留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于船舶动态群组的复杂通航水域碰撞风险评估

刘克中 俞月蓉 庄素婕 周阳 袁志涛 杨星 辛旭日

刘克中, 俞月蓉, 庄素婕, 周阳, 袁志涛, 杨星, 辛旭日. 基于船舶动态群组的复杂通航水域碰撞风险评估[J]. 交通运输工程学报, 2025, 25(1): 145-159. doi: 10.19818/j.cnki.1671-1637.2025.01.010
引用本文: 刘克中, 俞月蓉, 庄素婕, 周阳, 袁志涛, 杨星, 辛旭日. 基于船舶动态群组的复杂通航水域碰撞风险评估[J]. 交通运输工程学报, 2025, 25(1): 145-159. doi: 10.19818/j.cnki.1671-1637.2025.01.010
LIU Ke-zhong, YU Yue-rong, ZHUANG Su-jie, ZHOU Yang, YUAN Zhi-tao, YANG Xing, XIN Xu-ri. Collision risk assessment for complex navigable waters based on ship dynamic cluster[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 145-159. doi: 10.19818/j.cnki.1671-1637.2025.01.010
Citation: LIU Ke-zhong, YU Yue-rong, ZHUANG Su-jie, ZHOU Yang, YUAN Zhi-tao, YANG Xing, XIN Xu-ri. Collision risk assessment for complex navigable waters based on ship dynamic cluster[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 145-159. doi: 10.19818/j.cnki.1671-1637.2025.01.010

基于船舶动态群组的复杂通航水域碰撞风险评估

doi: 10.19818/j.cnki.1671-1637.2025.01.010
基金项目: 

国家自然科学基金项目 52031009

详细信息
    通讯作者:

    刘克中(1976-),男,湖北石首人,武汉理工大学教授,工学博士,从事水路交通安全保障研究

  • 中图分类号: U698

Collision risk assessment for complex navigable waters based on ship dynamic cluster

Funds: 

National Natural Science Foundation of China 52031009

More Information
Article Text (Baidu Translation)
  • 摘要: 针对复杂通航水域船舶碰撞风险感知时空精细度不足、动态实时性不强等问题,提出了基于船舶动态群组的碰撞风险评估框架;在船舶轨迹数据预处理的基础上,构建了复杂通航水域船舶交通拓扑网络模型,表征区域内船舶碰撞风险的相互作用关系;考虑船舶动态时空变化特性,引入了谱聚类算法进行交通划分,界定船舶动态群组,并通过Davies-Bouldin指数进一步优化船舶动态群组划分策略;基于图论知识,引入船间干扰复杂度量化指标,建立了船舶动态群组风险评估方法,辨识复杂通航水域内船舶碰撞高风险区域;选取典型复杂通航水域——宁波-舟山港核心港区开展研究,采集该水域1个月的船舶交通流数据,评估了多船会遇场景下船舶碰撞风险状态。研究结果表明:通过自适应确定船舶动态群组划分方法,将水域内船舶划分为若干群组,简化船舶碰撞风险关系,同时保留全局范围内最主要的碰撞风险;所提船舶碰撞风险评估方法可保留全局84.98%的风险,与传统基于距离的聚类算法、K-means、层次聚类、带噪声的基于密度的空间聚类(DBSCAN)算法等经典聚类算法相比,本文方法的保留风险值更大,并可以减少不必要的风险关系,在精度、群组紧凑性、尺度均衡性上综合效果最优,可有效降低虚警率、离散区域整体风险;进一步利用所提风险评估方法对8 640个的多船会遇场景的风险状态进行叠加计算,识别出的港区高风险区域与实际调研情况相符。

     

