留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

R1234ze及其混合工质的船舶余热TEG-ORC联合循环性能模拟与优化

柳长昕 石飞雄 王锋 李怡然 乔广超 孙德平 李华安

柳长昕, 石飞雄, 王锋, 李怡然, 乔广超, 孙德平, 李华安. R1234ze及其混合工质的船舶余热TEG-ORC联合循环性能模拟与优化[J]. 交通运输工程学报, 2025, 25(1): 160-171. doi: 10.19818/j.cnki.1671-1637.2025.01.011
引用本文: 柳长昕, 石飞雄, 王锋, 李怡然, 乔广超, 孙德平, 李华安. R1234ze及其混合工质的船舶余热TEG-ORC联合循环性能模拟与优化[J]. 交通运输工程学报, 2025, 25(1): 160-171. doi: 10.19818/j.cnki.1671-1637.2025.01.011
LIU Chang-xin, SHI Fei-xiong, WANG Feng, LI Yi-ran, QIAO Guang-chao, SUN De-ping, LI Hua-an. Performance simulation and optimization of ship waste heat TEG-ORC combined cycle based on R1234ze and its mixed working fluids[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 160-171. doi: 10.19818/j.cnki.1671-1637.2025.01.011
Citation: LIU Chang-xin, SHI Fei-xiong, WANG Feng, LI Yi-ran, QIAO Guang-chao, SUN De-ping, LI Hua-an. Performance simulation and optimization of ship waste heat TEG-ORC combined cycle based on R1234ze and its mixed working fluids[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 160-171. doi: 10.19818/j.cnki.1671-1637.2025.01.011

R1234ze及其混合工质的船舶余热TEG-ORC联合循环性能模拟与优化

doi: 10.19818/j.cnki.1671-1637.2025.01.011
基金项目: 

国家重点研发计划 2021YFA1201604

详细信息
    作者简介:

    柳长昕(1981-),男,北京人,大连海事大学副教授,工学博士,从事余热梯级利用与微纳能源复合捕获技术研究

  • 中图分类号: U662

Performance simulation and optimization of ship waste heat TEG-ORC combined cycle based on R1234ze and its mixed working fluids

Funds: 

National Key R&D Program of China 2021YFA1201604

More Information
Article Text (Baidu Translation)
  • 摘要: 为提高船舶航行中的能源效率,以船舶余热为研究对象,研究了基于温差发电-有机朗肯(TEG-ORC)联合循环的船舶余热回收系统中的工质选择问题;构建了TEG-ORC联合循环系统热力学和经济性模型,分别研究了采用R1234ze单工质和R245fa/R1234ze混合工质时联合循环系统的性能参数;将系统输出功率、热效率和发电成本作为评价指标,对比了采用不同混合比时系统的输出性能;以系统最高输出功率和最低发电成本作为优化分析的指标,明确了采用混合工质时该联合循环系统的最优配置。分析结果表明:采用R1234ze单工质时联合循环系统最大输出功率为1 836 W,最小发电成本为0.493元·(kW·h)-1,最大热效率为17.09%;随着混合工质中R245fa组分的不断增大,相对于R1234ze单工质,系统的输出功率最大提高了12%;相对于R245fa单工质,系统的发电成本最大降低了54%,对应的输出功率提高了10%;确定了R245fa/R1234ze的最优混合比为0.9,此时系统最大输出功率为2 076 W,最小发电成本为0.231元·(kW·h)-1,最大热效率为34.5%;相对于采用R1234ze单工质,采用混合工质的系统最大输出功率提高了13%,最大热效率提高了102%,最小发电成本降低了53%;在系统采用最优混合比工质时确定了系统最佳输出功率为2 076 W,此时TEG模块数量为33,工质流速为0.06 kg·s-1,蒸发压力为1 000 kPa。可见采用混合工质进一步提升了联合循环系统输出性能以及对于冷热源匹配性。

     

  • 图  1  TEG-ORC联合循环系统

    Figure  1.  TEG-ORC combined cycle system

    图  2  TEG模型验证结果

    Figure  2.  Verification results of TEG model

    图  3  TEG-ORC联合循环计算流程

    Figure  3.  Calculation flow of TEG-ORC combined cycle

    图  4  R1234ze工质联合循环系统输出功率

    Figure  4.  Output powers of R1234ze working fluid combined cycle system

    图  5  R1234ze工质联合循环系统发电成本

    Figure  5.  Power-production costs of R1234ze working fluid combined cycle system

