Performance simulation and optimization of ship waste heat TEG-ORC combined cycle based on R1234ze and its mixed working fluids
-
摘要: 为提高船舶航行中的能源效率,以船舶余热为研究对象,研究了基于温差发电-有机朗肯(TEG-ORC)联合循环的船舶余热回收系统中的工质选择问题;构建了TEG-ORC联合循环系统热力学和经济性模型,分别研究了采用R1234ze单工质和R245fa/R1234ze混合工质时联合循环系统的性能参数;将系统输出功率、热效率和发电成本作为评价指标,对比了采用不同混合比时系统的输出性能;以系统最高输出功率和最低发电成本作为优化分析的指标,明确了采用混合工质时该联合循环系统的最优配置。分析结果表明:采用R1234ze单工质时联合循环系统最大输出功率为1 836 W,最小发电成本为0.493元·(kW·h)-1,最大热效率为17.09%;随着混合工质中R245fa组分的不断增大,相对于R1234ze单工质,系统的输出功率最大提高了12%;相对于R245fa单工质,系统的发电成本最大降低了54%,对应的输出功率提高了10%;确定了R245fa/R1234ze的最优混合比为0.9,此时系统最大输出功率为2 076 W,最小发电成本为0.231元·(kW·h)-1,最大热效率为34.5%;相对于采用R1234ze单工质,采用混合工质的系统最大输出功率提高了13%,最大热效率提高了102%,最小发电成本降低了53%;在系统采用最优混合比工质时确定了系统最佳输出功率为2 076 W,此时TEG模块数量为33,工质流速为0.06 kg·s-1,蒸发压力为1 000 kPa。可见采用混合工质进一步提升了联合循环系统输出性能以及对于冷热源匹配性。
-
关键词:
- 船舶能效 /
- 余热回收 /
- TEG-ORC联合循环 /
- 混合工质 /
- 仿真模拟
Abstract: To improve the energy efficiency of ships during navigation, the ship waste heat was taken as the research object, and the problem of working fluid selection in the ship waste heat recovery system based on the combined thermoelectric generation-organic Rankine cycle (TEG-ORC) was studied. The thermodynamic and economic models of the TEG-ORC combined cycle system were constructed. The performance parameters of the combined cycle system were studied by using R1234ze single working fluid and R245fa/R1234ze mixed working fluid respectively. The system output power, thermal efficiency, and power-production cost were taken as evaluation indicators, and the output performances of the system with different mixing ratios were compared. By taking the highest system output power and the lowest power-production cost as indicators for optimization analysis, the optimal configuration of the combined cycle system with the mixed working fluid was determined. Analysis results show that when R1234ze single working fluid is used, the maximum output power of the combined cycle system is 1 836 W, the minimum power-production cost is 0.493 yuan·(kW·h)-1, and the maximum thermal efficiency is 17.09%. As the proportion of R245fa component in the mixed working fluid increases continuously, compared with the R1234ze single working fluid, the system output power increases by up to 12%. Compared with the R245fa single working fluid, the power-production cost of the system decreases by up to 54%, and the corresponding output power increases by 10%. The optimal mixing ratio of R245fa/R1234ze is determined to be 0.9. At this time, the maximum system output power is 2 076 W, and the minimum power-production cost is 0.231 yuan·(kW·h)-1, the maximum thermal efficiency is 34.5%. Compared with using the R1234ze single working fluid, the system with the mixed working fluid has a 13% increase in the maximum output power, a 102% increase in the maximum thermal efficiency, and a 53% reduction in the minimum power-production cost. When the system uses the working fluid with the optimal mixing ratio, the best system output power is determined to be 2 076 W. At this time, the number of TEG modules is 33, and the working fluid flow rate is 0.06 kg·s-1, the evaporation pressure is 1 000 kPa. It can be seen that using the mixed working fluid further improves the output performance of the combined cycle system and the matching of the cold and heat sources.-
Key words:
- ship energy efficiency /
- waste heat recovery /
- TEG-ORC combined cycle /
- mixed working fluid /
- simulation
-
表 1 热力学模型
Table 1. Thermodynamic models
联合系统单元 热力学方程 TEG单元 QC=Q1=m(h3-h2) 缸套水预热器 Q2=m(h4-h3) 增压空气预热器 Q3=m(h5-h4) 蒸发器 Q4=m(h6-h5) 工质泵 WP=m(h2-h1) 膨胀机 WE=m(h7-h6) 表 2 经济性模型
Table 2. Economic models
类别 经济性模型 TEG单元成本 CT=NCm+Cg ORC单元成本 $ \lg \left(F_{\mathrm{P}}\right)=A_1+A_2 \lg (P)+A_3[\lg (P)]^2$
$ \lg \left(C_{\mathrm{P}}\right)=K_1+K_2 \lg (Z)+K_3[\lg (Z)]^2$
