留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信号质量监测的高效鲁棒的多结构GNSS接收机

贾琼琼 郭琪琪 李伟鹏 陈泓锦

贾琼琼, 郭琪琪, 李伟鹏, 陈泓锦. 基于信号质量监测的高效鲁棒的多结构GNSS接收机[J]. 交通运输工程学报, 2025, 25(1): 132-144. doi: 10.19818/j.cnki.1671-1637.2025.01.009
引用本文: 贾琼琼, 郭琪琪, 李伟鹏, 陈泓锦. 基于信号质量监测的高效鲁棒的多结构GNSS接收机[J]. 交通运输工程学报, 2025, 25(1): 132-144. doi: 10.19818/j.cnki.1671-1637.2025.01.009
JIA Qiong-qiong, GUO Qi-qi, LI Wei-peng, CHEN Hong-jin. Efficient and robust multi-structure GNSS receiver based on signal quality monitoring[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 132-144. doi: 10.19818/j.cnki.1671-1637.2025.01.009
Citation: JIA Qiong-qiong, GUO Qi-qi, LI Wei-peng, CHEN Hong-jin. Efficient and robust multi-structure GNSS receiver based on signal quality monitoring[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 132-144. doi: 10.19818/j.cnki.1671-1637.2025.01.009

基于信号质量监测的高效鲁棒的多结构GNSS接收机

doi: 10.19818/j.cnki.1671-1637.2025.01.009
基金项目: 

国家自然科学基金项目 U2133204

中国民航大学民航航班广域监视与安全管控技术重点实验室开放基金项目 202202

详细信息
    通讯作者:

    贾琼琼(1986-),女,陕西高陵人,中国民航大学副教授,从事GNSS抗干扰技术与鲁棒的GNSS接收机技术研究

  • 中图分类号: U121

Efficient and robust multi-structure GNSS receiver based on signal quality monitoring

Funds: 

National Natural Science Foundation of China U2133204

Open Fund Project of Key Laboratory of Wide-Area Monitoring and Safety Control Technology of Civil Aviation University of China 202202

More Information
    Corresponding author: JIA Qiong-qiong(1986-), female, associate professor, qiongjiawei@163.com
Article Text (Baidu Translation)
  • 摘要: 为保证复杂环境下全球卫星导航系统(GNSS)导航性能的同时兼顾接收机的运行效率,充分利用传统标量跟踪环路(STL)、矢量跟踪环路(VTL)以及直接位置估计(DPE)接收机的优势,设计了一种基于信号质量监测的多结构GNSS接收机,通过实时监测卫星信号质量自适应切换接收机的工作模式;除基本的STL、VTL和DPE这3种工作模式外,进一步在STL和VTL模式中增加排除多径通道模式和窄相关技术抗多径模式,在DPE模式中增加排除多径通道模式。研究结果表明:对于仿真信号来说,卫星信号质量良好的环境下,接收机进入STL模式,水平和垂直定位误差分别为2.20和4.65 m,多径出现时切换至STL抗多径模式,对应的水平和垂直定位误差分别为3.23和18.18 m,较切换前的STL模式(误差分别为28.07和112.24 m)显著减小,当存在卫星遮挡时,接收机切换至VTL工作模式,此时水平和垂直定位误差分别为7.24和38.44 m,优于切换前的STL抗多径模式(误差分别为16.59和110.10 m),当进入弱信号环境时,接收机切换至DPE模式,对应的水平和垂直定位误差分别为3.24和17.30 m,较切换前模式(误差分别为4.47和24.89 m)进一步改善,仿真试验结果验证了多结构接收机能根据实时信号监测结果切换至最佳工作模式;对于实测数据来说,信号质量良好的情况下接收机在STL模式工作,水平和垂直定位误差分别为7.74和13.19 m,当部分卫星被遮挡时,接收机切换至VTL模式,水平和垂直定位误差分别为16.07和9.31 m,进入弱信号环境下,切换至DPE模式,对应的水平和垂直定位误差分别为6.72和48.99 m,均优于切换前的VTL模式。

     