  • 图  1  研究方法流程

    Figure  1.  Process of research method

    图  2  航路网提取过程

    Figure  2.  Extraction process of route network

    图  3  船位推算示意

    Figure  3.  Schematic of ship position prediction

    图  4  船舶航行计划轨迹

    Figure  4.  Planned trajectories of ship navigation

    图  5  船舶拓扑网络构建

    Figure  5.  Construction of ship topology network

    图  6  研究水域船舶轨迹数据可视化

    Figure  6.  Visualization of ship trajectories in research water

    图  7  宁波-舟山港核心港区水域路网

    Figure  7.  Water network in core port area Ningbo-Zhoushan Port

    图  8  风险函数参数估计

    Figure  8.  Parameter estimation for risk function

    图  9  场景1改进CPA方法验证

    Figure  9.  Validation of improved CPA method in Scenario 1

    图  10  场景2改进CPA方法验证

    Figure  10.  Validation of improved CPA method in Scenario 2

    图  11  船舶动态交通拓扑网络

    Figure  11.  Ship dynamic traffic topology network

    图  12  船舶拓扑网络及划分结果

    Figure  12.  Ship topology network and division result

    图  13  基于距离度量的群组划分结果

    Figure  13.  Partitioning result of clusters based on distance measurement

    图  14  K-means算法划分结果

    Figure  14.  Partitioning result of K-means algorithm

    图  15  DBSCAN算法划分结果

    Figure  15.  Partitioning result of DBSCAN algorithm

    图  16  层次聚类算法划分结果

    Figure  16.  Partitioning result of hierarchical clustering algorithm

    图  17  试验场景风险可视化

    Figure  17.  Risk visualization of experimental scenario

    图  18  风险空间分布

    Figure  18.  Risk spatial distribution

    表  1  各聚类算法性能对比

    Table  1.   Performance comparison of various clustering algorithms

    划分方法 划分群组数/个 连边数/条 保留风险值/%
    本文方法 15 292 84.98
    传统基于距离的聚类算法 15 272 70.36
    K-means算法 8 241 79.62
    DBSCAN算法 12 399 89.37
    层次聚类算法 14 208 62.53
    下载: 导出CSV

    表  2  部分船舶动态群组特征

    Table  2.   Characteristics of partial ship dynamic clusters

    群组编号 U X Q J H 群组风险值
    7 4 0.80 0.91 1.00 1.50 0.91
    6 6 0.74 0.74 1.00 0.50 0.82
    8 8 0.37 0.87 1.00 1.00 0.75
    4 8 0.24 0.75 0.89 3.56 0.63
    1 5 0.16 0.84 0.29 1.77 0.43
    下载: 导出CSV
  • [1] CHAI Tian, WENG Jin-xian, XIONG De-qi. Development of a quantitative risk assessment model for ship collisions in fairways[J]. Safety Science, 2017, 91: 71-83. doi: 10.1016/j.ssci.2016.07.018
    [2] FANG Zhi-xiang, YU Hong-chu, KE Ran-xuan, et al. Automatic identification system-based approach for assessing the near-miss collision risk dynamics of ships in ports[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(2): 534-543. doi: 10.1109/TITS.2018.2816122
    [3] CAI Ming-you, ZHANG Jin-fen, ZHANG Di, et al. Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data[J]. Reliability Engineering and System Safety, 2021, 215: 107901. doi: 10.1016/j.ress.2021.107901
    [4] 雷进宇, 初秀民, 蒋仲廉, 等. 基于可视分析的船舶航行态势感知系统设计[J]. 中国航海, 2018, 41(3): 47-52. doi: 10.3969/j.issn.1000-4653.2018.03.010

    LEI Jin-yu, CHU Xiu-min, JIANG Zhong-lian, et al. Situation awareness system for vessel navigation based on visual analytics[J]. Navigation of China, 2018, 41(3): 47-52. doi: 10.3969/j.issn.1000-4653.2018.03.010
    [5] CHEN Peng-fei, HUANG Ya-min, MOU Jun-min, et al. Probabilistic risk analysis for ship-ship collision: state-of-the-art[J]. Safety Science, 2019, 117: 108-122. doi: 10.1016/j.ssci.2019.04.014
    [6] HUANG Ya-min, CHEN Lin-yin, CHEN Peng-fei, et al. Ship collision avoidance methods: state-of-the-art[J]. Safety Science, 2020, 121: 451-473. doi: 10.1016/j.ssci.2019.09.018
    [7] DU Lei, GOERLANDT F, KUJALA P. Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data[J]. Reliability Engineering and System Safety, 2020, 200: 106933. doi: 10.1016/j.ress.2020.106933
    [8] GOERLANDT F, MONTEWKA J. Maritime transportation risk analysis: review and analysis in light of some foundational issues[J]. Reliability Engineering and System Safety, 2015, 138: 115-134. doi: 10.1016/j.ress.2015.01.025
    [9] CHEN Peng-fei, HUANG Ya-min, MOU Jun-min, et al. Ship collision candidate detection method: a velocity obstacle approach[J]. Ocean Engineering, 2018, 170: 186-198. doi: 10.1016/j.oceaneng.2018.10.023
    [10] DEBNATH A K, CHIN H C. Navigational traffic conflict technique: a proactive approach to quantitative measurement of collision risks in port waters[J]. The Journal of Navigation, 2010, 63(1): 137-152. doi: 10.1017/S0373463309990233
    [11] 朱清华, 胡甚平, 吴建军, 等. 基于情景反演的船舶追越碰撞风险推理方法[J]. 中国航海, 2023, 46(3): 29-35. doi: 10.3969/j.issn.1000-4653.2023.03.005

