Review on technologies of fuel cell air compressors for vehicles
-
摘要: 从性能需求与技术现状等角度,综述了载运工具用燃料电池空气压缩机的研究进展,总结了离心式空气压缩机的关键部件参数优化设计、机电耦合控制、加工制造和性能测试等技术,并展望了燃料电池空气压缩机技术未来的发展方向。研究结果表明:燃料电池空气压缩机需满足大流量与快速响应等要求;当前,两级离心式空气压缩机流量与压力等特性可满足5~350 kW燃料电池系统供氧需求,最高转速可达1.0×105 r·min-1,零转速到怠速的响应时间为秒级;叶轮、扩压器、箔片气体动压轴承等关键部件的参数可采用优化算法进行设计以提高空气压缩机气动性能;为降低驱动电机的转速与转矩波动,离心式空气压缩机机电耦合控制可采用电流环解耦控制和无传感控制等方法以提高空气压缩机的动态响应能力;为保证离心式空气压缩机高速运转下的气动性能和系统稳定性,高精度三元叶轮加工主要通过五轴数控机床铣削实现,箔片气体动压轴承的涂层常采用固体润滑与等离子喷射工艺;燃料电池空气压缩机还需开展流量、压比、效率等特性与启停、寿命等耐久性的指标测试以综合评价其性能;目前,空气压缩机气动性能测试标准与试验方法较为完备,但耐久性相关的测试和评价方法还需进一步完善;未来,随着对可持续交通解决方案需求的不断增长,载运工具用燃料电池空气压缩机技术将朝着集成轻量化与智能化等方向发展。Abstract: The research progress of fuel cell air compressors for vehicles was reviewed from the aspects of performance requirements and technology status. The technologies of key components parameter optimization design, electromechanical coupling control, manufacturing and performance testing of centrifugal air compressors were summarized. The future development directions of fuel cell air compressor technologies were prospected. Research results show that fuel cell air compressors need to meet the requirements of large flow rate and fast response. At present, the flow and pressure characteristics of the two-stage centrifugal air compressor can meet the oxygen supply requirements of the 5-350 kW fuel cell system. The maximum speed of the compressor can reach 1.0×105 r·min-1, and the response time from zero speed to idle speed is seconds. The parameters of key components such as impeller, diffuser and foil gas dynamic pressure bearing can be designed by optimization algorithm to improve the aerodynamic performance of air compressor. In order to reduce the speed and torque fluctuation of drive motor, current loop decoupling control and sensorless control can be used in the electromechanical coupling control of centrifugal air compressor to improve the dynamic response ability of the compressor. In order to ensure the aerodynamic performance and system stability of centrifugal air compressor in high-speed operation, high-precision ternary impeller machining is mainly realized by milling with five-axis computer numerical control machine tool, and the coating of foil gas dynamic pressure bearing usually adopts solid lubrication and plasma injection technology. In order to comprehensively evaluate the performance of fuel cell air compressors, it also need to carry out characteristic test such as flow, pressure ratio and efficiency and durability indicator test such as start-stop and life. At present, the test standards and methods of air compressor aerodynamic performance are relatively complete, but the test and evaluation methods related to durability need to be further improved. In the future, with the growing demand for sustainable transportation solutions, fuel cell air compressor technologies for vehicles will be developed in lightweight and intelligent direction.
-
Key words:
- vehicle /
- fuel cell /
- air compressor /
- demand analysis /
- optimization design /
- electromechanical coupling control
-
表 1 近年来国内代表性燃料电池商用车
Table 1. Domestic representative fuel cell commercial vehicles in recent years
类型 车辆名称 制造商 动力系统 燃料电池重卡 FSQ4250SFFCEV型燃料电池半挂牵引车 佛山市飞驰汽车科技有限公司 质子交换膜燃料电池+ 锰酸锂电池;驱动电机峰值功率为355 kW,额定功率为198 kW ZKH3310P6FCEV1型燃料电池自卸汽车 郑州宇通集团有限公司 质子交换膜燃料电池+ 锰酸锂蓄电池;驱动电机额定功率为200 kW,峰值功率为400 kW BJ4189FCEVPH型燃料电池半挂牵引车 北汽福田汽车股份有限公司 氢燃料电池+磷酸铁锂电池;驱动电机额定功率为220 kW,峰值功率为360 kW CA3310P66L4T4FCEV型燃料电池自卸汽车 中国第一汽车集团有限公司 质子交换膜电池+磷酸铁锂电池;驱动电机峰值功率为360 kW 燃料电池客车 BJ6126FCEVUH-N1型燃料电池客车 北京福田欧辉新能源汽车有限公司 氢燃料电池系统+磷酸铁锂电池;额定功率为110 kW XML6855JFCEVJ0CL型燃料电池城市客车 厦门金龙旅行车有限公司 质子交换膜燃料电池系统+磷酸铁锂电池;驱动电机额定功率为90 kW,峰值功率为188 kW LCK6106FCEVGF1型燃料电池低入口城市客车 中通客车股份有限公司 质子交换膜燃料电池+ 磷酸铁锂蓄电池;驱动电机峰值功率为200 kW 表 2 某型号12 t重型卡车主要参数
Table 2. Main parameters of a 12 t heavy truck
整备质量/kg 旋转部件等效质量/kg 滚动阻力系数 迎风面积/m2 空气阻力系数 12 000 1 200 0.012 6.06 0.7 表 3 商用离心式空压机气动性能水平
Table 3. Aerodynamic performance levels of commercial centrifugal air compressors