    图  6  R1234ze工质联合循环系统热效率

    Figure  6.  Thermal efficiencies of R1234ze working fluid combined cycle system

    图  7  系统最大热效率时对应的发电成本

    Figure  7.  Power-production costs corresponding to maximum thermal efficiency of system

    图  8  系统最低发电成本时对应的输出功率

    Figure  8.  Output powers corresponding to minimum power-production cost of system

    图  9  混合工质联合循环系统输出功率

    Figure  9.  Output powers of mixed working fluid combined cycle system

    图  10  混合工质联合循环系统发电成本分析

    Figure  10.  Power-production costs of mixed working fluid combined cycle system

    图  11  混合工质联合循环系统热效率

    Figure  11.  Thermal efficiencies of mixed working fluid combined cycle system

    图  12  联合循环系统采用混合工质时的T-S

    Figure  12.  T-S diagram of TEG-ORC with mixed working fluid

    图  13  最优解对比

    Figure  13.  Comparison of optimal solutions

    表  1  热力学模型

    Table  1.   Thermodynamic models

    联合系统单元 热力学方程
    TEG单元 QC=Q1=m(h3h2)
    缸套水预热器 Q2=m(h4h3)
    增压空气预热器 Q3=m(h5h4)
    蒸发器 Q4=m(h6h5)
    工质泵 WP=m(h2h1)
    膨胀机 WE=m(h7h6)
    下载: 导出CSV

    表  2  经济性模型

    Table  2.   Economic models

    类别 经济性模型
    TEG单元成本 CT=NCm+Cg
    ORC单元成本 $ \lg \left(F_{\mathrm{P}}\right)=A_1+A_2 \lg (P)+A_3[\lg (P)]^2$
    $ \lg \left(C_{\mathrm{P}}\right)=K_1+K_2 \lg (Z)+K_3[\lg (Z)]^2$
    $ C_i=C_{\mathrm{P}}\left(B_1+B_2 F_{\mathrm{M}} F_{\mathrm{P}}\right)$
    $ C_{\mathrm{O}}=668 / 382 \sum\limits_{i=1}^6 C_i$
    资金回收系数 CR=0.09×1.0910/(1.0910-1)
    系统发电成本 CS=(CT+COCR+3 300)/(500WS)
    下载: 导出CSV

    表  3  ORC模型验证结果

    Table  3.   Verification results of ORC model

    变量 WP/kW WE/kW η/%
    参考值[26] 4.356 85.342 11.73
    验证值 4.180 89.570 12.35
    下载: 导出CSV

    表  4  仿真流程初始条件与边界条件

    Table  4.   Initial conditions and boundary conditions of simulation process

    初始条件 环境温度/℃ 20
    初始烟气温度/℃ 300
    缸套水温度/℃ 85
    增压空气温度/℃ 150
    边界条件 TEG模块数量/片 1~60
    排气温度/℃ >180
    蒸发压力/MPa 1~2.4
    工质流速/(kg·s-1) < 0.06
    下载: 导出CSV

    表  5  系统最大输出功率时对应的较优解

    Table  5.   Optimal solutions corresponding to maximum output power of system

    TEG模块数量/片 工质流量/(kg·s-1) 蒸发压力/kPa TEG输出功率/W 总功率/W 泵功率/W 热效率/% 烟气余热利用率/% 总发电成本/[元·(kW·h)-1]
    33 0.06 1 000 162.33 2 076.14 37.18 15.13 99.78 0.300 48
    31 155.35 2 059.16 37.18 15.08 99.06 0.299 06
    29 148.08 2 051.90 37.18 15.04 98.26 0.297 59
    27 140.58 2 044.39 37.18 15.00 97.62 0.296 05
    25 132.64 2 036.46 37.18 14.95 96.74 0.294 53
    23 124.48 2 028.30 37.18 14.91 95.93 0.292 86
    21 115.92 2 019.73 37.18 14.86 95.13 0.291 21
    19 107.03 2 010.84 37.18 14.80 94.48 0.289 48
    17 97.71 2 001.52 37.18 14.75 93.51 0.287 67
    15 88.01 1 991.83 37.18 14.69 92.70 0.285 76
    下载: 导出CSV

