System design of heterogeneous vehicle platoon based on multi-delay proportional-retarded controller
-
摘要: 针对异构车辆队列,为有效利用时滞提升系统响应速度等控制性能,引入多时滞设计了一种比例-时滞(PR)控制器;使用隐函数定理及柯西-黎曼方程对车辆队列各子系统的特征方程进行了分析,提出了子系统的最右侧极点配置方法;确定了最右侧极点的可配置范围,并给出了关于控制器增益和时滞的设计指导规则;为了逐次增强各跟随车所对应子系统的稳定性,合理分离了各子系统的极点,提出了整个车辆队列的最右侧极点配置方法,并给出了弦稳定的充分条件。仿真结果表明:设计的多时滞PR控制器及所提出的最右侧极点配置方法,可精确地将异构车辆队列的极点配置在期望位置,并能同时保证车辆队列的内部稳定性与弦稳定性,且最右侧极点越小,系统响应速度越快;相较于单时滞PR控制器,该方法灵活地分离了各子系统的最右侧极点,并将系统调节时间减少了2.45%;与传统的比例-微分控制器(PD)相比,PR控制器在车辆乘坐舒适度和燃油效率方面有显著提升,改进幅度达到2~4个数量级;相同频率扰动下,PR与PD控制器作用下的加速度和控制输入的振幅比均始终小于1/3,当扰动频率为9Hz时,振幅比降至0.031。可见,所设计的多时滞PR控制器在响应速度、极点分离与抑制干扰等方面均有显著优势。Abstract: To effectively utilize delays to enhance system response speed and other control performances, a proportional-retarded (PR) controller was designed for the heterogeneous vehicle platoon by introducing multi-delays. The characteristic equations of each subsystem of the vehicle platoon were analyzed by applying the implicit function theorem and Cauchy-Riemann equation, and the right-most pole assignment method was proposed for these subsystems. The available assignment ranges of the right-most poles were determined, and the guidelines for designing the controller gains and delays were given. To gradually increase the stability of the subsystems that corresponded to the follower vehicles, the poles of subsystems were separated reasonably, and a right-most pole assignment method was proposed for the entire vehicle platoon. Moreover, sufficient conditions for string stability were derived. Simulation results indicate that the designed multi-delay PR controller and the proposed right-most pole assignment method can accurately assign the pole of the heterogeneous vehicle platoon at the desired location, and both the internal stability and string stability of the vehicles are ensured. Moreover, a smaller right-most pole indicates a faster system response speed. Compared to a single-delay PR controller, the right-most poles of subsystems are flexibly separated via this method, the system setting time reduces by 2.45%. Compared with traditional proportional-derivative (PD) controllers, the PR controller shows significant improvements in ride comfort and fuel economy, with enhancement ranging from 2-4 orders of magnitude. Under the disturbances of the same frequency, the amplitude ratios of the acceleration and control input for both the PR and PD controllers remain consistently below 1/3, dropping to 0.031 when the frequency of the disturbances is 9 Hz. It can be seen that the designed multi-delay PR controller has significant advantages in response speed, pole separation, and disturbance suppression.
-
表 1 kpi、kri和τi关于γi的变化趋势
Table 1. Variation tendencies of kpi, kri and τi with respect to γi
参量 变化趋势 左边界 右边界 γi 减小 -1/(3Ti) 0 kpi 增大 0 +∞ kri 增大 0 +∞ τi 减小 0 +∞ 表 2 PR控制器参数
Table 2. Parameters of PR controller
试验组别 控制器参数 跟随车1 跟随车2 跟随车3 跟随车4 跟随车5 第1组 kpi 0.023 8 0.039 5 0.060 0 0.086 1 0.117 7 kri 0.018 7 0.031 4 0.048 3 0.070 1 0.967 0 τi/s 4.012 0 3.008 0 2.366 0 1.921 0 1.603 0 第2组 kpi 0.148 8 0.216 5 0.296 9 0.392 9 0.498 9 kri 0.127 1 0.188 7 0.261 8 0.349 7 0.447 4 τi/s 1.269 0 0.984 0 0.800 0 0.667 0 0.574 0 表 3 单时滞PR控制器参数
Table 3. Parameters of single-delay PR controller
控制器参数 跟随车1 跟随车2 跟随车3 跟随车4 跟随车5 kpi 0.276 0.403 0.594 0.900 1.452 kri 0.233 0.348 0.524 0.813 1.344 表 4 PD控制器参数
Table 4. Parameters of PD controller
控制器参数 跟随车1 跟随车2 跟随车3 跟随车4 跟随车5 kpi 0.080 0.082 0.081 0.080 0.078 kdi 0.356 0.396 0.439 0.474 0.510 表 5 加速度与控制输入的振幅比
Table 5. Amplitude ratios of acceleration and control input
频率/Hz 1 3 5 7 9 振幅比 加速度绝对值/(m·s-2) 0.312 0.143 0.066 0.034 0.031 控制输入绝对值 0.320 0.143 0.066 0.034 0.031 表 6 异构车辆队列的乘坐舒适度与燃油经济性
Table 6. Ride comforts and fuel economies of heterogeneous vehicle platoon