类型 公司 型号 最高压缩比 额定流量/(g·s-1) 电机功率/kW 单级 金通灵 FC150-20+ 3.0 150 21.0 施宾德斯 S26 3.5 200 25.6 两级 金士顿 TCC120 3.8 140 23.0 势加透博 XT-FCC400 3.6 144 22.0 海德韦尔 HEC15 3.5 160 20.0 毅合捷 ELD-FCC3010001 3.4 180 26.0 优社动力 YF30 3.2 180 30.0 透平 金士顿 TMC-120 3.0 140 16.2 势加透博 XT-FCTC500 4.0 200 22.5 海德韦尔 VSEC15 3.1 220 20.0 优社动力 YF30T 2.6 150 30.0 蜂巢蔚领 VF20(T) 3.5 20.0 表 4 商用离心式空压机动态响应水平
Table 4. Dynamic response levels of commercial centrifugal air compressors
公司 型号 适用燃料电池功率/kW 响应时间/s 东德实业 DK系列 5~230 静止到怠速为1.0 毅合捷 ELD-FCB0104001 2 静止到怠速小于0.9;怠速到额定点小于3.0 ELD-FCC0410001 13~20 0→3.0×104 r·min-1小于1.0;3.0×104→0 r·min-1小于1.0;3.0×104→1.0×105 r·min-1小于1.0;1.0×105→3.0×104 r·min-1小于1.0 ELD-FCC3010001 100~150 0→3.0×104 r·min-1小于1.0;3.0×104→0 r·min-1小于0.6;3.0×104→1.0×105 r·min-1小于1.5;1.0×105→3.0×104 r·min-1小于1.4 ELD-FCC4510001 150~260 蜂巢蔚领 VF系列 5~350 静止到怠速小于0.5;怠速到95%转速最快0.7 表 5 无传感器控制算法对比
Table 5. Comparison of sensorless control algorithms
方法 优点 缺点 模型参考自适应 简单,易于实现,稳定性好 可调的自适应模型难以建立 滑模观测器 快速响应,鲁棒性强 对系统模型准确性要求较高,滑模面设计困难 表 6 叶轮加工制造方案
Table 6. Processing and manufacturing schemes of impeller
类型 方法 原理 优势 劣势 减材制造 五轴数控机床铣削 联动控制五个坐标轴的运动,实现对工件在多个角度和方向上的切削 复杂曲面加工,加工柔性高,精度高,可靠性高且加工过程稳定 高成本,加工周期长,材料浪费多,存在干涉风险 数控电火花 通过脉冲放电击穿电极和工件绝缘介质生产火花放电,去除零件多余材料 复杂形状加工,高精度加工,适合于导电材料 加工效率低,表面质量差,材料选择局限 电解加工 通过极间电场的作用实现阳极金属材料溶解或氧化 无宏观切削力,复杂形状加工,加工精度高 加工过程复杂,阴极设计难度大,加工速度慢 增材制造 精密焊接 将焊接能量集中到小尺寸的焊接区域,以实现高精度的连接 速度快,高精度,适用多种材料 成本高,接头可视性差,难以处理大尺寸工件 3D打印 将三维模型按其截面形状进行分层,通过逐层增加材料实现零件制造 加工柔性高,不受零件形状,工装夹具等的限制,材料利用率高 受零件尺寸限制,成形精度差,产品强度不足 表 7 箔片气体动压轴承涂层性能对比
Table 7. Comparison of coating properties of foil gas dynamic pressure bearing
涂层 区域 喷涂法 优势 劣势 PS系列 转子表面 等离子喷涂 高温减摩性好 室温摩擦性能差 类金刚石膜 磁控溅射 高硬度,低摩擦因数,热稳定性好 附着性限制,成本高 Korolon TM系列 顶箔表面 空气喷涂法 低摩擦因数,耐磨损 制备复杂,成本高 表 8 离心式空压机测试规范与标准
Table 8. Test specifications and standards of centrifugal air compressor
序号 适用方法 发布单位 内容 1 《透平压缩机性能试验规程》(GB/T 25630—2010) 中华人民共和国国家质量监督检验检疫总局与中国国家标准化管理委员会 规定了所有型式的透平压缩机进行流量、功率、功耗、压力、温度等性能指标试验时的准备、过程与评定 2 《氢燃料电池发动机用离心式空气压缩机性能试验方法》(T/CSAE 187—2021) 中国汽车工程学会 规定了氢燃料电池电动汽车使用的工作特性试验装置要求、一般性能、工作特性、安全性、环境适应性、噪声、耐久等性能试验方法 3 《燃料电池发动机用空气压缩机》(QC/T 1207—2024) 中华人民共和国工业和信息化部 规定了燃料电池空压机的技术要求、环境适应性与耐久性试验方法 4 《燃料电池电动汽车用空气压缩机试验方法》(T/CAAMTB 13—2020) 中国汽车工业协会 规定了燃料电池电动汽车用空压机的气动性能、环境适应性与耐久性试验方法 5 《氢燃料电池用离心式空压机》(T/CSTE 0076—2020) 中国技术经济学会 规定了氢燃料电池用离心式空压机的一般要求、性能要求、安全性、环境适应性与耐久等性能试验方法 6 Acoustics—Noise Test Code for Compressors and Vacuum Pumps—Engineering Method (Grade 2)(ISO 2151: 2004 EN) 国际标准化组织 规定了便携式与固定式压缩机及真空泵噪声排放的测量、计算和声明方法和测量的安装、负载和工作条件 7 《往复式内燃机声压法声功率级的测定第3部分:半消声室精密法》(GB/T 1895.3—2015) 中华人民共和国国家质量监督检验检疫总局与中国国家标准化管理委员会 规定了往复式内燃机声压法声功率级的测定方法——半消声室精密法 8 Compressed Air—Part 1: Contaminants and Purity Classes (ISO 8573-1: 2010 EN) 国际标准化组织 规定了压缩空气相对于颗粒、水和油的纯度等级,与规定或测量空气的压缩空气系统的位置无关 9 Compressed Air Contaminant Measurement—Part 2: Oil Aerosol Content (ISO 8573-2: 2018 EN) 国际标准化组织 规定了通常存在于压缩空气中的液体油和油气溶胶的取样和定量分析的试验方法 10 Compressed Air—Part 5: Test Methods for Oil Vapour and Organic Solvent Content (ISO 8573-5: 2001 EN) 国际标准化组织 规定了用于测定压缩空气中油蒸气(6个及以上碳原子的碳氢化合物)含量的气相色谱测试方法 表 9 商用离心式空压机启停性能
Table 9. Start-stop performances of commercial centrifugal air compressors
类型 公司 型号 电堆功率/kW 启停次数/104 单级 金通灵 FC150 150 10 两级 海德韦尔 HEC © 120 20 势加透博 FCC300 150 10 蜂巢蔚领 VF60 200~300 30 优社动力 YF50 150~210 15 毅合捷 ELD-FCTC3010001 120~200 20 透平 蜂巢蔚领 VF25(T) 80~120 30 蜂巢蔚领 VF50(T) 140~220 30 优社动力 YF30T 90~150 15 表 10 离心式空压机耐久性能
Table 10. Durabilities of centrifugal air compressors
类型 公司 型号 电堆功率/kW 工况 寿命/h 两级 优社动力 YF50 150~210 交变 >20 000 势加透博 FCC 30~140 NEDC >12 000 透平 海德韦尔 VSEC30 80~300 >5 760 蜂巢蔚领 VF50(T) 140~220 >20 000 -