    ZHU Qing-hua, HU Shen-ping, WU Jian-jun, et al. Inference method for overtaking-related collision risk analysis based on accident scenario inversion[J]. Navigation of China, 2023, 46(3): 29-35. doi: 10.3969/j.issn.1000-4653.2023.03.005
    [12] LIU Zhao, ZHANG Bo-yuan, ZHANG Ming-yang, et al. A quantitative method for the analysis of ship collision risk using AIS data[J]. Ocean Engineering, 2023, 272: 113906.
    [13] LIU Ke-zhong, WU Xiao-lie, ZHOU Yang, et al. A conflict cluster-based method for collision avoidance decision-making in multi-ship encounter situations[J]. Ocean Engineering, 2023, 288: 116038. doi: 10.1016/j.oceaneng.2023.116038
    [14] WANG Miao-miao, WANG Yan-fu, CUI Er-hua, et al. A novel multi-ship collision probability estimation method considering data-driven quantification of trajectory uncertainty[J]. Ocean Engineering, 2023, 272: 113825.
    [15] XIN Xu-ri, YANG Zai-li, LIU Ke-zhong, et al. Multi-stage and multi-topology analysis of ship traffic complexity for probabilistic collision detection[J]. Expert Systems with Applications, 2023, 213: 118890.
    [16] KUNDAKÇI B, NAS S, GUCMA L. Prediction of ship domain on coastal waters by using AIS data[J]. Ocean Engineering, 2023, 273: 113921. doi: 10.1016/j.oceaneng.2023.113921
    [17] SUI Bo-wen, ZHANG Jian-qiang, LIU Zhong. A real-time ship encounter collision risk detection approach in close-quarters situation[J]. Measurement and Control, 2023, 56(9/10): 1613-1625.
    [18] LIU Zi-hao, WU Zhao-lin, ZHENG Zhong-yi. A cooperative game approach for assessing the collision risk in multi-vessel encountering[J]. Ocean Engineering, 2019, 187: 106175. doi: 10.1016/j.oceaneng.2019.106175
    [19] ZHEN Rong, SHI Zi-qiang, SHAO Zhe-ping, et al. A novel regional collision risk assessment method considering aggregation density under multi-ship encounter situations[J]. The Journal of Navigation, 2022, 75(1): 76-94. doi: 10.1017/S0373463321000849
    [20] WEN Yuan-qiao, HUANG Ya-min, ZHOU Chun-hui, et al. Modelling of marine traffic flow complexity[J]. Ocean Engineering, 2015, 104: 500-510. doi: 10.1016/j.oceaneng.2015.04.051
    [21] ZHANG Fan, LIU Yi-hao, DU Lei, et al. A rule-based maritime traffic situation complex network approach for enhancing situation awareness of vessel traffic service operators[J]. Ocean Engineering, 2023, 284: 115203. doi: 10.1016/j.oceaneng.2023.115203
    [22] SUI Zhong-yi, WEN Yuan-qiao, HUANG Ya-min, et al. Empirical analysis of complex network for marine traffic situation[J]. Ocean Engineering, 2020, 214: 107848. doi: 10.1016/j.oceaneng.2020.107848
    [23] LIU Zi-hao, WU Zhao-lin, ZHENG Zhong-yi. A molecular dynamics approach for modeling the geographical distribution of ship collision risk[J]. Ocean Engineering, 2020, 217: 107991.
    [24] LUONG T N, HWANG S, IM N. Harbour Traffic Hazard Map for real-time assessing waterway risk using Marine Traffic Hazard Index[J]. Ocean Engineering, 2021, 239: 109884. doi: 10.1016/j.oceaneng.2021.109884
    [25] ZHEN R, RIVERIRO M, JIN Y X. A novel analytic framework of real-time multi-vessel collision risk assessment for maritime traffic surveillance[J]. Ocean Engineering, 2017, 145: 492-501. doi: 10.1016/j.oceaneng.2017.09.015
    [26] TONG Yan-ting, ZHEN Rong, DONG Han, et al. Identifying influential ships in multi-ship encounter situation complex network based on improved WVoteRank approach[J]. Ocean Engineering, 2023, 284: 115192. doi: 10.1016/j.oceaneng.2023.115192
    [27] ZHEN Rong, SHI Zi-qiang, LIU Jia-lun, et al. A novel arena-based regional collision risk assessment method of multi-ship encounter situation in complex waters[J]. Ocean Engineering, 2022, 246: 110531. doi: 10.1016/j.oceaneng.2022.110531
    [28] VU D T, JEONG J Y. Collision risk assessment by using hierarchical clustering method and real-time data[J]. Journal of the Korean Society of Marine Environment and Safety, 2021, 27(4): 483-491. doi: 10.7837/kosomes.2021.27.4.483
    [29] ORUC M F, ALTAN Y C. Risky maritime encounter patterns via clustering[J]. Journal of Marine Science and Engineering, 2023, 11(5): 11050950.
    [30] PAVLIDIS T, ALI F. Computer recognition of handwritten numerals by polygonal approximations[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1975, 5(6): 610-614.
    [31] 李俊杰, 刘鹏程, 顿玉多吉. 基于步行轨迹的复杂道路中心线提取方法[J]. 华中师范大学学报(自然科学版), 2020, 54(1): 89-95.

