留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气象-交通多通道数据融合的短时交通流速度预测模型

马飞 杨治杰 王江博 孙启鹏 鲍博 郭庆元 黄凯

马飞, 杨治杰, 王江博, 孙启鹏, 鲍博, 郭庆元, 黄凯. 基于气象-交通多通道数据融合的短时交通流速度预测模型[J]. 交通运输工程学报, 2024, 24(6): 183-196. doi: 10.19818/j.cnki.1671-1637.2024.06.013
引用本文: 马飞, 杨治杰, 王江博, 孙启鹏, 鲍博, 郭庆元, 黄凯. 基于气象-交通多通道数据融合的短时交通流速度预测模型[J]. 交通运输工程学报, 2024, 24(6): 183-196. doi: 10.19818/j.cnki.1671-1637.2024.06.013
MA Fei, YANG Zhi-jie, WANG Jiang-bo, SUN Qi-peng, BAO Bo, GUO Qing-yuan, HUANG Kai. Short-term traffic flow velocity prediction model based on multi-channel data fusion of meteorological and traffic[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 183-196. doi: 10.19818/j.cnki.1671-1637.2024.06.013
Citation: MA Fei, YANG Zhi-jie, WANG Jiang-bo, SUN Qi-peng, BAO Bo, GUO Qing-yuan, HUANG Kai. Short-term traffic flow velocity prediction model based on multi-channel data fusion of meteorological and traffic[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 183-196. doi: 10.19818/j.cnki.1671-1637.2024.06.013

基于气象-交通多通道数据融合的短时交通流速度预测模型

doi: 10.19818/j.cnki.1671-1637.2024.06.013
基金项目: 

国家自然科学基金项目 72104034

国家自然科学基金项目 72104037

陕西省自然科学基础研究计划资助项目 2022JM-426

陕西省自然科学基础研究计划资助项目 2023-JC-QN-0793

陕西省交通运输厅科技项目 23-12K

陕西省教育厅重点科学研究计划项目 21JP007

西安市科技计划项目 24SFSF0009

教育部人文社会科学研究 23YJCZH179

中央高校基本科研业务费专项资金项目 300102234613

陕西省社会科学基金项目 2024R009

详细信息
    作者简介:

    马飞(1979-), 男, 陕西咸阳人, 长安大学教授, 工学博士, 从事城市智能交通系统研究

  • 中图分类号: U491.1

Short-term traffic flow velocity prediction model based on multi-channel data fusion of meteorological and traffic

Funds: 

National Natural Science Foundation of China 72104034

National Natural Science Foundation of China 72104037

Natural Science Basic Research Project of Shaanxi Province 2022JM-426

Natural Science Basic Research Project of Shaanxi Province 2023-JC-QN-0793

Science and Technology Project of Department of Transport of Shaanxi Province 23-12K

Key Scientific Research Plan Project of Education Department of Shaanxi Provincial Government 21JP007

Science and Technology Plan Project of Xi'an 24SFSF0009

Humanities and Social Sciences Research of Ministry of Ministry of Education 23YJCZH179

Fundamental Research Funds for the Central Universities 300102234613

Social Science Foundation of Shaanxi Province 2024R009

More Information
  • 摘要: 为提升气象-交通多因素影响下短时交通流预测精度,综合考虑气温、湿度和交通拥堵指数等气象-交通特征数据的融合集成,提出了一种基于格拉姆角场-卷积神经网络-长短期记忆(GAF-CNN-LSTM)的短时交通流速度预测模型;利用格拉姆角场将气温、湿度、历史交通流速度的时间序列数据转换为图像数据,利用RGB多通道颜色编码形成气象-交通特征图像,通过RGB多通道中颜色叠加变化反映气象-交通多因素特征数据融合;将转换形成的特征图像输入卷积神经网络提取气象-交通因素融合特征;通过长短期记忆神经网络提取气象-交通各因素的时序信息,构建短时交通流速度预测模型;选取西安市未央区的气温、湿度等气象数据和历史交通流速度数据,根据气温、湿度的变化趋势,设置湿度极小值与气温极小值、湿度极大值2个极值情景和气温、湿度非极值2个常规情景进行模型验证。分析结果表明:GAF-CNN-LSTM模型能够考虑气象-交通多因素特征数据融合,与移动平均模型、自回归移动平均模型、先知模型、随机森林模型、长短期记忆神经网络模型相比,均方误差、均方根误差和平均绝对百分比误差分别平均降低0.044 6、0.142 4和12.1%,决定系数平均提升了31.05%,预测精度最高,研究结果可为城市交通治理提供更加精准的决策依据。