[1] 王亚雄, 钟顺彬, 孙逢春. 车载高质量密度固态储氢材料研究进展[J]. 稀有金属, 2022, 46(6): 796-812.WANG Ya-xiong, ZHONG Shun-bin, SUN Feng-chun. Research progress in vehicular high mass density solid hydrogen storage materials[J]. Chinese Journal of Rare Metals, 2022, 46(6): 796-812. [2] SPARANO M, SORRENTINO M, TROIANO G T, et al. The future technological potential of hydrogen fuel cell systems for aviation and preliminary co-design of a hybrid regional aircraft powertrain through a mathematical tool[J]. Energy Conversion and Management, 2023, 281: 116822. doi: 10.1016/j.enconman.2023.116822 [3] HU Hao-wen, OU Kai, YUAN Wei-wei. Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system[J]. Energy, 2023, 284: 128459. [4] 王亚雄, 王轲轲, 钟顺彬, 等. 面向耐久性提升的车用燃料电池系统电控技术研究进展[J]. 汽车工程, 2022, 44(4): 545-559.WANG Ya-xiong, WANG Ke-ke, ZHONG Shun-bin, et al. Research progress on durability enhancement-oriented electric control technology of automotive fuel cell system[J]. Automotive Engineering, 2022, 44(4): 545-559. [5] HUANG Wei-feng, NIU Tong, ZHANG Cai-zhi, et al. Experimental study of the performance degradation of proton exchange membrane fuel cell based on a multi-module stack under selected load profiles by clustering algorithm[J]. Energy, 2023, 270: 126937. [6] DI ILIO G, DI GIORGIO P, TRIBIOLI L, et al. Preliminary design of a fuel cell/battery hybrid powertrain for a heavy-duty yard truck for port logistics[J]. Energy Conversion and Management, 2021, 243: 114423. [7] XUN Qian, MURGOVSKI N, LIU Yu-jing. Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks[J]. Applied Energy, 2022, 320: 119252. doi: 10.1016/j.apenergy.2022.119252 [8] JIA Chun-chun, HE Hong-wen, ZHOU Jia-ming, et al. A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience[J]. Energy, 2023, 282: 128928. doi: 10.1016/j.energy.2023.128928 [9] 王亚雄, 余庆港, 王薛超, 等. 考虑性能衰退的燃料电池汽车自适应优化能量管理策略[J]. 交通运输工程学报, 2022, 22(1): 190-204. doi: 10.19818/j.cnki.1671-1637.2022.01.016WANG Ya-xiong, YU Qing-gang, WANG Xue-chao, et al. Adaptive optimal energy management strategy of fuel cell vehicle by considering fuel cell performance degradation[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 190-204. doi: 10.19818/j.cnki.1671-1637.2022.01.016 [10] SARMA U, GANGULY S. Determination of the component sizing for the PEM fuel cell-battery hybrid energy system for locomotive application using particle swarm optimization[J]. Journal of Energy Storage, 2018, 19: 247-59. [11] 徐晓健, 杨瑞, 纪永波, 等. 氢燃料电池动力船舶关键技术综述[J]. 交通运输工程学报, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004XU Xiao-jian, YANG Rui, JI Yong-bo, et al. Review on key technologies of hydrogen fuel cell powered vessels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004 [12] 陈旭冉, 郭燚. 燃料电池-锂电池混合动力船舶的能量管理优化[J]. 舰船科学技术, 2023, 45(7): 106-110. doi: 10.3404/j.issn.1672-7649.2023.07.021CHEN Xu-ran, GUO Yi. Optimization of energy management for fuel cell-lithium battery hybrid ship[J]. Ship Science and Technology, 2023, 45(7): 106-110. doi: 10.3404/j.issn.1672-7649.2023.07.021 [13] 张春雷, 李鹤, 董茂林, 等. 燃料电池空气供应系统自适应神经网络滑模控制[J]. 东北大学学报(自然科学版), 2022, 43(9): 1270-1276.ZHANG Chun-lei, LI He, DONG Mao-lin, et al. Adaptive neural network sliding mode control for the fuel cell air supply system[J]. Journal of Northeastern University (Natural Science), 2022, 43(9): 1270-1276. [14] WANG Yun-long, WANG Yong-fu, XU Jian-feng, et al. Observer-based discrete adaptive neural network control for automotive PEMFC air-feed subsystem[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3149-3163. [15] CHEN Jian, LIU Zhi-yang, WANG Fan, et al. Optimal oxygen excess ratio control for PEM fuel cells[J]. IEEE Transactions on Control Systems Technology, 2018, 26: 1711-1721. [16] DENG Hui-wen, LI Qi, CUI You-long, et al. Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19357-19369. [17] CHEN Jin-zhou, LI Jian-wei, XU Zhe-zhuang, et al. Anti-disturbance control of oxygen feeding for vehicular fuel cell driven by feedback linearization model predictive control-based cascade scheme[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33925-33938. [18] 李滢龙, 陈会翠, 章桐, 等. 车用燃料电池系统控制策略综述[J]. 汽车工程学报, 2024, 14(4): 566-585.LI Ying-long, CHEN Hui-cui, ZHANG Tong, et al. Research on control strategies for vehicle fuel cell systems[J]. Chinese Journal of Automotive Engineering, 2024, 14(4): 566-585. [19] 陈宏, 江坤, 唐廷江, 等. 大功率质子交换膜燃料电池电堆膜电极一致性研究[J]. 