    LI Jun-jie, LIU Peng-cheng, DUNYU Duo-ji. Method to extract the center line of a complex road based on walking trajectory[J]. Journal of Central China Normal University (Natural Sciences), 2020, 54(1): 89-95.
    [32] 胡景峰, 郝江凌, 童晨涛. 电子海图中船位推算算法的实现[J]. 大连海事大学学报, 2005, 31(4): 24-26.

    HU Jing-feng, HAO Jiang-ling, TONG Chen-tao. Research on calculated reckoning in ECDIS[J]. Journal of Dalian Maritime University, 2005, 31(4): 24-26.
    [33] MOU Jun-min, VAN DER TAK C, LIGTERINGEN H. Study on collision avoidance in busy waterways by using AIS data[J]. Ocean Engineering, 2010, 37(5/6): 483-490.
    [34] JIANG Xu-rui, WEN Xiang-xi, WU Ming-gong, et al. A complex network analysis approach for identifying air traffic congestion based on independent component analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 523: 364-381.
    [35] LIU Hong-lu, TIAN Zhi-hong, HUANG An-qiang, et al. Analysis of vulnerabilities in maritime supply chains[J]. Reliability Engineering and System Safety, 2018, 169: 475-484.
    [36] SHI J B, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
    [37] 殷辰堃, 方茹, 李拓. 基于交通流时间序列相似性的NCut城市路网分区算法[J]. 交通运输工程学报, 2021, 21(5): 238-250. doi: 10.19818/j.cnki.1671-1637.2021.05.020

    YIN Chen-kun, FANG Ru, LI Tuo. NCut partitioning algorithm for urban road networks based on similarity of traffic flow time series[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 238-250. doi: 10.19818/j.cnki.1671-1637.2021.05.020
    [38] BACH F R, JORDAN M I. Learning spectral clustering, with application to speech separation[J]. Journal of Machine Learning Research, 2006, 7: 1963-2001.
    [39] BIAN Tian, HU Jian-tao, DENG Yong. Identifying influential nodes in complex networks based on AHP[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 479: 422-436.
    [40] DU Yu-xian, GAO Cai, HU Yong, et al. A new method of identifying influential nodes in complex networks based on TOPSIS[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 399: 57-69.
    [41] PARAND F A, RAHIMI H, GORZIN M. Combining fuzzy logic and eigenvector centrality measure in social network analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 459: 24-31.
    [42] WEN Xiang-xi, TU Cong-liang, WU Ming-gong, et al. Fast ranking nodes importance in complex networks based on LS-SVM method[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 506: 11-23.
    [43] FRIEDMAN J H, TUKEY J W. A projection pursuit algorithm for exploratory data analysis[J]. IEEE Transactions on Computers, 1974, 23(9): 881-890.
    [44] MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015, 89: 228-249.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  37
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-20
  • 刊出日期:  2025-02-25

目录

    /

    返回文章
    返回