     

  • 图  1  研究框架

    Figure  1.  Research framework

    图  2  格拉姆角场映射过程

    Figure  2.  GAF mapping process

    图  3  长短期记忆神经网络神经元结构

    Figure  3.  Neuronal structure of LSTM neural network

    图  4  实例中使用路网

    Figure  4.  Road network in case study

    图  5  气温、湿度、交通流速度单通道图像与三通道数据融合图像

    Figure  5.  Single-channel images of temperature, humidity, and traffic flow velocity and three-channel data fusion image

    图  6  降雨前2 h气温、湿度和交通流速度单通道图像与三通道数据融合图像

    Figure  6.  Single-channel images of temperature, humidity, and traffic flow velocity and three-channel data fusion image in two hours before rain

    图  7  S1预测结果

    Figure  7.  Prediction results of S1

    图  8  S2预测结果

    Figure  8.  Prediction results of S2

    图  9  S3预测结果

    Figure  9.  Prediction results of S3

    图  10  S4预测结果

    Figure  10.  Prediction results of S4

    表  1  气象-交通数据

    Table  1.   Weather and traffic data

    气象数据 交通数据
    观测站点 观测时间 气压/kPa 气温/℃ 风向/(°) 风速/(m·s-1) 降水量/mm 相对湿度/% 道路编号 交通流速度/(km·h-1) 拥堵指数 名称 经度/(°) 纬度(°)
    V8858 2022年9月6日9:00 969.8 24.2 13 21 0 52 12040 35.4 2.8 元鼎路 108.955 573 34.368 201
    V8867 2022年9月6日9:00 967.5 22.8 334 12 0 47 13128 30.3 4.0 灞河东路 109.015 322 34.360 245
    V8870 2022年9月6日9:00 968.8 22.9 303 18 0 53 7232 30.6 3.2 沈家桥二路 108.892 123 34.178 467
    V8872 2022年9月6日9:00 970.1 22.7 247 7 0 56 915 30.7 3.2 芙蓉西路 108.975 293 34.190 896
    V8858 2022年9月6日10:00 970.3 25.7 9 24 0 48 1002559 27.7 2.8 龙首北路西 108.947 060 34.292 772
    V8867 2022年9月6日10:00 968.0 24.4 7 8 0 44 12569 36.9 2.8 长安北路 108.946 862 34.233 398
    V8870 2022年9月6日10:00 969.3 24.8 30 18 0 48 14638 39.3 2.8 灞河东路 109.029 651 34.430 734
    V8872 2022年9月6日10:00 970.6 23.2 242 11 3 58 2559 27.7 2.8 龙首北路 108.922 319 34.292 681
    V8858 2022年9月6日11:00 970.2 27.7 346 28 0 40 598 27.5 2.8 丰禾路 108.891 581 34.280 793
    V8867 2022年9月6日11:00 968.0 28.4 243 13 0 27 13298 40.2 2.8 韩森东路 109.016 218 34.258 938
    V8870 2022年9月6日11:00 969.2 27.7 74 9 0 39 10388 30.5 2.8 永庆路 108.976 221 34.322 078
    V8872 2022年9月6日11:00 970.6 26.1 234 8 0 45 12179 23.0 3.2 凤城一路 108.923 108 34.313 757
    下载: 导出CSV

    表  2  气象、交通变量的Pearson相关性分析结果

    Table  2.   Pearson correlation analysis results of meteorological and traffic variables

    变量 相关系数 1%水平上是否显著 变量 相关系数 1%水平上是否显著
    气压 -0.061 风向 0.047
    气温 0.415 风速 0.282
    湿度 -0.354 交通流速度 -0.956
    降水量 0.068 拥堵指数 1.000
    下载: 导出CSV