化工学报, 2024, 75(2): 1-12.CHEN Hong, JIANG Kun, TANG Ting-jiang, et al. Research on membrane electrode assembly consistency of high-power proton exchange membrane fuel cell stack[J]. CIESC Journal, 2024, 75(2): 1-12. [20] ZHAO Dong-dong, ZHENG Qing, GAO Fei, et al. Disturbance decoupling control of an ultra-high speed centrifugal compressor for the air management of fuel cell systems[J]. International Journal of Hydrogen Energy, 2014, 39(4): 1788-1798. doi: 10.1016/j.ijhydene.2013.11.057 [21] 刘志祥, 李伦, 丁一, 等. 包含离心式空压机的大功率PEMFC空气系统喘振研究[J]. 太阳能学报, 2018, 39(1): 233-239.LIU Zhi-xiang, LI Lun, DING Yi, et al. The surge research of heavy PEMFC air system with a centrifugal compressor[J]. Acta Energiae Solaris Sinica, 2018, 39(1): 233-239. [22] LIU Zhao-ming, CHANG Guo-feng, JIANG Shang-feng, et al. Adaptive anti-surge control strategy for PEM fuel cell vehicle with online surge detection[J]. IEEE Transactions on Transportation Electrification, 2023: 10(1): 844-858. [23] SU Qing-qing, ZHOU Jia-ming, YI Feng-yan, et al. An intelligent control method for PEMFC air supply subsystem to optimize dynamic response performance[J]. Fuel, 2024, 361: 130697. doi: 10.1016/j.fuel.2023.130697 [24] LI Yue-hua, PEI Pu-cheng, MA Ze, et al. Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110304. doi: 10.1016/j.rser.2020.110304 [25] 闫慧慧, 李昊昱, 周伯豪, 等. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.YAN Hui-hui, LI Hao-yu, ZHOU Bo-hao, et al. Research and optimization of the mechanism of centrifugal compressor[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(10): 1672-1685. [26] 赵会晶, 席光, 段亚飞, 等. 叶顶间隙对离心压气机性能和流动影响的实验研究[J]. 工程热物理学报, 2018, 39(7): 1453-1460.ZHAO Hui-jing, XI Guang, DUAN Ya-fei, et al. Experimental study of tip clearance effects on performance and flow field of a centrifugal compressor[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1453-1460. [27] HONG S, MUGABI J, JEONG J H. Numerical study on vortical flow structure and performance enhancement of centrifugal compressor impeller[J]. Applied Sciences, 2022, 12(15): 7755. doi: 10.3390/app12157755 [28] ZHAO Huan-xin, TAN Lei, YANG Dang-guo, et al. Optimization design and pressure fluctuation suppression based on orthogonal method for a centrifugal compressor[J]. Machines, 2023, 11(5): 559. [29] WAN Yu, GUAN Jin-ping, XU Shi-chuan. Improved empirical parameters design method for centrifugal compressor in PEM fuel cell vehicle application[J]. International Journal of Hydrogen Energy, 2016, 42(8): 5590-5605. [30] CHEN Zhi-kai, HUANG Hai-yang, CHEN Qin-long, et al. Novel multidisciplinary design and multi-objective optimization of centrifugal compressor used for hydrogen fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(33): 12444-12460. [31] 康达, 何卫东, 徐毅. 分流叶片长度和周向位置对高压比离心压气机性能的影响[J]. 推进技术, 2020, 41(12): 2709-2719.KANG Da, HE Wei-dong, XU Yi. Effects of splitter blade length and circumferential position on performance of high pressure ratio centrifugal compressor[J]. Journal of Propulsion Technology, 2020, 41(12): 2709-2719. [32] XU C, AMANO R S. Centrifugal compressor performance improvements through impeller splitter location[J]. Journal of Energy Resources Technology, 2018, 140(5): 051201. [33] 李育金, 熊万里, 彭思进, 等. 氢燃料电池空压机叶片扩压器迎角对气动性能影响研究[J]. 风机技术, 2022, 64(2): 1-8.LI Yu-jin, XIONG Wan-li, PENG Si-jin, et al. Effect of vaned diffuser angle of attack on aerodynamic performance of hydrogen fuel cell air compressor[J]. Chinese Journal of Turbomachinery, 2022, 64(2): 1-8. [34] 骆玮. 某型压缩机关键结构参数变化对其气动性能影响[J]. 化学工程与装备, 2023(7): 184-187.LUO Wei. Effects of changes in key structural parameters on the aerodynamic performance of a compressor model[J]. Chemical Engineering and Equipment, 2023(7): 184-187. [35] 李潇宇, 汪陈芳, 王智鑫, 等. 蜗壳通道面积对离心压气机性能的影响[J]. 合肥工业大学学报(自然科学版), 2021, 44(5): 590-594, 620. doi: 10.3969/j.issn.1003-5060.2021.05.003LI Xiao-yu, WANG Chen-fang, WANG Zhi-xin, et al. Effect of volute passage area on the performance of centrifugal compressor[J]. Journal of Hefei University of Technology (Natural Science), 2021, 44(5): 590-594, 620. doi: 10.3969/j.issn.1003-5060.2021.05.003 [36] 杨国蟒, 胡余生, 陈彬, 等. 车用空压机蜗壳优化设计研究[J]. 风机技术, 2021, 63(4): 14-21.YANG Guo-mang, HU Yu-sheng, CHEN Bin, et al. The optimization of air compressor volute for vehicle[J]. Chinese Journal of Turbomachinery, 2021, 63(4): 14-21. [37] 侯留凯, 郝开元. 