$ C_i=C_{\mathrm{P}}\left(B_1+B_2 F_{\mathrm{M}} F_{\mathrm{P}}\right)$
$ C_{\mathrm{O}}=668 / 382 \sum\limits_{i=1}^6 C_i$资金回收系数 CR=0.09×1.0910/(1.0910-1) 系统发电成本 CS=(CT+COCR+3 300)/(500WS) 表 3 ORC模型验证结果
Table 3. Verification results of ORC model
变量 WP/kW WE/kW η/% 参考值[26] 4.356 85.342 11.73 验证值 4.180 89.570 12.35 表 4 仿真流程初始条件与边界条件
Table 4. Initial conditions and boundary conditions of simulation process
初始条件 环境温度/℃ 20 初始烟气温度/℃ 300 缸套水温度/℃ 85 增压空气温度/℃ 150 边界条件 TEG模块数量/片 1~60 排气温度/℃ >180 蒸发压力/MPa 1~2.4 工质流速/(kg·s-1) < 0.06 表 5 系统最大输出功率时对应的较优解
Table 5. Optimal solutions corresponding to maximum output power of system
TEG模块数量/片 工质流量/(kg·s-1) 蒸发压力/kPa TEG输出功率/W 总功率/W 泵功率/W 热效率/% 烟气余热利用率/% 总发电成本/[元·(kW·h)-1] 33 0.06 1 000 162.33 2 076.14 37.18 15.13 99.78 0.300 48 31 155.35 2 059.16 37.18 15.08 99.06 0.299 06 29 148.08 2 051.90 37.18 15.04 98.26 0.297 59 27 140.58 2 044.39 37.18 15.00 97.62 0.296 05 25 132.64 2 036.46 37.18 14.95 96.74 0.294 53 23 124.48 2 028.30 37.18 14.91 95.93 0.292 86 21 115.92 2 019.73 37.18 14.86 95.13 0.291 21 19 107.03 2 010.84 37.18 14.80 94.48 0.289 48 17 97.71 2 001.52 37.18 14.75 93.51 0.287 67 15 88.01 1 991.83 37.18 14.69 92.70 0.285 76 表 6 系统最低发电成本时对应的较优解
Table 6. Optimal solutions corresponding to minimum power-production cost of system
TEG模块数量/片 工质流量/(kg·s-1) 蒸发压力/kPa TEG输出功率/W 总功率/W 泵功率/W 热效率/% 烟气余热利用率/% 总发电成本/[元·(kW·h)-1] 7 0.06 1 000 44.70 1 948.52 37.18 14.43 88.87 0.276 8 9 56.24 1 960.06 37.18 14.50 89.77 0.279 3 11 67.30 1 971.12 37.18 14.56 90.83 0.281 6 13 77.89 1 981.70 37.18 14.63 91.81 0.283 7 15 88.01 1 991.83 37.18 14.69 92.70 0.285 8 17 97.71 2 001.52 37.18 14.75 93.52 0.287 7 19 107.03 2 010.84 37.18 14.80 94.49 0.289 5 21 115.92 2 019.73 37.18 14.86 95.13 0.291 2 23 124.48 2 028.30 37.18 14.91 95.94 0.292 9 25 132.64 2 036.46 37.18 14.96 96.74 0.294 5 -
[1] 柳长昕, 叶文祥, 刘健豪, 等. 面向船舶多种余热梯级利用的TEG-ORC联合循环性能[J]. 工程科学学报, 2021, 43(4): 577-583.LIU Chang-xin, YE Wen-xiang, LIU Jian-hao, et al. TEG-ORC combined cycle performance for cascade recovery of various types of waste heat from vessels[J]. Chinese Journal of Engineering, 2021, 43(4): 577-583. [2] ELKAFAS A G. Advanced operational measure for reducing fuel consumption onboard ships[J]. Environmental Science and Pollution Research, 2022, 29(60): 90509-90519. doi: 10.1007/s11356-022-22116-7 [3] SINGH D V, PEDERSEN E. A review of waste heat recovery technologies for maritime applications[J]. Energy Conversion and Management, 2016, 111: 315-328. doi: 10.1016/j.enconman.2015.12.073 [4] 袁裕鹏, 王康豫, 尹奇志, 等. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002 [5] RAHBAR K, MAHMOUD S, AL-DADAH R K, et al. Review of organic Rankine cycle for small-scale applications[J]. Energy Conversion and Management, 2017, 134: 135-155. doi: 10.1016/j.enconman.2016.12.023 [6] PARK B S, USMAN M, IMRAN M, et al. Review of organic Rankine cycle experimental data trends[J]. Energy Convers Manage, 2018, 173: 679-691. doi: 10.1016/j.enconman.2018.07.097 [7] KARA O. An evaluation of a new solar-assisted and ground-cooled organic Rankine cycle (ORC) with a recuperator[J]. Arabian Journal for Science and Engineering, 2023, 48: 1-20. [8] WANG En-hua, ZHANG Hong-guang, FAN Bo-yuan, et al. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery[J]. Energy, 2011, 6(5): 3406. [9] CHEN Wu, XUE Song, LYU Long, et al. Energy saving analysis of a marine main engine during the whole voyage utilizing an organic Rankine cycle system to recover waste heat[J]. Journal of Marine Science and Engineering, 2023, 11(1): 103. doi: 10.3390/jmse11010103 [10] BURNETE N V, MARIASIU F, DEPCIK C, et al. Review of thermoelectric generation for internal combustion engine waste heat recovery[J]. Progress in Energy and Combustion Science, 2022, 91: 101009. [11] LI Zhi-xiong, KHANMOHAMMADI