159-171. doi: 10.19818/j.cnki.1671-1637.2024.06.011
LI Xia, TANG Wei, DAI Jia-yu, SHENG Xiao-zhen, WANG An-bin. Influence of frequency-dependent characteristics of double-layer nonlinear fastener system on wheel-rail dynamics characteristics[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 159-171. doi: 10.19818/j.cnki.1671-1637.2024.06.011
Citation: LI Xia, TANG Wei, DAI Jia-yu, SHENG Xiao-zhen, WANG An-bin. Influence of frequency-dependent characteristics of double-layer nonlinear fastener system on wheel-rail dynamics characteristics[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 159-171. doi: 10.19818/j.cnki.1671-1637.2024.06.011

双层非线性扣件系统频变特性对轮轨动力特性的影响

doi: 10.19818/j.cnki.1671-1637.2024.06.011
基金项目: 

国家自然科学基金项目 52202477

轨道交通运载系统全国重点实验室开放课题 RVL2402

详细信息
    作者简介:

    李霞(1986-), 女, 重庆人, 上海工程技术大学副研究员, 工学博士, 从事轮轨关系研究

  • 中图分类号: U211.5

Influence of frequency-dependent characteristics of double-layer nonlinear fastener system on wheel-rail dynamics characteristics

Funds: 

National Natural Science Foundation of China 52202477

Open Project of State Key Laboratory of Rail Transit Vehicle System RVL2402

More Information
  • 摘要: 为研究双层非线性扣件系统频变特性对轮轨动力特性的影响,基于锤击法测得了该扣件系统在100~1 000 Hz内的动刚度;建立了轨道结构有限元模型和轮轨瞬态滚动接触有限元模型,在模型中考虑扣件系统的频变特性,基于轨道结构模型分析了扣件系统频变特性对钢轨振动特性的影响,利用轮轨瞬态滚动接触模型分析其对轮轨动力特性的影响。研究结果表明:扣件系统在垂向、横向和纵向的动刚度随频率增大,总体呈现出增大的趋势;扣件系统频变特性导致340 Hz以上钢轨振动更加显著,同时钢轨振动峰值所对应的频率向更高频段移动,340~700 Hz频段钢轨振动响应的变化是频变刚度和频变阻尼共同作用的结果,800~900 Hz频段的变化主要受扣件系统频变刚度的影响;钢轨振动响应的这种变化对小半径曲线段通过频率在340 Hz以上的短波长波磨有较大影响,因此,考虑扣件系统频变特性有益于提高该频段短波长波磨的预测精度;扣件系统频变刚度对轴箱振动加速度和轮轨力的影响较小,其最大值降低了约2%;扣件系统频变阻尼对这两者的影响较大,频变阻尼使轴箱振动加速度和轮轨力在100~470 Hz频段增大,在470~1 000 Hz频段减小;扣件系统频变特性对最大轮轨接触应力影响较小,考虑频变刚度时对应的轮轨接触应力略大,考虑频变阻尼时对应的轮轨接触应力略小。

     

  • 图  1  双层非线性扣件

    Figure  1.  Double-layer nonlinear fastener

    图  2  扣件试验测试布点

    Figure  2.  Layout of fastener test points

    图  3  锤击位置和方向

    Figure  3.  Positions and directions of hammer

    图  4  双层非线性扣件系统动刚度

    Figure  4.  Dynamic stiffnesses of double-layer nonlinear fastener

    图  5  双层非线性扣件轨道结构有限元模型(单位:mm)

    Figure  5.  Finite element model of track structure with double-layer nonlinear fastener (unit: mm)

    图  6  轮轨瞬态滚动接触有限元模型

    Figure  6.  Finite element model of wheel-rail transient rolling contact

    图  7  轮轨瞬态滚动接触

    Figure  7.  Wheel-rail transient rolling contact

    图  8  凹坑不平顺几何分布

    Figure  8.  Geometric distributions of pit irregularity

    图  9  扣件系统频变特性对钢轨振动特性的影响

    Figure  9.  Influences of frequency-dependent characteristic of fastener system on rail vibration characteristic

    图  10  扣件系统频变刚度对轴箱振动加速度的影响

    Figure  10.  Influence of frequency-dependent stiffness of fastener system on axle box vibration acceleration