波纹型止推箔片轴承静态特性分析[J]. 轴承, 2022(10): 56-61.HOU Liu-kai, HAO Kai-yuan. Analysis on static characteristics of bump thrust foil bearings[J]. Bearing, 2022 (10): 56-61. [38] 徐方程, 张广辉, 孙毅, 等. 平箔片楔形高度对气体止推箔片轴承特性影响[J]. 航空动力学报, 2016, 31(12): 3064-3072.XU Fang-cheng, ZHANG Guang-hui, SUN Yi, et al. Performance analysis of air foil thrust bearings with different top foil taper heights[J]. Journal of Aerospace Power, 2016, 31(12): 3064-3072. [39] 徐润, 马希直. 基于弹性壳体模型的波箔型气体动压径向轴承静特性分析[J]. 润滑与密封, 2010, 35(1): 17-21. doi: 10.3969/j.issn.0254-0150.2010.01.005XU Run, MA Xi-zhi. Analysis of the static performance of bump foil journal bearing based on elastic shell model[J]. Lubrication Engineering, 2010, 35(1): 17-21. doi: 10.3969/j.issn.0254-0150.2010.01.005 [40] 臧腾飞, 贾晨辉, 张璐瑶, 等. 混合式动压气体轴承结构优化与可靠性分析[J]. 航空动力学报, 2021, 36(12): 2606-2620.ZANG Teng-fei, JIA Chen-hui, ZHANG Lu-yao, et al. Structural optimization and reliability analysis of hybrid dynamic pressure gas bearings[J]. Journal of Aerospace Power, 2021, 36(12): 2606-2620. [41] 万玉, 许思传, 张良. 燃料电池车用离心叶轮型线参数化及多工况优化[J]. 同济大学学报(自然科学版), 2017, 45(1): 98-108.WAN Yu, XU Si-chuan, ZHANG Liang. Multi-operating condition optimal design of centrifugal impeller for fuel cell vehicle application based on parameterization of impeller profile[J]. Journal of Tongji University (Natural Science), 2017, 45(1): 98-108. [42] 王忠义, 李佳鹏, 王艳华, 等. 单级离心压气机气动性能预测与优化设计[J]. 热能动力工程, 2021, 36(10): 119-125.WANG Zhong-yi, LI Jia-peng, WANG Yan-hua, et al. Aerodynamic performance prediction and optimization design of single stage centrifugal compressor[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(10): 119-125. [43] 彭森, 杨策, 马朝臣, 等. 前倾角对离心压气机叶轮性能的影响[J]. 清华大学学报(自然科学版), 2005, 45(2): 250-253. doi: 10.3321/j.issn:1000-0054.2005.02.029PENG Sen, YANG Ce, MA Chao-chen, et al. Influence of front lean angle on centrifugal compressor performance[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(2): 250-253. doi: 10.3321/j.issn:1000-0054.2005.02.029 [44] WEI Yi-yang, LI Bing-lin, XU Xiao-mei, et al. Design of electric supercharger compressor and its performance optimization[J]. Processes, 2023, 11(7): 2132. [45] 邵高鹏, 张扬军. 基于流场偏差分析的燃料电池空压机优化设计[J]. 清华大学学报(自然科学版), 2019, 59(6): 490-496.SHAO Gao-peng, ZHANG Yang-jun. Optimization design of a fuel cell air compressor based on a flow field deviation analysis[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 490-496. [46] ZHANG Yue-meng, XU Si-chuan, WAN Yu. Performance improvement of centrifugal compressors for fuel cell vehicles using the aerodynamic optimization and data mining methods[J]. International Journal of Hydrogen Energy, 2020, 45(19): 11276-11286. doi: 10.1016/j.ijhydene.2020.02.026 [47] 唐新姿, 肖鹏, 蔡鹏, 等. 变流量工况下小型离心压气机多目标优化设计[J]. 中国机械工程, 2018, 29(16): 1975-1983. doi: 10.3969/j.issn.1004-132X.2018.16.013TANG Xin-zi, XIAO Peng, CAI Peng, et al. Multi-objective optimization design of small-centrifugal compressor under variable flow conditions[J]. China Mechanical Engineering, 2018, 29(16): 1975-1983. doi: 10.3969/j.issn.1004-132X.2018.16.013 [48] 肖军, 王艺达, 刘小民, 等. 车用燃料电池空压机叶轮多工况气动优化设计[J]. 西安交通大学学报, 2021, 55(9): 39-48.XIAO Jun, WANG Yi-da, LIU Xiao-min, et al. Multi-condition aerodynamic optimization of the air compressor impeller used in fuel-cell vehicles[J]. Journal of Xi'an Jiaotong University, 2021, 55(9): 39-48. [49] CHEN Hao-xiang, ZHUGE Wei-lin, ZHANG Yang-jun, et al. Performance improvement of a centrifugal compressor for the fuel cell vehicle by tip leakage vortex control[J]. Journal of Thermal Science, 2021, 30: 2099-2111. doi: 10.1007/s11630-021-1430-7 [50] CHEN Xue-fei, AI Zi-jian, JI Yun-feng, et al. Numerical investigation of a centrifugal compressor with a single circumferential groove in different types of diffusers[C]//ASME. Turbine Technical Conference and Exposition, GT 2017. New York: ASME, 2017: 11-19. [51] BURGMANN S, FISCHER T, RUDERSDORF M, et al. Development of a centrifugal fan with increased part-load efficiency for fuel cell applications[J]. Renewable Energy, 2018, 116: 815-826. doi: 10.1016/j.renene.2017.09.075 [52] 张国路迢, 王江峰, 娄聚伟, 等. 