    表  3  卷积神经网络及长短期记忆神经网络结构及模型参数

    Table  3.   Structures and model parameters of CNN and LSTM neural network

    神经网络 结构 参数
    CNN 二维卷积 16(3×3)
    二维最大池化 2×2
    二维卷积 32(3×3)
    展平
    稠密模块 64
    概率分布转换层 4
    训练批次大小 32
    损失 交叉熵
    训练循环次数 30
    优化器 均方根传递
    LSTM LSTM结构 输入形状(4, 1)
    稠密模块 1
    神经元数量 400
    损失 均方误差
    训练循环次数 40
    训练批次大小 90
    优化器 矩估计梯度下降
    下载: 导出CSV

    表  4  模型验证所用情景设置

    Table  4.   Scenario configurations for model validation

    情景 气温、湿度类型 平均气温/℃ 平均相对湿度/% 交通流平均速度/(km·h-1)
    S1 湿度极小值 25.40 55.71 23.37
    S2 非极值 23.71 70.40 20.51
    S3 非极值 24.63 61.24 21.04
    S4 气温极小值、湿度极大值 18.09 93.45 18.84
    下载: 导出CSV

    表  5  不同短时交通流速度预测模型性能对比

    Table  5.   Comparison of performances of different short-term prediction models of traffic flow velocity

    情景 模型 MSE RMSE MAPE/% R2 训练时间/s 预测时间/s
    S1 MA 0.062 0.249 19.5 0.38 0.000
    ARIMA 0.012 0.111 9.6 0.90 0.759 0.003
    Prophet 0.016 0.125 8.6 0.87 0.189 0.048
    RF 0.051 0.226 15.3 0.49 0.355 0.003
    LSTM 0.016 0.126 11.0 0.87 17.090 0.046
    GAF-CNN-LSTM 0.001 0.036 2.7 0.98 27.542 0.118
    S2 MA 0.127 0.357 24.4 0.21 0.000
    ARIMA 0.029 0.169 14.9 0.82 0.694 0.002
    Prophet 0.017 0.132 8.7 0.89 0.172 0.044
    RF 0.009 0.098 4.7 0.94 0.351 0.002
    LSTM 0.010 0.098 7.6 0.94 16.068 0.047
    GAF-CNN-LSTM 0.005 0.073 3.7 0.97 30.894 0.115
    S3 MA 0.099 0.314 24.0 0.27 0.000
    ARIMA 0.046 0.213 17.7 0.66 0.613 0.003
    Prophet 0.019 0.137 11.2 0.86 0.176 0.002
    RF 0.001 0.039 22.7 0.99 0.360 0.042
    LSTM 0.017 0.131 11.6 0.87 15.812 0.045
    GAF-CNN-LSTM 0.001 0.026 1.9 0.99 28.394 0.102
    S4 MA 0.191 0.437 33.5 0.00 0.000
    ARIMA 0.086 0.292 20.4 0.39 0.509 0.003
    Prophet 0.051 0.225 18.9 0.64 0.171 0.002
    RF 0.027 0.163 9.7 0.81 0.358 0.046
    LSTM 0.071 0.266 14.1 0.49 16.850 0.049
    GAF-CNN-LSTM 0.006 0.077 4.8 0.96 28.409 0.111
    下载: 导出CSV

    表  6  不同数据规模下模型运行时间对比

    Table  6.   Comparison of running time of prediction models at different data scales

    数据规模 模型 训练时间/s 预测时间/s
    时间序列长度 特征维度
    180 3 LSTM 9.157 0.044
    GAF-CNN-LSTM 25.143 0.108
    360 3 LSTM 11.981 0.046
    GAF-CNN-LSTM 26.364 0.974
    540 3 LSTM 12.823 0.049
    GAF-CNN-LSTM 30.957 0.125
    720 3 LSTM 15.266 0.049
    GAF-CNN-LSTM 32.894 0.104
    下载: 导出CSV
  • [1] STEPHANEDES Y J, MICHALOPOULOS P G, PLUM R A. Improved estimation of traffic flow for real time control[C]//TRB. 60th Annual Meeting of the Transportation Research Board. Washington DC: TRB, 1980: 28-39.
    [2] 姚俊峰, 何瑞, 史童童, 等. 基于机器学习的交通流预测方法综述[J]. 交通运输工程学报, 2023, 23(3): 44-67. doi: 10.19818/j.cnki.1671-1637.2023.03.003

    YAO Jun-feng, HE Rui, SHI Tong-tong, et al. Review on machine learning-based traffic flow prediction methods[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 44-67. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.03.003
    [3] 张文佳, 王梅梅. 交通拥堵治理的空间与基础设施政策综述[J]. 人文地理, 2021, 36(2): 20-26.