    图  11  扣件系统频变阻尼对轴箱振动加速度的影响

    Figure  11.  Influence of frequency-dependent damping of fastener system on axle box vibration acceleration

    图  12  扣件系统频变刚度对垂向轮轨力的影响

    Figure  12.  Influence of frequency-dependent stiffness of fastener system on vertical wheel-rail force

    图  13  扣件系统频变阻尼对垂向轮轨力的影响

    Figure  13.  Influence of frequency-dependent damping of fastener system on vertical wheel-rail force

    图  14  轮轨法向接触应力分布

    Figure  14.  Distribution of wheel-rail normal contact stress

    表  1  轨道结构模型参数

    Table  1.   Parameters of track structure model

    参数 数值
    钢轨弹性模量/Pa 2.059×1011
    钢轨泊松比 0.3
    钢轨密度/(kg·m-3) 7 790
    道床板弹性模量/Pa 3.25×1010
    道床板泊松比 0.2
    道床板密度/(kg·m-3) 2 500
    轮对弹性模量/Pa 2.1×1011
    轮对泊松比 0.3
    轮对密度/(kg·m-3) 7 800
    地基支撑刚度/(N·m-1) 1.70×108
    地基支撑阻尼/(N·s·m-1) 31 000
    下载: 导出CSV

    表  2  轮轨瞬态滚动接触模型参数

    Table  2.   Parameters of wheel-rail transient rolling contact model

    参数 数值
    簧上质量/t 14
    一系悬挂垂向刚度/(N·m-1) 0.98×106
    一系悬挂垂向阻尼/(N·s·m-1) 8 200
    车轮前进速度/(km·h-1) 60
    车轮角速度/(rad·s-1) 39.682 5
    下载: 导出CSV

    表  3  模型计算工况

    Table  3.   Model calculation conditions

    工况 考虑扣件系统频变刚度 考虑扣件系统频变阻尼
    1
    2
    3
    4
    下载: 导出CSV

    表  4  各工况下最大轮轨接触应力

    Table  4.   Maximum wheel-rail contact stresses under each condition

    工况 1 2 3 4
    接触斑
    最大接触应力/MPa 1 988 1 997 1 952 1 970
    与工况1差异百分比/% 0.45 -1.81 -0.91
    下载: 导出CSV
  • [1] FENANDER A. Frequency dependent stiffness and damping of railpads[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1997, 211(1): 51-62. doi: 10.1243/0954409971530897
    [2] THOMPSON D J, VERHEIJ J W. The dynamic behaviour of rail fasteners at high frequencies[J]. Applied Acoustics, 1997, 52(1): 1-17. doi: 10.1016/S0003-682X(97)00016-9
    [3] THOMPSON D J, VAN VLIET W J, VERHEIJ J W. Developments of the indirect method for measuring the high frequency dynamic stiffness of resilient elements[J]. Journal of Sound and Vibration, 1998, 213(1): 169-188. doi: 10.1006/jsvi.1998.1492
    [4] WEI Kai, ZHANG Pan, WANG Ping, et al. The influence of amplitude- and frequency-dependent stiffness of rail pads on the random vibration of a vehicle-track coupled system[J]. Shock and Vibration, 2016, 2016: 7674124. http://downloads.hindawi.com/journals/sv/2016/7674124.pdf
    [5] WEI Kai, WANG Ping, YANG Fan, et al. The effect of the frequency-dependent stiffness of rail pad on the environment vibrations induced by subway train running in tunnel[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(3): 697-708. doi: 10.1177/0954409714558438
    [6] 韦凯, 杨帆, 王平, 等. 扣件胶垫刚度的频变性对地铁隧道环境振动的影响[J]. 铁道学报, 2015, 37(4): 80-86.

    WEI Kai, YANG Fan, WANG Ping, et al. Influence of frequency-dependent stiffness of rail pads on environment vibration induced by subway in tunnel[J]. Journal of the China Railway Society, 2015, 37(4): 80-86. (in Chinese)
    [7] 韦凯, 杨帆, 王平, 等. 扣件胶垫阻尼的频变性对地铁隧道环境振动的影响[J]. 中国铁道科学, 2015, 36(3): 17-23.

