留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑减缓交通振荡的混合队列控制方法

董长印 熊卓智 李霓 王丰 张家瑞 王昊

董长印, 熊卓智, 李霓, 王丰, 张家瑞, 王昊. 考虑减缓交通振荡的混合队列控制方法[J]. 交通运输工程学报, 2024, 24(6): 212-229. doi: 10.19818/j.cnki.1671-1637.2024.06.015
引用本文: 董长印, 熊卓智, 李霓, 王丰, 张家瑞, 王昊. 考虑减缓交通振荡的混合队列控制方法[J]. 交通运输工程学报, 2024, 24(6): 212-229. doi: 10.19818/j.cnki.1671-1637.2024.06.015
DONG Chang-yin, XIONG Zhuo-zhi, LI Ni, WANG Feng, ZHANG Jia-rui, WANG Hao. Mixed platoon control method considering traffic oscillation mitigation[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 212-229. doi: 10.19818/j.cnki.1671-1637.2024.06.015
Citation: DONG Chang-yin, XIONG Zhuo-zhi, LI Ni, WANG Feng, ZHANG Jia-rui, WANG Hao. Mixed platoon control method considering traffic oscillation mitigation[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 212-229. doi: 10.19818/j.cnki.1671-1637.2024.06.015

考虑减缓交通振荡的混合队列控制方法

doi: 10.19818/j.cnki.1671-1637.2024.06.015
基金项目: 

国家重点研发计划 2022ZD0115600

国家自然科学基金项目 52302405

国家自然科学基金项目 52072067

国家自然科学基金项目 52372398

江苏省自然科学基金项目 BK20210249

国家资助博士后研究人员计划 GZC20230431

详细信息
    作者简介:

    董长印(1991-),男,江苏宝应人,西北工业大学副教授,工学博士,从事无人系统空地协同研究

    通讯作者:

    王昊(1980-),男,江苏高淳人,东南大学教授,工学博士

  • 中图分类号: U491.2

Mixed platoon control method considering traffic oscillation mitigation

Funds: 

National Key Research and Development Program of China 2022ZD0115600

National Natural Science Foundation of China 52302405

National Natural Science Foundation of China 52072067

National Natural Science Foundation of China 52372398

Natural Science Foundation of Jiangsu Province BK20210249

Postdoctoral Fellowship Program of CPSF GZC20230431

More Information
  • 摘要: 构建了一种混合队列中人工驾驶汽车(HDV)和智能网联汽车(CAV)的信息交互形式,基于此为CAV设计了反馈前馈控制器,并针对其中的控制参数提出了以减缓交通振荡为目标的优化方法;创建了由混合队列构成的环形封闭系统,其中CAV可间隔HDV进行车间通信;基于对HDV跟驰行为及其不确定性的建模,采用三阶车辆动力学模型、定时距规则以及反馈前馈控制器对CAV的控制策略进行设计;利用新一代仿真数据集和快速傅里叶变换分析了HDV速度波动的主要频率范围,构建了CAV对速度波动抑制程度的指标;在考虑HDV行为不确定性的前提下,针对此频率构造了同时优化弦稳定性水平与抑制速度波动的目标函数;基于实车轨迹数据,在考虑不同市场渗透率和CAV空间分布的情形下,对控制方法进行多维仿真评价。分析结果显示:相比于参考策略,CAV自身平均加速度波动减小10.9%~14.1%,最大速度波动减小7.8%~10.8%,碰撞减速度减小1.8%~21.6%,油耗降低2.9%~3.9%;对于整个混合车队,当CAV为均匀分布时,舒适、稳定、安全、节能等方面均有提升,并且在30%~60%的中等市场渗透率下提升效果显著。可见,控制方法可以有效抑制速度波动,大幅度提升CAV减缓交通振荡的能力。

     