  • 图  1  标量接收机原理

    Figure  1.  Principle of scalar receiver

    图  2  矢量接收机原理

    Figure  2.  Principle of vector receiver

    图  3  直接位置估计原理

    Figure  3.  Principle of DPE

    图  4  多径信号相关值

    Figure  4.  Correlation values of multipath signals

    图  5  自适应多结构接收机

    Figure  5.  Adaptive multi-structure receiver

    图  6  可见卫星的分布

    Figure  6.  Distribution of visible satellites

    图  7  多结构接收机的定位误差结果

    Figure  7.  Positioning errors of multi-structure receiver

    图  8  多径干扰环境下跟踪结果

    Figure  8.  Tracking results in multipath interference environment

    图  9  PRN2通道相位锁定指示器与即时码相关值

    Figure  9.  Phase lock detector and prompt code correlation value of PRN2 channel

    图  10  各跟踪通道载噪比估计值

    Figure  10.  Estimated carrier-to-noise ratios of each tracking channel

    图  11  仿真试验DPE联合积累输出结果

    Figure  11.  DPE joint accumulation output results of simulation experiments

    图  12  数据采集场景、卫星分布及试验设备

    Figure  12.  Data acquisition scene, satellite distribution and experimental equipment

    图  13  PRN27通道相位锁定指示器与即时码相关值

    Figure  13.  Phase lock detector and prompt code correlation value of PRN27 channel

    图  14  受影响跟踪通道载噪比估计值

    Figure  14.  Estimated carrier-to-noise ratio of affected tracking channels

    图  15  实测试验DPE的联合积累输出结果

    Figure  15.  DPE joint accumulation output results of actual experiments

    图  16  定位误差

    Figure  16.  Positioning errors

    表  1  仿真信号参数

    Table  1.   Simulation signal parameters

    卫星信号参数 参数值
    伪随机噪声(Pseudo-Random Noise, PRN) 1、2、3、6、14
    信号中频/MHz 1.405
    信号采样率/MHz 5.714
    信号质量 时间为[0, 27) s,信噪比为-20 dB,正常信号
    时间为[27, 42) s,信噪比为-20 dB,PRN1卫星存在多径干扰
    时间为[42, 52) s,信噪比为-20 dB,正常信号
    时间为[52, 62) s,信噪比为-20 dB,PRN2卫星被遮挡
    时间为[62, 72) s,信噪比为-20 dB,正常信号
    时间为[72, 100) s,信噪比为-40 dB,弱信号
    下载: 导出CSV

    表  2  仿真信号定位误差的均值

    Table  2.   Mean values of simulation signal positioning error

    信号质量 水平定位误差的均值 垂直定位误差的均值
    正常信号 STL模式:2.20 m STL模式:4.65 m
    PR1卫星存在多径 STL模式:28.07 m STL模式:112.24 m
    STL抗多径模式:3.23 m STL抗多径模式:18.18 m
    PRN2卫星存在遮挡 STL抗多径模式:16.59 m STL抗多径模式:110.10 m
    VTL模式:7.24 m VTL模式:38.44 m
    弱信号 VTL模式:4.47 m VTL模式:24.89 m
    DPE模式:3.24 m DPE模式:17.30 m
    下载: 导出CSV

    表  3  数据采集系统及可见卫星参数

    Table  3.   Data acquisition system and visible satellite parameters

    卫星信号参数 参数值
    接收机中频/MHz 0
    接收机采样率/MHz 6
    前端带宽/MHz 2
    可见卫星PRN 4、8、9、14、26、27、31
    下载: 导出CSV

    表  4  实测信号定位误差的均值

    Table  4.   Mean values of measured signal positioning error

    信号质量 水平定位误差的均值 垂直定位误差的均值
    正常信号 STL模式:7.74 m STL模式:13.19 m
    卫星存在遮挡 STL模式:50.14 m STL模式:102.46 m
    VTL模式:16.07 m VTL模式:9.31 m
    弱信号 VTL模式:22.41 m VTL模式:60.20 m
    DPE模式:6.72 m DPE模式:48.99 m
    下载: 导出CSV
  • [1] WANG Yu-ze, LIU Pei-lin, LIU Qiang, et al. Urban environment recognition based on the GNSS signal characteristics[J]. Navigation, 2019, 66(1): 211-225.
    [2] 赵辰乾, 刘益辰, 刘欣. 有色噪声下GNSS空时抗干扰算法的性能分析和改进[J]. 电子与信息学报, 2022, 44(4): 1388-1394.