半高叶片扩压器对离心压缩机流动性能影响的数值研究[J]. 西安交通大学学报, 2023, 57(10): 89-98. doi: 10.7652/xjtuxb202310009ZHANG Guo-lu-tiao, WANG Jiang-feng, LOU Ju-wei, et al. Numerical study on the impact of half-vaned diffuser on flow performance of centrifugal compressor[J]. Journal of Xi'an Jiaotong University, 2023, 57(10): 89-98. doi: 10.7652/xjtuxb202310009 [53] 刘长胜, 孙洋. 离心压缩机扩稳改进的数值分析[J]. 风机技术, 2023, 65(增1): 8-15.LIU Chang-Sheng, SUN Yang. Numerical Analysis of centrifugal compressor expansion stability improvement[J]. Chinese Journal of Turbomachinery, 2023, 65(S1): 8-15. [54] FU Jian-qin, WANG Huai-lin, BAO Huan-huan, et al. Multi-parameter optimization for the performance of the fuel cell air compressor based on computational fluid dynamics analysis at part load[J]. Thermal Science and Engineering Progress, 2023, 44: 102057. doi: 10.1016/j.tsep.2023.102057 [55] 吴亚东, 曹安国, 刘鹏寅, 等. Pareto多目标算法在离心压缩机蜗壳优化中的应用[J]. 航空动力学报, 2016, 31(1): 92-99.WU Ya-dong, CAO An-guo, LIU Peng-yin, et al. Application of Pareto multi-objective algorithm in centrifugal compressor volute optimization[J]. Journal of Aerospace Power, 2016, 31(1): 92-99. [56] 曹安国, 吴亚东, 刘鹏寅, 等. 基于改进Kriging代理模型的自适应序列优化算法在离心压缩机蜗壳设计中的应用[J]. 动力工程学报, 2015, 35(7): 562-567. doi: 10.3969/j.issn.1674-7607.2015.07.008CAO An-guo, WU Ya-dong, LIU Peng-yan, et al. Application of adaptive sequential optimization algorithm based on Kriging surrogate model in design of centrifugal compressor volute[J]. Journal of Chinese Society of Power Engineering, 2015, 35(7): 562-567. doi: 10.3969/j.issn.1674-7607.2015.07.008 [57] GAO Qi-hong, SUN Wen-jing, ZHANG Jing-zhou. Optimal design of top-foil wedge shape for a specific multi-layer gas foil thrust bearing by considering aerodynamic and thermal performances[J]. Thermal Science and Engineering Progress, 2023, 44: 102060. doi: 10.1016/j.tsep.2023.102060 [58] CHEN Rui, ZHAO Yong, YAO Jia-kang, et al. Research on the performance of foil thrust bearings under dynamic disturbances[J]. Tribology International, 2022, 174: 107744. doi: 10.1016/j.triboint.2022.107744 [59] LUAN Wen-lin, LIU Yan, WANG Yong-liang, et al. Effect of herringbone groove structure parameters on the static performance of gas foil herringbone groove thrust bearings[J]. Tribology International, 2023, 177: 107979. doi: 10.1016/j.triboint.2022.107979 [60] LATRAY N, KIM D. Novel thrust foil bearing with pocket grooves for enhanced static performance[J]. Journal of Tribology, 2021, 143(11): 1-20. [61] SHI Ting, XIONG Wei, PENG Xue-yuan, et al. Experimental investigation on the start-stop performance of gas foil bearings-rotor system in the centrifugal air compressor for hydrogen fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2023, 48(88): 34501-34519. [62] SHI Ting, WANG Huai-yu, YANG Wen-ming, et al. Mathematical modelling and optimization of gas foil bearings-rotor system in hydrogen fuel cell vehicles[J]. Energy, 2024, 290: 130129. doi: 10.1016/j.energy.2023.130129 [63] XU Zhen-ni, LI Chang-lin, DU Jian-jun. Modeling and static characteristics study of the double-layer bump gas foil bearing[J]. Tribology International, 2021, 164: 107202. doi: 10.1016/j.triboint.2021.107202 [64] 闫佳佳, 刘占生, 张广辉, 等. 平箔片厚度轴向变化的新型箔片轴承性能[J]. 哈尔滨工业大学学报, 2018, 50(1): 59-67.YAN Jia-jia, LIU Zhan-sheng, ZHANG Guang-hui, et al. Performance of a novel foil bearing with top foil thickness variation in axial direction[J]. Journal of Harbin Institute of Technology, 2018, 50(1): 59-67. [65] 张智明, 潘佳琪, 章桐. 燃料电池离心式空压机转子临界转速关键影响因素分析[J]. 汽车工程, 2022, 44(9): 1386-1393.ZHANG Zhi-ming, PAN Jia-qi, ZHANG Tong. Analysis of key influencing factors on rotor critical speed of centrifugal air compressor for fuel cell vehicles[J]. Automotive Engineering, 2022, 44(9): 1386-1393. [66] 吴磊, 于慎波, 于言明, 等. 永磁同步电主轴机电耦联转子动力学分析[J]. 组合机床与自动化加工技术, 2021(11): 10-14.WU Lei, YU Shen-bo, YU Yan-ming, et al. Dynamic analysis of electromechanical coupling rotor of permanent magnet synchronous motorized spindle[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2021(11): 10-14. [67] 田野, 孙岩桦, 杨利花, 等. 