  • 图  1  混合队列构建

    Figure  1.  Mixed platoon construction

    图  2  不同控制策略在混合场景的适用性

    Figure  2.  Availabilities of different control strategies in mixed scenarios

    图  3  CAV控制策略设计

    Figure  3.  CAV control strategy design

    图  4  来源于NGSIM I80-1数据集的2个场景

    Figure  4.  Two scenarios from NGSIM I80-1 dataset

    图  5  各车在频域内的速度波动

    Figure  5.  Speed variation of each vehicle in frequency domain

    图  6  不同人工参数αβ下CAV的弦稳定域以及抑制率

    Figure  6.  String stability regions and damping ratios of CAV for different human parameters α and β

    图  7  不同人工参数thφ下CAV的弦稳定域以及抑制率

    Figure  7.  String stability regions and damping ratios of CAV for different human parameters th and φ

    图  8  期望时距、HDV数量和通信延迟对弦稳定概率以及目标函数的影响

    Figure  8.  Influences of desired time gap, number of HDVs and communication delay on SSR and objective function

    图  9  期望时距、HDV数量和控制延迟对弦稳定概率以及目标函数的影响

    Figure  9.  Influences of desired time gap, number of HDVs and control delay on SSR and objective function

    图  10  不同控制策略下CAV的速度波动

    Figure  10.  Speed perturbations of CAVs in different control strategies

    图  11  不同市场渗透率下的三种CAV分布类型

    Figure  11.  Three CAV distribution types with different MPRs

    图  12  均匀分布下车辆的时空轨迹

    Figure  12.  Spatial-temporal trajectories of vehicles under uniform distribution

    图  13  混合车队综合控制效果评价指标

    Figure  13.  Integrated control effectiveness evaluation indicators for mixed platoon

    表  1  优化的控制参数

    Table  1.   Optimized control parameters

    控制方法 m αv βv th, v φv k1 k2
    混合队列控制,
    μ=0.1
    1 0.66 0.23 1.31 0 0.02 1.13
    2 0.63 0.30 1.13 0 0.02 1.24
    3 0.46 0.31 1.22 0 0.11 1.35
    混合队列控制,
    μ=0.3
    1 0.60 0.83 1.09 0 0.05 1.25
    2 0.58 0.23 1.10 0 0.11 1.30
    3 0.46 0.35 1.15 0 0.01 1.27
    混合队列控制,
    μ=0.5
    1 0.69 0.91 1.04 0 0.03 0.21
    2 0.57 0.26 1.10 0 0.06 1.36
    3 0.54 0.34 1.28 0 0.01 0.21
    混合队列控制,
    μ=0.7
    1 0.73 0.81 1.03 0 0.02 0.16
    2 0.61 0.47 1.02 0 0.01 0.22
    3 0.45 0.42 1.19 0 0.01 0.25
    混合队列控制,
    μ=0.9
    1 0.75 1.00 1.02 0 0.02 0.15
    2 0.74 0.53 0.89 0 0.01 0.14
    3 0.45 0.43 1.18 0 0.01 0.19
    CACCu 1 0.40 0.21 1.62 0 0.50 1.00
    2 0.50 0.25 1.61 0 0.50 1.00
    3 0.38 0.33 1.16 0 0.50 1.00
    下载: 导出CSV

    表  2  不同控制策略下CAV的指标

    Table  2.   Indicators of CAVs in different control strategies

    场景 m 控制策略 MAV/(m·s-2) AAV/(m·s-2) MSV/(m·s-1) ASV/(m·s-1) DRAC/(m·s-2) FC/mL
    1 1 混合队列控制 1.43 0.49 3.67 1.85 0.53 34.56
    CACCu 1.58 0.54 3.96 1.94 0.58 35.61
    ACC 1.55 0.56 3.97 2.01 0.68 36.08
    2 混合队列控制 1.43 0.47 3.65 1.89 0.50 34.35
    CACCu 1.57 0.55 3.98 1.98 0.59 35.96
    ACC 1.55 0.56 3.97 2.01 0.68 36.08
    3 混合队列控制 1.42 0.49 3.69 1.91 0.59 34.60
    CACCu 1.54 0.53 3.95 1.95 0.63 35.48
    ACC 1.55 0.56 3.97 2.01 0.68 36.08
    2 1 混合队列控制 0.98 0.36 2.88 1.39 0.43 23.70
    CACCu 1.12 0.41 3.17 1.44 0.46 24.43
    ACC 1.31 0.44 3.51 1.53 0.61 24.77
    2 混合队列控制 1.07 0.37 2.96 1.43 0.54 23.95
    CACCu 1.23 0.43 3.40 1.49 0.46 24.67
    ACC 1.31 0.44 3.51 1.53 0.61 24.77
    3 混合队列控制 1.14 0.39 3.21 1.45 0.44 24.06
    CACCu 1.16 0.43 3.31 1.43 0.41 24.52
    ACC 1.31 0.44 3.51 1.53 0.61 24.77
    下载: 导出CSV
  • [1] 韩雨, 郭延永, 张乐, 等. 消除高速公路运动波的可变限速控制方法[J]. 中国公路学报, 2022, 35(1): 151-158.