    ZHAO Chen-qian, LIU Yi-chen, LIU Xin. Effect of colored noise on STAP algorithm for GNSS anti-jamming and algorithm improvement[J]. Journal of Electronics and Information Technology, 2022, 44(4): 1388-1394.
    [3] GAO Yang-jun, LI Guang-yun, LYU Zhi-wei, et al. Improved adaptively robust estimation algorithm for GNSS spoofer considering continuous observation error[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1237-1248. doi: 10.23919/JSEE.2022.000118
    [4] JIA Q Q, HSU L T, WU R B. Scalar and vector tracking loop simulation based on a uniform semi-analytic model and robustness analysis in multipath/NLOS situations[J]. GPS Solutions, 2022, 26: 97. doi: 10.1007/s10291-022-01280-w
    [5] VAN DIERENDONCK A J, FENTON P, FORD T. Theory and performance of narrow correlator spacing in a GPS receiver[J]. Navigation, 1992, 39(3): 265-283. doi: 10.1002/j.2161-4296.1992.tb02276.x
    [6] IRSIGLER M, EISSFELLER B. Comparison of multipath mitigation techniques with consideration of future signal structures[C]//ION. Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003). Portland: ION, 2003: 2584-2592.
    [7] GARIN L, DIGGELEN F V, ROUSSEAU J M. Strobe and edge correlator multipath mitigation for code[C]//ION. Proceedings of the 9th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1996). Portland: ION, 1996: 657-664.
    [8] JIA Qiong-qiong, WU Ren-biao, WANG Wen-yi, et al. Multipath interference mitigation in GNSS via WRELAX[J]. GPS Solutions, 2017, 21(2): 487-498. doi: 10.1007/s10291-016-0538-9
    [9] PARKINSON B W, SPILKER J J. Global Positioning System: Theory and Applications[M]. Reston: American Institute of Aeronautics and Astronautics, 1996.
    [10] PANY T, KANIUTH R, EISSFELLER B. Deep integration of navigation solution and signal processing[C]//ION. Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005). Portland: ION, 2005: 1095-1102.
    [11] PANY T, KANIUTH R, EISSFELLER B. 3.4. Testing a vector delay/frequency lock loop implementation with the ipex software receiver[C]//ION. Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005). Portland: ION, 2005: 127-135.
    [12] LASHLEY M, DAVID M. Comparison of traditional tracking loops and vector based tracking loops for weak GPS signals[C]//ION. Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007). Portland: ION, 2007: 789-795.
    [13] AMANI E, DJOUANI K, DE BOER J R, et al. Adaptive and conjoint scalar-vector tracking loops for GNSS tracking robustness and positioning integrity[C]//IEEE. 2017 European Navigation Conference (ENC). New York: IEEE, 2017: 1-13.
    [14] CHAN B. DGPS and UWB aided vector-based GNSS receivers for weak signal environments[D]. Calgary: University of Calgary, 2013.
    [15] CLOSAS P, FERNÁNDEZ-PRADESZ C, FERNÁNDEZ-RUBIOY J A. Maximum likelihood estimation of position in GNSS[J]. IEEE Signal Processing Letters, 2007, 14(5): 359-362.
    [16] CLOSAS P, FERNÁNDEZ-PRADESZ C, FERNÁNDEZ-RUBIOY J A. Direct position estimation approach outperforms conventional two-steps positioning[C]//IEEE. 17th European Signal Processing Conference. New York: IEEE, 2009: 1958-1962.
    [17] GUSI-AMIGÓ A, CLOSAS P, MALLAT A, et al. Ziv-Zakai bound for direct position estimation[J]. Navigation, 2018, 65(3): 463-475. doi: 10.1002/navi.259
    [18] 李伟鹏, 贾琼琼. 复杂环境下基于加权联合积累的直接位置估计算法研究[C]//中国卫星导航系统管理办公室学术交流中心. 第十三届中国卫星导航年会论文集—S08卫星导航用户终端. 天津: 中国民航大学, 2022, DOI: 10.26914/c.cnkihy.2022.000876.