S, KHANMOHAMMADI S, et al. 3-E analysis and optimization of an organic Rankine flash cycle integrated with a PEM fuel cell and geothermal energy[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2168-2185. doi: 10.1016/j.ijhydene.2019.09.233 [12] DZULKFLI M S B, PESYRIDIS A, GOHIL D. Thermoelectric generation in hybrid electric vehicles[J]. Energies, 2020, 13(14): 3742. [13] YI Long-bing, XU Hao-wen, YANG Hai-bing, et al. Design of Bi2Te3-based thermoelectric generator in a widely applicable system[J]. Journal of Power Sources, 2023, 559: 232661. [14] JI Dong-xu, CAI Hao-tong, YE Zi-han, et al. Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: a techno-economic analysis[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102914. [15] MILLER E W, HENDRICKS T J, PETERSON R B. Modeling energy recovery using thermoelectric conversion integrated with an organic Rankine bottoming cycle[J]. Journal of Electronic Materials, 2009, 38(7): 1206-1213. [16] SHU Ge-qun, ZHAO Jian, TIAN Hua, et al. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic Rankine cycle utilizing R123[J]. Energy, 2012, 45(1): 806-816. [17] LIU Chang-xin, LI Hua-an, YE Wen-xiang, et al. Simulation research of TEG-ORC combined cycle for cascade recovery of vessel waste heat[J]. International Journal of Green Energy, 2021, 18(11): 1173-1184. [18] LIU Chang-xin, LIU Jian-hao, YE Wen-xiang, et al. Study on a new cascade utilize method for ship waste heat based on TEG-ORC combined cycle[J]. Environmental Progress and Sustainable Energy, 2021, 40(5): 72-81. [19] 叶文祥, 柳长昕, 刘健豪, 等. 采用温差发电-有机朗肯循环联合系统的船舶余热利用实验研究[J]. 西安交通大学学报, 2020, 54(8): 50-57.YE Wen-xiang, LIU Chang-xin, LIU Jian-hao, et al. Experimental research of ship waste heat utilization by TEG-ORC combined cycle[J]. Journal of Xi'an Jiaotong University, 2020, 54(8): 50-57. [20] ZHANG Cheng-yu, SHU Ge-qun, TIAN Hua, et al. Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat[J]. Energy Conversion Management, 2015, 89: 541-554. [21] LI Hua-an, LIU Chang-xin, XU Zheng-hong, et al. Performance comparison of thermal power generation-organic Rankine cycle combined cycle system for ships waste heat utilization under different bottom cycle ratios[J]. Environmental Progress and Sustainable Energy, 2023, 42(2): e13993. [22] QUOILIN S, DECLAYE S, TCHANCHE B F, et al. Thermo-economic optimization of waste heat recovery organic Rankine cycles[J]. Applied Thermal Engineering, 2011, 31(14/15): 2885-2893. [23] DIPIPPO R. Second law assessment of binary plants generating power from low-temperature geothermal fluids[J]. Geothermics, 2004, 33(5): 565-586. [24] ZHANG Sheng-jun, WANG Huai-xin, GUO Tao. Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied Energy, 2011, 88(8): 2740-2754. [25] LIU Chang-xin, LI Hua-an, YU Shan-shan, et al. Influence study of bottom cycle ratios and superheat for vessels waste heat cascade recovery based on TEG-ORC combined cycle system employing R245fa[J]. International Journal of Green Energy, 2022, 20(7): 734-743. [26] XI Huan, LI Ming-jia, XU Chao, et al. Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm[J]. Energy, 2013, 58: 473-482. [27] GE Zhong, WANG Xiao-dong, LI Jian, et al. Thermodynamic and economic performance evaluations of double-stage organic flash cycle using hydrofluoroolefins (HFOs)[J]. Renewable Energy, 2024, 220: 119593. [28] FRATE L D, UMBERTO. Analysis of suitability ranges of high temperature heat pump working fluids[J]. Applied Thermal Engineering, 2019, 150: 628-640. [29] LARSEN U, PIEROBON L, HAGLIND F, et al. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection[J]. Energy, 2013, 55: 803-812. [30] ZHAO Li, BAO Jun-liang. The influence of composition shift on organic Rankine cycle (ORC) with zeotropic mixtures[J]. Energy Conversion and Management, 2014, 83: 203-211. -