-
摘要: 构建了一种混合队列中人工驾驶汽车(HDV)和智能网联汽车(CAV)的信息交互形式,基于此为CAV设计了反馈前馈控制器,并针对其中的控制参数提出了以减缓交通振荡为目标的优化方法;创建了由混合队列构成的环形封闭系统,其中CAV可间隔HDV进行车间通信;基于对HDV跟驰行为及其不确定性的建模,采用三阶车辆动力学模型、定时距规则以及反馈前馈控制器对CAV的控制策略进行设计;利用新一代仿真数据集和快速傅里叶变换分析了HDV速度波动的主要频率范围,构建了CAV对速度波动抑制程度的指标;在考虑HDV行为不确定性的前提下,针对此频率构造了同时优化弦稳定性水平与抑制速度波动的目标函数;基于实车轨迹数据,在考虑不同市场渗透率和CAV空间分布的情形下,对控制方法进行多维仿真评价。分析结果显示:相比于参考策略,CAV自身平均加速度波动减小10.9%~14.1%,最大速度波动减小7.8%~10.8%,碰撞减速度减小1.8%~21.6%,油耗降低2.9%~3.9%;对于整个混合车队,当CAV为均匀分布时,舒适、稳定、安全、节能等方面均有提升,并且在30%~60%的中等市场渗透率下提升效果显著。可见,控制方法可以有效抑制速度波动,大幅度提升CAV减缓交通振荡的能力。Abstract: An information interaction form between human-driven vehicle (HDV) and connected automated vehicle (CAV) in a mixed platoon was established, based on which a feedback feedforward controller was designed for CAVs. Besides, an optimization method targeting the control parameters of CAVs was proposed to mitigate traffic oscillations. A circular closed system with a mixed platoon was formulated, where CAVs can transfer information through vehicle-to-vehicle communication spaced by HDVs. Based on the modelling of HDV car-following behaviors and their uncertainty, a third-order vehicle dynamics model, constant time gap policy, and feedback feedforward controller were used to design the control strategy for CAVs. A new generation of simulation data and fast Fourier transform were used to analyze the predominant frequency range of speed fluctuation of HDVs, and an index of the suppression degree of CAVs to speed fluctuation was constructed. By considering the uncertainty of HDV behaviors, an objective function was constructed for this frequency range to simultaneously optimize the string stability and suppress speed variation. Based on the real vehicle trajectory data, the control method was evaluated with simulations from multiple dimensions under the scenarios of different market penetration rates and spatial distributions of CAVs. Analysis results show that compared with reference strategies, the average acceleration variation of the individual CAV reduces by 10.9%-14.1%, and the maximum speed variation reduces by 7.8%-10.8%. The deceleration rate to avoid the crash reduces by 1.8%-21.6%, and the fuel consumption reduces by 2.9%-3.9%. For the whole mixed platoon, the comfort, stability, safety, and energy saving all improve when CAVs are uniformly distributed. The improvement effect is significant under the medium market penetration rate of 30%-60%. So, the control method can effectively suppress speed variation and substantially improve the ability of CAVs to mitigate traffic oscillations.
-
表 1 优化的控制参数
Table 1. Optimized control parameters
控制方法 m αv βv th, v φv k1 k2 混合队列控制,
μ=0.11 0.66 0.23 1.31 0 0.02 1.13 2 0.63 0.30 1.13 0 0.02 1.24 3 0.46 0.31 1.22 0 0.11 1.35 混合队列控制,
μ=0.31 0.60 0.83 1.09 0 0.05 1.25 2 0.58 0.23 1.10 0 0.11 1.30 3 0.46 0.35 1.15 0 0.01 1.27 混合队列控制,
μ=0.51 0.69 0.91 1.04 0 0.03 0.21 2 0.57 0.26 1.10 0 0.06 1.36 3 0.54 0.34 1.28 0 0.01 0.21 混合队列控制,
μ=0.71 0.73 0.81 1.03 0 0.02 0.16 2 0.61 0.47 1.02 0 0.01 0.22 3 0.45 0.42 1.19 0 0.01 0.25 混合队列控制,
μ=0.91 0.75 1.00 1.02 0 0.02 0.15 2 0.74 0.53 0.89 0 0.01 0.14 3 0.45 0.43 1.18 0 0.01 0.19 CACCu 1 0.40 0.21 1.62 0 0.50 1.00 2 0.50 0.25 1.61 0 0.50 1.00 3 0.38 0.33 1.16 0 0.50 1.00 表 2 不同控制策略下CAV的指标
Table 2. Indicators of CAVs in different control strategies