    LI Wei-peng, JIA Qiong-qiong. Direct position estimation algorithm based on weighted joint accumulation in complex environments[C]//Academic Exchange Center of the China Satellite Navigation System Management Office. China Satellite Navigation Conference (CSNC 2022) Proceedings-Lecture Notes in Electrical Engineering. Tianjin: Civil Aviation University of China, 2022, DOI: 10.26914/c.cnkihy.2022.000876.
    [19] WEILL L R. A high performance code and carrier tracking architecture for ground-based mobile GNSS receivers[C]//ION. Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland: ION, 2010: 3054-3068.
    [20] NG Y T, GAO G X. Robust GPS-based direct time estimation for PMUs[C]//IEEE. 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS). New York: IEEE, 2016: 472-476.
    [21] PERETIC M, GAO G X. Design of a parallelized direct position estimation-based GNSS receiver[J]. Navigation, 2021, 68(1): 21-39. doi: 10.1002/navi.402
    [22] NG Y T, GAO G X. Mitigating jamming and meaconing attacks using direct GPS positioning[C]//IEEE. 2016 IEEE/ ION Position, Location and Navigation Symposium (PLANS). New York: IEEE, 2016: 1021-1026.
    [23] JIA Qiong-qiong, LI Wei-peng. A three-layer parallel implementation of the DPE receiver based on GPU[C]//YANG Chang-feng, XIE Jun. China Satellite Navigation Conference (CSNC 2024) Proceedings. Berlin: Springer, 2024: 535-545.
    [24] 王芮, 王兆瑞, 李建斌, 等. 基于TDOA/FDOA相位条纹的高精度GPS信号跟踪方法[J]. 电子与信息学报, 2022, 44(9): 3186-3194.

    WANG Rui, WANG Zhao-rui, LI Jian-bin, et al. High-precision GPS signal tracking method based on TDOA/FDOA phase stripe[J]. Journal of Electronics and Information Technology, 2022, 44(9): 3186-3194.
    [25] 张庆龙, 王玉明, 程二威, 等. 导航接收机跟踪环路电磁干扰的预测方法研究[J]. 电子与信息学报, 2021, 43(12): 3656-3661. doi: 10.11999/JEIT200895

    ZHANG Qing-long, WANG Yu-ming, CHENG Er-wei, et al. Investigation on prediction method of electromagnetic interference in the tracking loop of navigation receiver[J]. Journal of Electronics and Information Technology, 2021, 43(12): 3656-3661. doi: 10.11999/JEIT200895
    [26] AKOS D M, PHELTS R E, PULLEN S, et al. Signal quality monitoring-test results[C]//ION. Proceedings of the 2000 National Technical Meeting of the Institute of Navigation. Portland: ION, 2000: 536-541.
    [27] CENTER W J H T. Global positioning system (GPS) standard positioning service (SPS) performance analysis report[R]. Washington DC: Federal Aviation Administration GPS Product Team, 2014.
    [28] 郭海玉, 鲁祖坤, 陈飞强, 等. 窄带与脉冲干扰对卫星导航信号载噪比的影响[J]. 全球定位系统, 2021, 46(1): 50-56.

    GUO Hai-yu, LU Zu-kun, CHEN Fei-qiang, et al. Effects of narrowband and pulse interference on the carrier-to-noise ratio of satellite navigation signals[J]. GNSS World of China, 2021, 46(1): 50-56.
    [29] SHARAWI M S, AKOS D M, ALOI D N. GPS C/N0 estimation in the presence of interference and limited quantization levels[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 227-238. doi: 10.1109/TAES.2007.357129
    [30] PHELTS R E. Multicorrelator techniques for robust mitigation of threats to GPS signal quality[D]. Stanford: Stanford University, 2001.
    [31] SUN C, CHEONG J W, DEMPSTER A G, et al. GNSS spoofing detection by means of signal quality monitoring (SQM) metric combinations[J]. IEEE Access, 2018, 57(6): 66428-66441.
    [32] IRSIGLER M. Multipath propagation, mitigation and monitoring in the light of Galileo and the modernized GPS[D]. Munich: Universität der Bundeswehr München, 2008.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 刊出日期:  2025-02-25

目录

    /

    返回文章
    返回