    表  6  系统最低发电成本时对应的较优解

    Table  6.   Optimal solutions corresponding to minimum power-production cost of system

    TEG模块数量/片 工质流量/(kg·s-1) 蒸发压力/kPa TEG输出功率/W 总功率/W 泵功率/W 热效率/% 烟气余热利用率/% 总发电成本/[元·(kW·h)-1]
    7 0.06 1 000 44.70 1 948.52 37.18 14.43 88.87 0.276 8
    9 56.24 1 960.06 37.18 14.50 89.77 0.279 3
    11 67.30 1 971.12 37.18 14.56 90.83 0.281 6
    13 77.89 1 981.70 37.18 14.63 91.81 0.283 7
    15 88.01 1 991.83 37.18 14.69 92.70 0.285 8
    17 97.71 2 001.52 37.18 14.75 93.52 0.287 7
    19 107.03 2 010.84 37.18 14.80 94.49 0.289 5
    21 115.92 2 019.73 37.18 14.86 95.13 0.291 2
    23 124.48 2 028.30 37.18 14.91 95.94 0.292 9
    25 132.64 2 036.46 37.18 14.96 96.74 0.294 5
    下载: 导出CSV
  • [1] 柳长昕, 叶文祥, 刘健豪, 等. 面向船舶多种余热梯级利用的TEG-ORC联合循环性能[J]. 工程科学学报, 2021, 43(4): 577-583.

    LIU Chang-xin, YE Wen-xiang, LIU Jian-hao, et al. TEG-ORC combined cycle performance for cascade recovery of various types of waste heat from vessels[J]. Chinese Journal of Engineering, 2021, 43(4): 577-583.
    [2] ELKAFAS A G. Advanced operational measure for reducing fuel consumption onboard ships[J]. Environmental Science and Pollution Research, 2022, 29(60): 90509-90519. doi: 10.1007/s11356-022-22116-7
    [3] SINGH D V, PEDERSEN E. A review of waste heat recovery technologies for maritime applications[J]. Energy Conversion and Management, 2016, 111: 315-328. doi: 10.1016/j.enconman.2015.12.073
    [4] 袁裕鹏, 王康豫, 尹奇志, 等. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002

    YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002
    [5] RAHBAR K, MAHMOUD S, AL-DADAH R K, et al. Review of organic Rankine cycle for small-scale applications[J]. Energy Conversion and Management, 2017, 134: 135-155. doi: 10.1016/j.enconman.2016.12.023
    [6] PARK B S, USMAN M, IMRAN M, et al. Review of organic Rankine cycle experimental data trends[J]. Energy Convers Manage, 2018, 173: 679-691. doi: 10.1016/j.enconman.2018.07.097
    [7] KARA O. An evaluation of a new solar-assisted and ground-cooled organic Rankine cycle (ORC) with a recuperator[J]. Arabian Journal for Science and Engineering, 2023, 48: 1-20.
    [8] WANG En-hua, ZHANG Hong-guang, FAN Bo-yuan, et al. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery[J]. Energy, 2011, 6(5): 3406.
    [9] CHEN Wu, XUE Song, LYU Long, et al. Energy saving analysis of a marine main engine during the whole voyage utilizing an organic Rankine cycle system to recover waste heat[J]. Journal of Marine Science and Engineering, 2023, 11(1): 103. doi: 10.3390/jmse11010103
    [10] BURNETE N V, MARIASIU F, DEPCIK C, et al. Review of thermoelectric generation for internal combustion engine waste heat recovery[J]. Progress in Energy and Combustion Science, 2022, 91: 101009.
    [11] LI Zhi-xiong, KHANMOHAMMADI S, KHANMOHAMMADI S, et al. 3-E analysis and optimization of an organic Rankine flash cycle integrated with a PEM fuel cell and geothermal energy[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2168-2185. doi: 10.1016/j.ijhydene.2019.09.233
    [12] DZULKFLI M S B, PESYRIDIS A, GOHIL D. Thermoelectric generation in hybrid electric vehicles[J]. Energies, 2020, 13(14): 3742.
    [13] YI Long-bing, XU Hao-wen, YANG Hai-bing, et al. Design of Bi2Te3-based thermoelectric generator in a widely applicable system[J]. Journal of Power Sources, 2023, 559: 232661.
    [14] JI Dong-xu, CAI Hao-tong, YE Zi-han, et al. Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: a techno-economic analysis[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102914.
    [15] MILLER E W, HENDRICKS T J, PETERSON R B. Modeling energy recovery using thermoelectric conversion integrated with an organic Rankine bottoming cycle[J]. Journal of Electronic Materials, 2009, 38(7): 1206-1213.
    [16] SHU Ge-qun, ZHAO Jian, TIAN Hua, et al. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic Rankine cycle utilizing R123[J]. Energy, 2012, 45(1): 806-816.
    [17] LIU Chang-xin, LI Hua-an, YE Wen-xiang, et al. Simulation research of TEG-ORC combined cycle for cascade recovery of vessel waste heat[J]. International Journal of Green Energy, 2021, 18(11): 1173-1184.
    [18] LIU Chang-xin, LIU Jian-hao, YE Wen-xiang, et al. Study on a new cascade utilize method for ship waste heat based on TEG-ORC combined cycle[J]. Environmental Progress and Sustainable Energy, 2021, 40(5): 72-81.
    [19] 叶文祥, 柳长昕, 刘健豪, 等. 采用温差发电-有机朗肯循环联合系统的船舶余热利用实验研究[J]. 西安交通大学学报, 2020, 54(8): 50-57.