不同支撑和转子装配方式的高速电机临界转速分析[J]. 振动与冲击, 2013, 32(8): 24-30. doi: 10.3969/j.issn.1000-3835.2013.08.005TIAN Ye, SUN Yan-hua, YANG Li-hua, et al. Study on critical speed of high speed motor with different supports and rotor assembly[J]. Journal of Vibration and Shock, 2013, 32(8): 24-30. doi: 10.3969/j.issn.1000-3835.2013.08.005 [68] 崔刚, 熊斌, 黄康杰, 等. 电动汽车用永磁电机的失磁空间分布特性及影响因素[J]. 电工技术学报, 2023, 38(22): 5959-5974.CUI Gang, XIONG Bin, HUANG Kang-jie, et al. Study on spatial distribution characteristics and influencing factors of demagnetization of permanent magnet motor for electric vehicle[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 5959-5974. [69] JIA Mei-xia, HU Jian-jun, XIAO Feng, et al. Modeling and analysis of electromagnetic field and temperature field of permanent-magnet synchronous motor for automobiles[J]. Electronics, 2021, 10(17): 2173. doi: 10.3390/electronics10172173 [70] DING Fang, WANG Ai-guo, ZHANG Qian-bin. Analysis of unidirectional and bidirectional magnetic-thermal coupling of permanent magnet synchronous motor[J]. Journal of Vibroengineering, 2022, 24(8): 1541-1555. doi: 10.21595/jve.2022.22572 [71] SHI Quan, DONG Yue, LI Bang-long, et al. Analysis of electromagnetic vibration and noise of permanent magnet synchronous motor based on field-circuit coupling[J]. Journal of Vibroengineering, 2022, 24(6): 1188-1199. [72] 林巨广, 赖剑斌, 路玲. 车用永磁同步电机转子热结构耦合分析[J]. 合肥工业大学学报(自然科学版), 2019, 42(2): 172-177, 210. doi: 10.3969/j.issn.1003-5060.2019.02.006LIN Ju-guang, LAI Jian-bin, LU Ling. Thermal-structural coupled analysis of rotor of vehicle permanent magnet synchronous motor[J]. Journal of Hefei University of Technology (Natural Science), 2019, 42(2): 172-177, 210. doi: 10.3969/j.issn.1003-5060.2019.02.006 [73] 张前, 冯明, 陈俊, 等. 车载超高速永磁无刷电机驱动器[J]. 工程科学学报, 2017, 39(10): 1565-1574.ZHANG Qian, FENG Ming, CHEN Jun, et al. A vehicle mounted super high speed permanent magnet brushless motor drive[J]. Chinese Journal of Engineering, 2017, 39(10): 1565-1574. [74] ANTIVACHIS M, DIETZ F, ZWYSSIG C, et al. Novel high-speed turbo compressor with integrated inverter for fuel cell air supply[J]. Frontiers in Mechanical Engineering, 2021, 6: 612301. [75] KIM J, JEONG I, NAM K, et al. Sensorless control of PMSM in a high-speed region considering iron loss[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6151-6159. [76] 李春鹏, 贲洪奇, 刘博, 等. 采用扰动观测器的偏差解耦控制方法[J]. 中国电机工程学报, 2015, 35(22): 5859-5868.LI Chun-peng, BEN Hong-qi, LIU Bo, et al. Deviation decouple control method based on disturbance observer[J]. Proceedings of the CSEE, 2015, 35(22): 5859-5868. [77] 吴为, 丁信忠, 严彩忠. 基于复矢量的电流环解耦控制方法研究[J]. 中国电机工程学报, 2017, 37(14): 4184-4191.WU Wei, DING Xin-zhong, YAN Cai-zhong. Research on control method of current loop decoupling based on complex vector[J]. Proceedings of the CSEE, 2017, 37(14): 4184-4191. [78] 孙建业, 王志强, 谷鑫, 等. 高速低载波比下永磁同步电机预测电流控制[J]. 中国电机工程学报, 2020, 40(11): 3663-3672.SUN Jian-ye, WANG Zhi-qiang, GU Xin, et al. Predictive current control of PMSM with high speed and low-frequency-ratio[J]. Proceedings of the CSEE, 2020, 40(11): 3663-3672. [79] LU Ming-hui, WANG Xiong-fei, LOH P C, et al. Graphical evaluation of time-delay compensation techniques for digitally-controlled converters[J]. IEEE Transactions on Power Electronics, 2017, 33(3): 2601-2614. [80] 朱军, 韩利利, 汪旭东. 永磁同步电机无位置传感器控制现状与发展趋势[J]. 微电机, 2013, 46(9): 11-16.ZHU Jun, HAN Li-li, WANG Xu-dong. Status and trends of sensorless control algorithm for PMSM[J]. Micromotors, 2013, 46(9): 11-16. [81] WANG Zi-hui, LU Kai-yuan, BLAABJERG F. A simple startup strategy based on current regulation for back-EMF based sensorless control of PMSM[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3817-3825. [82] 鲍旭聪, 王晓琳, 彭旭衡, 等. 高速电机驱动关键技术研究综述[J]. 中国电机工程学报, 2022, 42(18): 6856-6870.BAO Xu-cong, WANG Xiao-lin, PENG Xu-heng, et al. Review of key technologies of high-speed motor drive[J]. Proceedings of the CSEE, 2022, 42(18): 6856-6870. [83] 张智文, 邹博文, 任玥. 