场景 m 控制策略 MAV/(m·s-2) AAV/(m·s-2) MSV/(m·s-1) ASV/(m·s-1) DRAC/(m·s-2) FC/mL 1 1 混合队列控制 1.43 0.49 3.67 1.85 0.53 34.56 CACCu 1.58 0.54 3.96 1.94 0.58 35.61 ACC 1.55 0.56 3.97 2.01 0.68 36.08 2 混合队列控制 1.43 0.47 3.65 1.89 0.50 34.35 CACCu 1.57 0.55 3.98 1.98 0.59 35.96 ACC 1.55 0.56 3.97 2.01 0.68 36.08 3 混合队列控制 1.42 0.49 3.69 1.91 0.59 34.60 CACCu 1.54 0.53 3.95 1.95 0.63 35.48 ACC 1.55 0.56 3.97 2.01 0.68 36.08 2 1 混合队列控制 0.98 0.36 2.88 1.39 0.43 23.70 CACCu 1.12 0.41 3.17 1.44 0.46 24.43 ACC 1.31 0.44 3.51 1.53 0.61 24.77 2 混合队列控制 1.07 0.37 2.96 1.43 0.54 23.95 CACCu 1.23 0.43 3.40 1.49 0.46 24.67 ACC 1.31 0.44 3.51 1.53 0.61 24.77 3 混合队列控制 1.14 0.39 3.21 1.45 0.44 24.06 CACCu 1.16 0.43 3.31 1.43 0.41 24.52 ACC 1.31 0.44 3.51 1.53 0.61 24.77 -
[1] 韩雨, 郭延永, 张乐, 等. 消除高速公路运动波的可变限速控制方法[J]. 中国公路学报, 2022, 35(1): 151-158.HAN Yu, GUO Yan-yong, ZHANG Le, et al. An optimal variable speed limit control approach against freeway jam waves[J]. China Journal of Highway and Transport, 2022, 35(1): 151-158. (in Chinese) [2] 俞灏, 刘攀, 柏璐, 等. 考虑交通事件影响的动态交通信号控制策略[J]. 交通运输工程学报, 2019, 19(6): 182-190. doi: 10.19818/j.cnki.1671-1637.2019.06.017YU Hao, LIU Pan, BAI Lu, et al. Dynamic traffic signal control strategies considering traffic incidents[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 182-190. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.017 [3] SHARMA A, ZHENG Zu-duo, KIM J, et al. Assessing traffic disturbance, efficiency, and safety of the mixed traffic flow of connected vehicles and traditional vehicles by considering human factors[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102934. doi: 10.1016/j.trc.2020.102934 [4] ZHENG Yang, WANG Jia-wei, LI Ke-qiang. Smoothing traffic flow via control of autonomous vehicles[J]. IEEE Internet of Things Journal, 2020, 7(5): 3882-3896. doi: 10.1109/JIOT.2020.2966506 [5] STERN R E, CUI Shu-mo, DELLE MONACHE M L, et al. Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 205-221. doi: 10.1016/j.trc.2018.02.005 [6] 张俊英, 王勇. 通信时延和感知时延对车辆编队稳定性的影响[J]. 中国公路学报, 2023, 36(4): 202-220.ZHANG Jun-ying, WANG Yong. Effects of communication and sensing delays on stability of vehicular platoons[J]. China Journal of Highway and Transport, 2023, 36(4): 202-220. (in Chinese) [7] JIANG Li-ming, XIE Yuan-chang, EVANS N G, et al. Reinforcement learning based cooperative longitudinal control for reducing traffic oscillations and improving platoon stability[J]. Transportation Research Part C: Emerging Technologies, 2022, 141: 103744. doi: 10.1016/j.trc.2022.103744 [8] WANG Shi-an, SHANG Ming-feng, LEVIN M W, et al. A general approach to smoothing nonlinear mixed traffic via control of autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103967. doi: 10.1016/j.trc.2022.103967 [9] 朱旭, 张泽华, 闫茂德. 含输入时延与通信时延的车辆队列PID控制系统稳定性[J]. 交通运输工程学报, 2022, 22(3): 184-198. doi: 10.19818/j.cnki.1671-1637.2022.03.015ZHU Xu, ZHANG Ze-hua, YAN Mao-de. Stability of PID control system for vehicle platoon with input delay and communication delay[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 184-198. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.03.015 [10] CHEN Chao-yi, WANG Jia-wei, XU Qing, et al. Mixed platoon control of automated and human-driven vehicles at a signalized intersection: dynamical analysis and optimal control[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103138. doi: 10.1016/j.trc.2021.103138 [11] DONG Chang-yin, WANG Hao, LI Ye, et al. Route control strategies for autonomous vehicles exiting to off-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 3104-3116. doi: 10.1109/TITS.2019.2925319 [12] OROSZ G. Connected cruise control: modelling, delay effects, and nonlinear behaviour[J]. Vehicle System Dynamics, 2016, 54(8): 1147-1176. doi: 10.1080/00423114.2016.1193209 [13] FENG Shuo, SONG Zi-you, LI Zhao-jian, et al. Robust platoon control in mixed traffic flow based on tube model predictive control[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(4): 711-722. doi: 10.1109/TIV.2021.3060626 [14] 边有钢, 杨依琳, 胡满江, 等. 