跟随车 乘坐舒适度 燃油经济性 PR控制器 PD控制器 PR控制器 PD控制器 1 0.003 3 58.358 0 0.331 8 70.169 4 2 0.021 7 77.909 5 2.030 3 96.475 8 3 0.046 6 106.663 0 2.096 2 128.560 0 4 0.096 2 144.659 0 4.528 8 177.310 0 5 0.204 9 195.254 0 12.511 8 244.370 0 -
[1] AXELSSON J. Safety in vehicle platooning: a systematic literature review[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1030-1045. http://www.onacademic.com/detail/journal_1000039518078610_0d6f.html [2] OLIVEIRA R, MONTEZ C, BOUKERCHE A, et al. Co-design of consensus-based approach and reliable communication protocol for vehicular platoon control[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9510-9524. doi: 10.1109/TVT.2021.3101489 [3] 边有钢, 杨依琳, 胡满江, 等. 基于双向多车跟随式拓扑的混合车辆队列稳定性研究[J]. 中国公路学报, 2022, 35(3): 66-77. doi: 10.3969/j.issn.1001-7372.2022.03.007BIAN You-gang, YANG Yi-lin, HU Man-jiang, et al. Study on the stability of mixed vehicular platoon based on bidirectional multiple-vehicle following topologies[J]. China Journal of Highway and Transport, 2022, 35(3): 66-77. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.03.007 [4] ZHENG Yang, BIAN You-gang, LI S E, et al. Cooperative control of heterogeneous connected vehicles with directed acyclic interactions[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 13(2): 127-141. doi: 10.1109/MITS.2018.2889654 [5] PAN Cheng-wei, CHEN Yong, LIU Yue-zhi, et al. String stability for heterogeneous vehicular platoon with fault[C]//IEEE. 2021 IEEE International Intelligent Transportation Systems Conference. New York: IEEE, 2021: 1913-1918. [6] LI Yong-fu, TANG Chuan-cong, LI Ke-zhi, et al. Consensus-based cooperative control for multi-platoon under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2220-2229. doi: 10.1109/TITS.2018.2865575 [7] YU Xin-yi, YANG Fan, ZOU Chao, et al. Stabilization parametric region of distributed PID controllers for general first-order multi-agent systems with time delay[J]. IEEE Journal of Automatica Sinica, 2019, 7(6): 1555-1564. [8] MA Guo-qi, WANG Bin-quan, GE S S. Robust optimal control of connected and automated vehicle platoons through improved particle swarm optimization[J]. Transportation Research Part C: Emerging Technologies, 2022, 135: 1-15. http://www.sciencedirect.com/science/article/pii/S0968090X21004745?dgcid=rss_sd_all [9] IBRAHIM A, GOSWAMI D, LI Hong, et al. Multi-layer multi-rate model predictive control for vehicle platooning[J]. IEEE Transportation Research Part C: Emerging Technologies, 2021, 10(2): 583-607. http://www.sciencedirect.com/science/article/pii/S0968090X20308056 [10] GONG Si-yuan, ZHOU An-ye, PEETA S. Cooperative adaptive cruise control for a platoon of connected and autonomous vehicles considering dynamic information flow topology[J]. Transportation Research Record, 2019, 2673(10): 185-198. doi: 10.1177/0361198119847473 [11] RAMÍREZ A, SIPAHI R. Multiple intentional delays can facilitate fast consensus and noise reduction in a multiagent system[J]. IEEE Transactions on Cybernetics, 2018, 49(4): 1224-1235. http://www.onacademic.com/detail/journal_1000040204394710_454d.html [12] RAMÍREZ A, GARRIDO R, SIPAHI R, et al. Design of proportional integral retarded (PIR) controllers for second-order LTI systems[J]. IEEE Transactions on Automatic Control, 2016, 32(6): 1688-1693. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7265026 [13] 常雪阳, 徐庆, 李克强, 等. 通信时延与丢包下智能网联汽车控制性能分析[J]. 