基于改进SOGI的PMSM转子位置估算策略[J]. 组合机床与自动化加工技术, 2023(6): 173-175, 187.ZHANG Zhi-wen, ZOU Bo-wen, REN Yue. PMSM rotor position estimation strategy based on improved SOGI[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2023(6): 173-175, 187. [84] ZHANG Qian, ZHANG Hong-jie, MAO Shuai, et al. A high-speed air compressor controller for vehicle used fuel cell system[C]//IEEE. 2021 IEEE Vehicle Power and Propulsion Conference. New York: IEEE, 2021: 1-4. [85] WU Shi, YANG Lin, LIU Xian-li, et al. Study on performance of integral impeller stiffness based on five-axis machining system[J]. Procedia CIRP, 2016, 56: 485-490. [86] HEIGEL J C, TESSIER J, TAPPARO J, et al. Physics-based design for an impeller machining process[J]. Manufacturing Letters, 2022, 33: 502-507. [87] ZIMMERMANN N, MVLLER E, LANG S, et al. Thermally compensated 5-axis machine tools evaluated with impeller machining tests[J]. CIRP Journal of Manufacturing Science and Technology, 2023, 46: 19-35. [88] 魏国家. 电火花加工技术在小型闭式三元叶轮制造中的应用研究[J]. 航空制造技术, 2015(7): 86-90.WEI Guo-jia. Research on electrical discharge machining technology applied in small integrally shrouded impeller[J]. Aeronautical Manufacturing Technology, 2015(7): 86-90. [89] QU An-bang, LI Fan-chun. Influence of 3D printing on compressor impeller fatigue crack propagation life[J]. International Journal of Mechanical Sciences, 2023, 245: 108107. [90] QU An-bang, LI Fan-chun. Effect of double crack on fatigue crack growth life of 3D printing compressor impeller[J]. Thin-Walled Structures, 2023, 189: 110883. [91] 熊万里, 汪剑, 陈振宇, 等. 箔片气体动压轴承研究进展综述[J]. 机械工程学报, 2022, 58(21): 92-113.XIONG Wan-li, WANG Jian, CHEN Zhen-yu, et al. Review of research status and development of foil air bearings[J]. Journal of Mechanical Engineering, 2022, 58(21): 92-113. [92] 曾群锋, 曹江南. 气体箔片轴承固体润滑涂层的研究进展[J]. 真空科学与技术学报, 2019, 39(8): 694-704.ZENG Qun-feng, CAO Jiang-nan. Latest progress of solid lubrication coatings for fabrication of gas-foil bearings[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(8): 694-704. [93] 刘佳琦, 毕春晓, 韩东江, 等. 弹性箔片轴承的研究进展[J]. 润滑与密封, 2022, 47(9): 166-178.LIU Jia-qi, BI chun-xiao, HAN Dong-jiang, et al. Research progress of elastic foil bearings[J]. Lubrication Engineering, 2022, 47(9): 166-178. [94] 霍波波, 马希直. 波箔气体轴承WC-12Co涂层的制备和性能研究[J]. 润滑与密封, 2018, 43(4): 26-33.HUO Bo-bo, MA Xi-zhi. Research on the preparation and performances of WC-12Co coatings for gas bump foil bearings[J]. Lubrication Engineering, 2018, 43(4): 26-33. [95] 杜恺琪, 马希直. 波箔气体轴承MoS2基润滑涂层的制备和性能研究[J]. 润滑与密封, 2019, 44(5): 22-28.DU Kai-qi, MA Xi-zhi. Research on the preparation and performances of MoS2-based lubricating coatings for gas bump foil bearings[J]. Lubrication Engineering, 2019, 44(5): 22-28. [96] 韦开君, 左曙光, 吴旭东, 等. 燃料电池车用离心压缩机窄带啸叫噪声实验测试与分析[J]. 振动与冲击, 2017, 36(7): 14-20.WEI Kai-jun, ZUO Shu-guang, WU Xu-dong, et al. Measurement and analysis for whoosh noise of a centrifugal compressor in a fuel cell vehicle[J]. Journal of Vibration and Shock, 2017, 36(7): 14-20. [97] 化文灿, 杨山举, 王琪, 等. 应用于离心空压机的波箔气体轴承实验研究[J]. 润滑与密封, 2023, http://kns.cnki.net/kcms/detail/44.1260.TH.20231013.1711.002.html. http://kns.cnki.net/kcms/detail/44.1260.TH.20231013.1711.002.htmlHUA Wen-can, YANG Shan-ju, WANG Qi, et al. Experimental study on bump-foil gas bearing used in centrifugal air compressor[J]. Lubrication Engineering, 2023, http://kns.cnki.net/kcms/detail/44.1260.TH.20231013.1711.002.html. http://kns.cnki.net/kcms/detail/44.1260.TH.20231013.1711.002.html [98] WU Yue, BAO Huan-huan, FU Jian-qi, et al. Review of recent developments in fuel cell centrifugal air compressor: comprehensive performance and testing techniques[J]. International Journal of Hydrogen Energy, 2023, 48(82): 32039-32055. [99] 鲍欢欢, 付建勤, 张磊, 等. 燃料电池离心式空压机性能衰减特性试验研究[J]. 湖南大学学报: 自然科学版, 2023, 50(2): 191-197.BAO Huan-huan, FU Jian-qin, ZHANG Lei, et al. Experimental study on performance attenuation characteristics of centrifugal air compressor for fuel cells[J]. Journal of Hunan University: Natural Sciences, 2023, 50(2): 191-197. -