    HAN Yu, GUO Yan-yong, ZHANG Le, et al. An optimal variable speed limit control approach against freeway jam waves[J]. China Journal of Highway and Transport, 2022, 35(1): 151-158. (in Chinese)
    [2] 俞灏, 刘攀, 柏璐, 等. 考虑交通事件影响的动态交通信号控制策略[J]. 交通运输工程学报, 2019, 19(6): 182-190. doi: 10.19818/j.cnki.1671-1637.2019.06.017

    YU Hao, LIU Pan, BAI Lu, et al. Dynamic traffic signal control strategies considering traffic incidents[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 182-190. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.017
    [3] SHARMA A, ZHENG Zu-duo, KIM J, et al. Assessing traffic disturbance, efficiency, and safety of the mixed traffic flow of connected vehicles and traditional vehicles by considering human factors[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102934. doi: 10.1016/j.trc.2020.102934
    [4] ZHENG Yang, WANG Jia-wei, LI Ke-qiang. Smoothing traffic flow via control of autonomous vehicles[J]. IEEE Internet of Things Journal, 2020, 7(5): 3882-3896. doi: 10.1109/JIOT.2020.2966506
    [5] STERN R E, CUI Shu-mo, DELLE MONACHE M L, et al. Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 205-221. doi: 10.1016/j.trc.2018.02.005
    [6] 张俊英, 王勇. 通信时延和感知时延对车辆编队稳定性的影响[J]. 中国公路学报, 2023, 36(4): 202-220.

    ZHANG Jun-ying, WANG Yong. Effects of communication and sensing delays on stability of vehicular platoons[J]. China Journal of Highway and Transport, 2023, 36(4): 202-220. (in Chinese)
    [7] JIANG Li-ming, XIE Yuan-chang, EVANS N G, et al. Reinforcement learning based cooperative longitudinal control for reducing traffic oscillations and improving platoon stability[J]. Transportation Research Part C: Emerging Technologies, 2022, 141: 103744. doi: 10.1016/j.trc.2022.103744
    [8] WANG Shi-an, SHANG Ming-feng, LEVIN M W, et al. A general approach to smoothing nonlinear mixed traffic via control of autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103967. doi: 10.1016/j.trc.2022.103967
    [9] 朱旭, 张泽华, 闫茂德. 含输入时延与通信时延的车辆队列PID控制系统稳定性[J]. 交通运输工程学报, 2022, 22(3): 184-198. doi: 10.19818/j.cnki.1671-1637.2022.03.015

    ZHU Xu, ZHANG Ze-hua, YAN Mao-de. Stability of PID control system for vehicle platoon with input delay and communication delay[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 184-198. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.03.015
    [10] CHEN Chao-yi, WANG Jia-wei, XU Qing, et al. Mixed platoon control of automated and human-driven vehicles at a signalized intersection: dynamical analysis and optimal control[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103138. doi: 10.1016/j.trc.2021.103138
    [11] DONG Chang-yin, WANG Hao, LI Ye, et al. Route control strategies for autonomous vehicles exiting to off-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 3104-3116. doi: 10.1109/TITS.2019.2925319
    [12] OROSZ G. Connected cruise control: modelling, delay effects, and nonlinear behaviour[J]. Vehicle System Dynamics, 2016, 54(8): 1147-1176. doi: 10.1080/00423114.2016.1193209
    [13] FENG Shuo, SONG Zi-you, LI Zhao-jian, et al. Robust platoon control in mixed traffic flow based on tube model predictive control[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(4): 711-722. doi: 10.1109/TIV.2021.3060626
    [14] 边有钢, 杨依琳, 胡满江, 等. 基于双向多车跟随式拓扑的混合车辆队列稳定性研究[J]. 中国公路学报, 2022, 35(3): 66-77. doi: 10.3969/j.issn.1001-7372.2022.03.007