基于双向多车跟随式拓扑的混合车辆队列稳定性研究[J]. 中国公路学报, 2022, 35(3): 66-77. doi: 10.3969/j.issn.1001-7372.2022.03.007BIAN You-gang, YANG Yi-lin, HU Man-jiang, et al. Study on the stability of mixed vehicular platoon based on bidirectional multiple-vehicle following topologies[J]. China Journal of Highway and Transport, 2022, 35(3): 66-77. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.03.007 [15] ZHOU Yang, AHN S, WANG Meng, et al. Stabilizing mixed vehicular platoons with connected automated vehicles: an H-infinity approach[J]. Transportation Research Part B: Methodological, 2020, 132: 152-170. doi: 10.1016/j.trb.2019.06.005 [16] WANG Zi-ran, BIAN You-gang, SHLADOVER S E, et al. A survey on cooperative longitudinal motion control of multiple connected and automated vehicles[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12(1): 4-24. doi: 10.1109/MITS.2019.2953562 [17] QIN Yan-yan, WANG Hang. Stabilizing mixed cooperative adaptive cruise control traffic flow to balance capacity using car-following model[J]. Journal of Intelligent Transportation Systems, 2021, DOI: 10.1080/15472450.2021.1985490. [18] CHEN Zheng, PARK B B. Cooperative adaptive cruise control with unconnected vehicle in the loop[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4176-4186. doi: 10.1109/TITS.2020.3041840 [19] WANG Jia-wei, ZHENG Yang, CHEN Chao-yi, et al. Leading cruise control in mixed traffic flow: system modeling, controllability, and string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12861-12876. doi: 10.1109/TITS.2021.3118021 [20] GE J I, OROSZ G. Connected cruise control among human-driven vehicles: experiment-based parameter estimation and optimal control design[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 445-459. doi: 10.1016/j.trc.2018.07.021 [21] LEE D, LEE S, CHEN Zheng, et al. Design and field evaluation of cooperative adaptive cruise control with unconnected vehicle in the loop[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103364. doi: 10.1016/j.trc.2021.103364 [22] LI Yong-chun, SHAN Chuan-ping. Impacts of cooperative adaptive cruise control links on driving comfort under vehicle-to-vehicle communication[J]. Journal of Advanced Transportation, 2022, 2022: 1-6. [23] GE J I, AVEDISOV S S, HE C R, et al. Experimental validation of connected automated vehicle design among human-driven vehicles[J]. Transportation Research Part C: Emerging Technologies, 2018, 91: 335-352. [24] GE J I, OROSZ G. Optimal control of connected vehicle systems with communication delay and driver reaction time[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 2056-2070. [25] LI S E, ZHENG Yang, LI Ke-qiang, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58. [26] NAUS G J L, VUGTS R P A, PLOEG J, et al. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279. [27] PUNZO V, BORZACCHIELLO M T, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1243-1262. [28] MONTANINO M, PUNZO V. Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns[J]. Transportation Research Part B: Methodological, 2015, 80: 82-106. [29] FENG Shuo, ZHANG Yi, LI S E, et al. String stability for vehicular platoon control: definitions and analysis methods[J]. Annual Reviews in Control, 2019, 47: 81-97. [30] SUN Jie, ZHENG Zu-duo, SUN Jian. The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based controller[J]. Transportation Research Part B: Methodological, 2020, 142: 58-83. [31] LI Ke-qiang, WANG Jia-wei, ZHENG Yang. Cooperative formation of autonomous vehicles in mixed traffic flow: beyond platooning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15951-15966. -