    YE Wen-xiang, LIU Chang-xin, LIU Jian-hao, et al. Experimental research of ship waste heat utilization by TEG-ORC combined cycle[J]. Journal of Xi'an Jiaotong University, 2020, 54(8): 50-57.
    [20] ZHANG Cheng-yu, SHU Ge-qun, TIAN Hua, et al. Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat[J]. Energy Conversion Management, 2015, 89: 541-554.
    [21] LI Hua-an, LIU Chang-xin, XU Zheng-hong, et al. Performance comparison of thermal power generation-organic Rankine cycle combined cycle system for ships waste heat utilization under different bottom cycle ratios[J]. Environmental Progress and Sustainable Energy, 2023, 42(2): e13993.
    [22] QUOILIN S, DECLAYE S, TCHANCHE B F, et al. Thermo-economic optimization of waste heat recovery organic Rankine cycles[J]. Applied Thermal Engineering, 2011, 31(14/15): 2885-2893.
    [23] DIPIPPO R. Second law assessment of binary plants generating power from low-temperature geothermal fluids[J]. Geothermics, 2004, 33(5): 565-586.
    [24] ZHANG Sheng-jun, WANG Huai-xin, GUO Tao. Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied Energy, 2011, 88(8): 2740-2754.
    [25] LIU Chang-xin, LI Hua-an, YU Shan-shan, et al. Influence study of bottom cycle ratios and superheat for vessels waste heat cascade recovery based on TEG-ORC combined cycle system employing R245fa[J]. International Journal of Green Energy, 2022, 20(7): 734-743.
    [26] XI Huan, LI Ming-jia, XU Chao, et al. Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm[J]. Energy, 2013, 58: 473-482.
    [27] GE Zhong, WANG Xiao-dong, LI Jian, et al. Thermodynamic and economic performance evaluations of double-stage organic flash cycle using hydrofluoroolefins (HFOs)[J]. Renewable Energy, 2024, 220: 119593.
    [28] FRATE L D, UMBERTO. Analysis of suitability ranges of high temperature heat pump working fluids[J]. Applied Thermal Engineering, 2019, 150: 628-640.
    [29] LARSEN U, PIEROBON L, HAGLIND F, et al. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection[J]. Energy, 2013, 55: 803-812.
    [30] ZHAO Li, BAO Jun-liang. The influence of composition shift on organic Rankine cycle (ORC) with zeotropic mixtures[J]. Energy Conversion and Management, 2014, 83: 203-211.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-18
  • 刊出日期:  2025-02-25

目录

    /

    返回文章
    返回