    ZHANG Wen-jia, WANG Mei-mei. A survey of place-based and infrastructure-based policies for mitigating urban traffic congestion[J]. Human Geography, 2021, 36(2): 20-26. (in Chinese)
    [4] 张文娟, 杨皓哲, 张彬, 等. 考虑多时间尺度特征的城市轨道交通短时客流量预测模型[J]. 交通运输系统工程与信息, 2022, 22(6): 212-223.

    ZHANG Wen-juan, YANG Hao-zhe, ZHANG Bin, et al. Short-time passenger flow prediction model of urban rail transit considering multi-timescale features[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 212-223. (in Chinese)
    [5] WU Yuan-kai, TAN Hua-chun, QIN Ling-qiao, et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180. doi: 10.1016/j.trc.2018.03.001
    [6] 胡浩, 闫伟, 李泓明. 基于组合预测方法的城市道路短时交通流预测[J]. 工业工程与管理, 2019, 24(3): 107-115.

    HU Hao, YAN Wei, LI Hong-ming. Short-term traffic flow prediction of urban road based on combination forecasting method[J]. Industrial Engineering and Management, 2019, 24(3): 107-115. (in Chinese)
    [7] XIE Yuan-chang, ZHAO Kai-guang, SUN Ying, et al. Gaussian processes for short-term traffic volume forecasting[J]. Journal of the Transportation Research Board, 2010, 2165(1): 69-78. doi: 10.3141/2165-08
    [8] LYU Yi-sheng, DUAN Yan-jie, KANG Wen-wen, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873. http://www.cs.uoregon.edu/classes/17S/cis607bddl/papers/LvEtal2015.pdf
    [9] SHAHRIARI S, GHASRI M, SISSON S A, et al. Ensemble of ARIMA: combining parametric and bootstrapping technique for traffic flow prediction[J]. Transportmetrica A: Transport Science, 2020, 16(3): 1552-1573. doi: 10.1080/23249935.2020.1764662
    [10] 申雷霄, 陆宇航, 郭建华. 卡尔曼滤波短时交通流预测普通国省道适应性研究[J]. 交通信息与安全, 2021, 39(5): 117-127. doi: 10.3963/j.jssn.1674-4861.2021.05.015

    SHEN Lei-xiao, LU Yu-hang, GUO Jian-hua. Adaptability of Kalman filter for short-time traffic flow forecasting on national and provincial highways[J]. Journal of Transport Information and Safety, 2021, 39(5): 117-127. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.05.015
    [11] MA Xiao-lei, DAI Zhuang, HE Zheng-bing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818. doi: 10.3390/s17040818
    [12] 孔繁辉, 李健. 深度信念网络优化BP神经网络的交通流预测模型[J]. 管理评论, 2020, 32(3): 300-306.

    KONG Fan-hui, LI Jian. Traffic flow prediction model based on deep belief network optimized BP neural network[J]. Management Review, 2020, 32(3): 300-306. (in Chinese)
    [13] 祁朵, 毛政元. 基于自适应时序剖分与KNN的短时交通流量预测[J]. 地球信息科学学报, 2022, 24(2): 339-351.

    QI Duo, MAO Zheng-yuan. Short-term traffic flow prediction based on adaptive time slice and KNN[J]. Journal of Geo-information Science, 2022, 24(2): 339-351. (in Chinese)
    [14] 王殿海, 黄莉莎, 曾佳棋, 等. 降雨对城市路网交通状态的影响机理[J]. 交通运输系统工程与信息, 2023, 23(3): 48-55, 65.