    WEI Kai, YANG Fan, WANG Ping, et al. Effect of frequency-dependent damping of rail pad on environment vibration of subway tunnel[J]. China Railway Science, 2015, 36(3): 17-23. (in Chinese)
    [8] 韦凯, 张攀, 梁迎春, 等. 扣件胶垫刚度频变的钢轨垂向自振特征分析[J]. 铁道学报, 2016, 38(6): 79-85.

    WEI Kai, ZHANG Pan, LIANG Ying-chun, et al. Study on vertical natural vibrations of steel rail considering frequency-dependent stiffness of rail pads[J]. Journal of the China Railway Society, 2016, 38(6): 79-85. (in Chinese)
    [9] 韦凯, 张攀, 王平. 扣件胶垫刚度的幅频变对轮轨耦合系统随机频响特征的影响[J]. 工程力学, 2017, 34(4): 108-115.

    WEI Kai, ZHANG Pan, WANG Ping. Influence of amplitude- and frequency-dependent stiffness of rail pads on the frequency-domain random vibration of vehicle-track coupled system[J]. Engineering Mechanics, 2017, 34(4): 108-115. (in Chinese)
    [10] 韦凯, 王绍华, 豆银玲, 等. 地铁波磨下胶垫频变对轮轨高频振动的影响[J]. 铁道工程学报, 2019, 36(3): 84-90.

    WEI Kai, WANG Shao-hua, DOU Yin-ling, et al. Influence of frequency-dependent dynamic properties of rail pads on high-frequency vibration of wheel-rail system induced by rail corrugation[J]. Journal of Railway Engineering Society, 2019, 36(3): 84-90. (in Chinese)
    [11] 刘林芽, 卢沛君, 秦佳良. 基于扣件FVMP模型的车-轨耦合随机振动分析[J]. 铁道学报, 2019, 41(5): 93-100.

    LIU Lin-ya, LU Pei-jun, QIN Jia-liang. Random vibration analysis of vehicle-track coupling system based on fastener FVMP model[J]. Journal of the China Railway Society, 2019, 41(5): 93-100. (in Chinese)
    [12] LI Qi, DAI Bao-rui, ZHU Zhi-hui, et al. Improved indirect measurement of the dynamic stiffness of a rail fastener and its dependence on load and frequency[J]. Construction and Building Materials, 2021, 304: 124588.
    [13] SAINZ-AJA J A, CARRASCAL I A, FERREÑO D, et al. Influence of the operational conditions on static and dynamic stiffness of rail pads[J]. Mechanics of Materials, 2020, 148: 103505.
    [14] KAEWUNRUEN S, REMENNIKOV A M. An alternative rail pad tester for measuring dynamic properties of rail pads under large preloads[J]. Experimental Mechanics, 2008, 48(1): 55-64.
    [15] 陈宗平. 高速铁路无砟轨道扣件动刚度特性研究[D]. 成都: 西南交通大学, 2021.

    CHEN Zong-ping. Study on the dynamic stiffness characteristics of ballastless track fasteners for high-speed railway[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
    [16] 陈宗平, 成功, 刘清源, 等. 高速铁路扣件动刚度频变和温变特性研究[J]. 振动、测试与诊断, 2022, 42(3): 495-502.

    CHEN Zong-ping, CHENG Gong, LIU Qing-yuan, et al. A study on the frequency and temperature-dependences of the dynamic stiffness of fasteners used on high-speed railways[J]. Journal of Vibration, Measurement and Diagnosis, 2022, 42(3): 495-502. (in Chinese)
    [17] ZHU Sheng-yang, CAI Cheng-biao, LUO Zhen, et al. A frequency and amplitude dependent model of rail pads for the dynamic analysis of train-track interaction[J]. Science China Technological Sciences, 2015, 58(2): 191-201. doi: 10.1007/s11431-014-5686-y.pdf
    [18] ZHU Sheng-yang, CAI Cheng-biao, SPANOS P. A nonlinear and fractional derivative viscoelastic model for rail pads in the dynamic analysis of coupled vehicle-slab track systems[J]. Journal of Sound and Vibration, 2015, 335: 304-320. http://www.researchgate.net/file.PostFileLoader.html?id=59662b0deeae39d968087127&assetKey=AS%3A515297549316096%401499867917056
    [19] 朱胜阳. 高速铁路无砟轨道结构伤损行为及其对动态性能的影响[D]. 成都: 西南交通大学, 2015.