    BIAN You-gang, YANG Yi-lin, HU Man-jiang, et al. Study on the stability of mixed vehicular platoon based on bidirectional multiple-vehicle following topologies[J]. China Journal of Highway and Transport, 2022, 35(3): 66-77. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.03.007
    [15] ZHOU Yang, AHN S, WANG Meng, et al. Stabilizing mixed vehicular platoons with connected automated vehicles: an H-infinity approach[J]. Transportation Research Part B: Methodological, 2020, 132: 152-170. doi: 10.1016/j.trb.2019.06.005
    [16] WANG Zi-ran, BIAN You-gang, SHLADOVER S E, et al. A survey on cooperative longitudinal motion control of multiple connected and automated vehicles[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12(1): 4-24. doi: 10.1109/MITS.2019.2953562
    [17] QIN Yan-yan, WANG Hang. Stabilizing mixed cooperative adaptive cruise control traffic flow to balance capacity using car-following model[J]. Journal of Intelligent Transportation Systems, 2021, DOI: 10.1080/15472450.2021.1985490.
    [18] CHEN Zheng, PARK B B. Cooperative adaptive cruise control with unconnected vehicle in the loop[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4176-4186. doi: 10.1109/TITS.2020.3041840
    [19] WANG Jia-wei, ZHENG Yang, CHEN Chao-yi, et al. Leading cruise control in mixed traffic flow: system modeling, controllability, and string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12861-12876. doi: 10.1109/TITS.2021.3118021
    [20] GE J I, OROSZ G. Connected cruise control among human-driven vehicles: experiment-based parameter estimation and optimal control design[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 445-459. doi: 10.1016/j.trc.2018.07.021
    [21] LEE D, LEE S, CHEN Zheng, et al. Design and field evaluation of cooperative adaptive cruise control with unconnected vehicle in the loop[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103364. doi: 10.1016/j.trc.2021.103364
    [22] LI Yong-chun, SHAN Chuan-ping. Impacts of cooperative adaptive cruise control links on driving comfort under vehicle-to-vehicle communication[J]. Journal of Advanced Transportation, 2022, 2022: 1-6.
    [23] GE J I, AVEDISOV S S, HE C R, et al. Experimental validation of connected automated vehicle design among human-driven vehicles[J]. Transportation Research Part C: Emerging Technologies, 2018, 91: 335-352.
    [24] GE J I, OROSZ G. Optimal control of connected vehicle systems with communication delay and driver reaction time[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 2056-2070.
    [25] LI S E, ZHENG Yang, LI Ke-qiang, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58.
    [26] NAUS G J L, VUGTS R P A, PLOEG J, et al. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279.
    [27] PUNZO V, BORZACCHIELLO M T, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1243-1262.
    [28] MONTANINO M, PUNZO V. Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns[J]. Transportation Research Part B: Methodological, 2015, 80: 82-106.
    [29] FENG Shuo, ZHANG Yi, LI S E, et al. String stability for vehicular platoon control: definitions and analysis methods[J]. Annual Reviews in Control, 2019, 47: 81-97.
    [30] SUN Jie, ZHENG Zu-duo, SUN Jian. The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based controller[J]. Transportation Research Part B: Methodological, 2020, 142: 58-83.
    [31] LI Ke-qiang, WANG Jia-wei, ZHENG Yang. Cooperative formation of autonomous vehicles in mixed traffic flow: beyond platooning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15951-15966.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  9
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-27
  • 刊出日期:  2024-12-25

目录

    /

    返回文章
    返回