    WANG Dian-hai, HUANG Li-sha, ZENG Jia-qi, et al. Influence mechanism of rainfall on traffic state of urban road network[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(3): 48-55, 65. (in Chinese)
    [15] ESSIEN A, PETROUNIAS I, SAMPAIO P, et al. The impact of rainfall and temperature on peak and off-peak urban traffic[C]//Springer. 29th International Conference on Database and Expert Systems Applications. Springer International Publishing. Berlin: Springer, 2018: 399-407.
    [16] XIONG M M, HAN Z Y, LU B, et al. Effects of rainfall on the weekday traffic flow in major cities of the Beijing-Tianjin-Hebei region, China, in 2021[J]. Advances in Climate Change Research, 2022, 13(6): 858-867. doi: 10.1016/j.accre.2022.11.009
    [17] 戴厚兴, 吴兆麟. 能见度不良天气下海上交通安全风险预警系统[J]. 交通运输工程学报, 2018, 18(5): 195-206. doi: 10.3969/j.issn.1671-1637.2018.05.019

    DAI Hou-xing, WU Zhao-lin. Pre-warning system of maritime traffic safety risk in restricted visibility weather[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 195-206. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.019
    [18] ROMANO L, JOHANNESSON P, BRUZELIUS F, et al. An enhanced stochastic operating cycle description including weather and traffic models[J]. Transportation Research Part D: Transport and Environment, 2021, 97: 102878. doi: 10.1016/j.trd.2021.102878
    [19] HOU Y, DENG Z Y, CUI H K. Short-term traffic flow prediction with weather conditions: based on deep learning algorithms and data fusion[J]. Complexity, 2021, 2021(1): 6662959. doi: 10.1155/2021/6662959
    [20] LI Xin, YANG Yu, HU Niao-qing, et al. Maximum margin Riemannian manifold-based hyperdisk for fault diagnosis of roller bearing with multi-channel fusion covariance matrix[J]. Advanced Engineering Informatics, 2022, 51: 101513. doi: 10.1016/j.aei.2021.101513
    [21] BOGAERTS T, MASEGOSA A D, ANGARITA-ZAPATA J S, et al. A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2020, 112: 62-77. doi: 10.1016/j.trc.2020.01.010
    [22] LI L Z, OTA K, DONG M X. Everything is image: CNN-based short-term electrical load forecasting for smart grid[C]//IEEE. 14th International Symposium on Pervasive Systems, Algorithms and Networks. New York: IEEE, 2017: 344-351.
    [23] 张淑清, 杜灵韵, 王册浩, 等. 基于格拉姆角场与改进CNN-ResNet的风电功率预测方法[J]. 电网技术, 2023, 47(4): 1540-1548.

    ZHANG Shu-qing, DU Ling-yun, WANG Ce-hao, et al. Wind power forecasting method based on GAF and improved CNN-ResNet[J]. Power System Technology, 2023, 47(4): 1540-1548. (in Chinese)
    [24] ZHANG Li-feng, ZHANG Si-jia. Gas/liquid two-phase flow pattern identification method using gramian angular field and densely connected network[J]. IEEE Sensors Journal, 2023, 23(4): 4022-4032. doi: 10.1109/JSEN.2023.3235954
    [25] 孙晓宇, 蔡祥. 基于多通道数据融合的无人机遥感影像地物目标提取方法[J]. 地理与地理信息科学, 2021, 37(6): 41-45.

    SUN Xiao-yu, CAI Xiang. Targets extraction method for UAV remote sensing images based on multi-channel data fusion[J]. Geography and Geo-information Science, 2021, 37(6): 41-45. (in Chinese)
    [26] LEE H, YANG K, KIM N, et al. Detecting excessive load-carrying tasks using a deep learning network with a Gramian Angular Field[J]. Automation in Construction, 2020, 120: 103390. http://www.sciencedirect.com/science/article/pii/S0926580520309705
    [27] HE Xiang-yang, TAO Yu-bo, WANG Qi-rui, et al. Multivariate spatial data visualization: a survey[J]. Journal of Visualization, 2019, 22(5): 897-912. http://www.xueshufan.com/publication/2968954061
    [28] ZAHEER S, ANJUM N, HUSSAIN S, et al. A multi parameter forecasting for stock time series data using LSTM and deep learning model[J]. Mathematics, 2023, 11 (3): 590.
    [29] MA Xiao-lei, TAO Zhi-min, WANG Yin-hai, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. http://www.onacademic.com/detail/journal_1000037610545510_6039.html
    [30] CUI Zhi-yong, KE Rui-min, PU Zi-yuan, et al. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values[J]. Transportation Research Part C: Emerging Technologies, 2020, 118: 102674.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  20
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 刊出日期:  2024-12-25

目录

    /

    返回文章
    返回