    ZHU Sheng-yang. Damage behavior of high-speed railway ballastless track and its effect on structure dynamic performance[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [20] XU Jing-mang, WANG Kai, LIANG Xin-yuan, et al. Influence of viscoelastic mechanical properties of rail pads on wheel and corrugated rail rolling contact at high speeds[J]. Tribology International, 2020, 151: 106523. http://www.sciencedirect.com/science/article/pii/S0301679X20303558
    [21] SONG Xiao-dong, WU Hao, JIN Hao, et al. Noise contribution analysis of a U-shaped girder bridge with consideration of frequency dependent stiffness of rail fasteners[J]. Applied Acoustics, 2023, 205: 109280. doi: 10.1016/j.apacoust.2023.109280
    [22] 王绍华, 韦凯, 杨敏婕, 等. 扣件胶垫频变动力性能对钢轨垂向振动特性影响分析[J]. 铁道科学与工程学报, 2019, 16(4): 892-899.

    WANG Shao-hua, WEI Kai, YANG Min-jie, et al. Influence of frequency-dependent dynamic properties of rail pad on vertical vibration characteristics of rail[J]. Journal of Railway Science and Engineering, 2019, 16(4): 892-899. (in Chinese)
    [23] 尹镪, 蔡成标, 朱胜阳. 扣件刚度频变特性对轮轨振动噪声的影响[J]. 振动与冲击, 2017, 36(18): 231-237.

    YIN Qiang, CAI Cheng-biao, ZHU Sheng-yang. Effect of the frequency-dependent stiffness of rail fasteners on the wheel-rail vibration noise[J]. Journal of Vibration and Shock, 2017, 36(18): 231-237. (in Chinese)
    [24] BAI Yan-bo, HE Zhen-xing, BAO Neng-neng, et al. Research on the influence of loading frequency, material elasticity, and geometric parameters on mechanical characteristics of the new mesh-type high damping rail pad for fastening system[J]. Structures, 2023, 53: 421-431.
    [25] BAI Yan-bo, HE Zhen-xing, BAO Neng-neng, et al. Study on the structural stability of the rail pad and its influence on the dynamic response of the vehicle-track coupled system[J]. Measurement, 2023, 223: 113698.
    [26] NIU Zhen-yu, GAO Liang, LIU Lin-ya, et al. Dynamic analysis of vibration response of track structure considering rail pads in low-temperature condition[J]. Structures, 2024, 59: 105713. doi: 10.1016/j.istruc.2023.105713
    [27] GAO Xiao-gang, FENG Qing-song, WANG An-bin, et al. Testing research on frequency-dependent characteristics of dynamic stiffness and damping for high-speed railway fastener[J]. Engineering Failure Analysis, 2021, 129: 105689. http://www.sciencedirect.com/science/article/pii/S1350630721005501
    [28] GAO Xiao-gang, FENG Qing-song, WANG Zhi-qiang, et al. Study on dynamic characteristics and wide temperature range modification of elastic pad of high-speed railway fastener[J]. Engineering Failure Analysis, 2023, 151: 107376. doi: 10.1016/j.engfailanal.2023.107376
    [29] 孙海波, 圣小珍, 何光辉, 等. 基于锤击试验的钢轨扣件动刚度矩阵的测定[J]. 噪声与振动控制, 2023, 43(6): 282-288.

    SUN Hai-bo, SHENG Xiao-zhen, HE Guang-hui, et al. Determination of dynamic stiffnesses matrices of rail fasteners based on hammer test[J]. Noise and Vibration Control, 2023, 43(6): 282-288. (in Chinese)
    [30] 周志军. 基于轮轨瞬态滚动接触行为模拟的地铁钢轨短波长波磨形成机理研究[D]. 成都: 西南交通大学, 2020.

    ZHOU Zhi-jun. Study on formation mechanism of short-pitch corrugation of metro rail based on simulation of wheel-rail transient rolling contact behavior[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  22
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-28
  • 刊出日期:  2024-12-25

目录

    /

    返回文章
    返回