中国公路学报, 2019, 32(6): 216-225.CHANG Xue-yang, XU Qing, LI Ke-qiang, et al. Analysis of intelligent and connected vehicle control under communication delay and packet loss[J]. China Journal of Highway and Transport, 2019, 32(6): 216-225. (in Chinese) [14] DARBHA S, KONDURI S, PAGILLA P R, et al. Benefits of V2V communication for autonomous and connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(5): 1-10. http://www.researchgate.net/profile/Prabhakar_Pagilla/publication/323655121_Benefits_of_V2V_Communication_for_Autonomous_and_Connected_Vehicles/links/5aa83e2da6fdcc1b59c63a90/Benefits-of-V2V-Communication-for-Autonomous-and-Connected-Vehicles.pdf [15] LIU Yong-gui, GAO Huan-li. Stability, scalability, speedability, and string stability of connected vehicle systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5): 2819-2832. doi: 10.1109/TSMC.2021.3054794 [16] LI S E, QIN Xiao-hui, ZHENG Yang, et al. Distributed platoon control under topologies with complex eigenvalues: stability analysis and controller synthesis[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 206-220. doi: 10.1109/TCST.2017.2768041 [17] OLIVEIRA S F, TORRES L A, MOZELLI L A, et al. Stability and formation error of homogeneous vehicular platoons with communication time delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4338-4349. doi: 10.1109/TITS.2019.2939777 [18] 李永福, 何昌鹏, 朱浩, 等. 通信延时环境下异质网联车辆队列非线性纵向控制[J]. 自动化学报, 2021, 47(12): 2841-2856.LI Yong-fu, HE Chang-peng, ZHU Hao, et al. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delay[J]. Acta Automatica Sinica, 2021, 47(12): 2841-2856. (in Chinese) [19] FIENGO G, LUI D G, PETRILLO A, et al. Distributed leader-tracking adaptive control for high-order nonlinear Lipschitz multi-agent systems with multiple time-varying communication delays[J]. IEEE International Journal of Control, 2021, 94(7): 1880-1892. doi: 10.1080/00207179.2019.1683608 [20] XING Hai-tao, PLOEG J, NIJMEIJER H. Robust CACC in the presence of uncertain delays[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3507-3518. doi: 10.1109/TVT.2022.3148119 [21] LIU Yong-gui, GAO Huan-li, ZHAI Chun-jie, et al. Internal stability and string stability of connected vehicle systems with time delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6162-6174. doi: 10.1109/TITS.2020.2988401 [22] GUO Ge, KANG Jian, LEI Hong-bo, et al. Finite-time stabilization of a collection of connected vehicles subject to communication interruptions[J]. IEEE Transactions on Intelligent Transportation, 2021, 20(4): 101-109. [23] KHALIFA A, KERMORGANT O, DOMINGUEZ S, et al. Platooning of car-like vehicles in urban environments: an observer-based approach considering actuator dynamics and time delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5684-5696. doi: 10.1109/TITS.2020.2988948 [24] 李旭光, 张颖伟, 冯琳, 等. 时滞系统的完全稳定性研究综述[J]. 控制与决策, 2018, 33(7): 1153-1170.LI Xu-guang, ZHANG Ying-wei, FENG Lin, et al. A survey on the complete stability of time-delay systems[J]. Journal of Control and Decision, 2018, 33(7): 1153-1170. (in Chinese) [25] RAMÍREZ A, SIPAHI R. Single-delay and multiple-delay proportional-retarded (PR) protocols for fast consensus in a large-scale network[J]. IEEE Transactions on Automatic Control, 2018, 64(5): 2142-2149. [26] PLOEG J N, VAN D, NIJMEIJER H. Lp string stability of cascaded systems: application to vehicle platooning[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2): 786-793. doi: 10.1109/TCST.2013.2258346 [27] ODERSKY M, BLANVILLAIN O, LIU Feng-yun, et al. Simplicitly: foundations and applications of implicit function types[J]. Proceedings of the ACM on Programming Languages, 2017, 42(2): 1-29. http://www.onacademic.com/detail/journal_1000040900916410_3023.html [28] PALIOKAS E. Multidimensional analogues of the Riemann-Hilbert boundary value problem[J]. Mathematical Modelling and Analysis, 2007, 12(2): 205-214. doi: 10.3846/1392-6292.2007.12.205-214 [29] FU Pei-lin, NICULESCU S I, CHEN Jie. Stability of linear neutral time-delay systems: exact conditions via matrix pencil solutions[J]. IEEE Transactions on Automatic Control, 2006, 51(6): 1063-1069. doi: 10.1109/TAC.2006.876804 -