Crack extension and life prediction of fastening spring clip in heavy-haul railways
-
摘要: 为研究重载铁路有砟轨道扣件系统中的弹条疲劳寿命,建立了车-轨-基础耦合动力分析模型与扣件系统分析模型;计算了不同轴质量情况下扣件处轨底位移时程曲线,并将其作为位移荷载施加于正常安装状态下的扣件系统模型中来分析弹条在服役状态下的力学特性;基于应变-寿命曲线、累计损伤理论与裂纹扩展理论,分析了弹条裂纹扩展过程中的受力情况及轴质量对弹条疲劳寿命的影响。研究结果表明:弹条在25 kN的螺栓预压力情况下达到正常安装状态,弹条中肢垂向位移为10.2 mm,扣压力为10.1 kN,且应力最大处位于弹条后弯肢处;轴质量的增加通过改变弹条的应力比来影响疲劳裂纹萌生寿命,随着轴质量的增加,弹条材料属性对萌生寿命的影响比重降低;轴质量在由27 t增加至40 t时疲劳裂纹萌生寿命逐渐减少,40 t轴质量时疲劳裂纹萌生寿命约为128万次,较35、30 t轴质量时分别减少约63%和95%,同时寿命的降低速率也逐渐变缓;裂纹在弹条内部扩展时方向会产生扭转,裂纹前端应力向四周呈放射性衰减,同时应力方向朝两侧呈张拉状;弹条裂纹在开裂初期扩展速率较慢,随着深度增加,扩展速率不断加快;弹条的疲劳裂纹扩展寿命与累计通过总质量随着轴质量的增大而减小,且裂纹扩展寿命低于裂纹萌生寿命。Abstract: The coupled vehicle-track-foundation dynamic analysis model and the fastening system analysis model were established to study the fatigue life of the spring clip in the fastening systems of ballasted tracks in heavy-haul railways. The time curves of the rail bottom displacement at the fastenings under different axle loads were calculated. The curves were applied as displacement loads in the fastening system model under normal installation conditions to analyze the mechanical behavior of the spring clip under service conditions. Based on the strain-life curve, cumulative damage theory, and crack extension theory, the stress of the spring clip during crack extension and the influence of axle load on the fatigue life of the spring clip were analyzed. Research results show that the spring clip reaches the normal installation state under 25 kN bolt preload. The vertical displacement of the middle limb of the spring clip is 10.2 mm, the clamping force is 10.1 kN, and the maximum stress is located at the rear curved limb of the spring clip. The increase in axle load affects the fatigue crack initiation life by changing the stress ratio of the spring clip. With the increase in axle load, the influence of the material properties of the spring clip on the initiation life decreases in proportion. The fatigue crack initiation life decreases progressively as the axle load increases from 27 t to 40 t. When the axle load is 40 t, the fatigue crack initiation life is about 1.28 million times, approximately 63% and 95% less than that at axle loads of 35 t and 30 t, respectively. Meanwhile, the rate of decrease of the fatigue crack initiation life is slowing down. The direction of the crack is twisted as it expands inside the spring clip. The stress at the front of the crack decays radially in the surrounding direction, while the stress direction is tensile towards the sides. The extension rate of spring clip cracks is slow at the beginning of cracking and keeps accelerating with increasing depth. The fatigue crack extension life and cumulative total passing weight of the spring clip decrease with increasing axle load, while the crack extension life is less than the crack initiation life.
-
表 1 车辆模型主要参数
Table 1. Main parameters of vehicle model
部件名称 参数 数值 车体 自重/t 9.70 车辆定距/m 6.25 构架及轮对 构架质量/t 0.79 轮对质量/t 1.65 轴距/m 1.83 表 2 扣件系统及轨下基础主要参数
Table 2. Main parameters of fastening system and under-rail foundation
部件 弹性模量/MPa 泊松比 密度/(t·m-3) 弹条 2.01×105 0.30 7.80 钢轨 2.06×105 0.30 7.85 轨距挡板 2.05×105 0.25 7.85 挡板座 2.80×103 0.40 1.13 轨枕 3.65×104 0.20 2.50 道床 300 0.25 2.20 基床表层 180 0.30 2.14 表 3 弹条中肢垂向位移与螺栓预压力关系
Table 3. Relationship between vertical displacement of middle limb of spring clip and bolt preload
螺栓预压力/kN 5 10 15 20 25 30 35 40 弹条中肢位移/mm 3.0 6.1 8.8 9.5 10.2 10.2 10.4 10.5 表 4 弹条应力增量
Table 4. Stress increments of spring clip
轴质量/t 40 35 30 27 应力/MPa 1 755 1 759 1 772 1 776 应力增量/MPa -25 -21 -8 -4 -
[1] 孙旭, 王平. 高速铁路扣件失效对车辆-轨道耦合系统动态响应的影响[J]. 铁道学报, 2022, 44(8): 108-116. doi: 10.3969/j.issn.1001-8360.2022.08.012SUN Xu, WANG Ping. Effect of fastener failure of high-speed railway on dynamic response of vehicle-track coupling system[J]. Journal of the China Railway Society, 2022, 44(8): 108- 116. doi: 10.3969/j.issn.1001-8360.2022.08.012 [2] 刘艳, 刘欢, 李秋彤, 等. 基于DT-Ⅲ型扣件安装的e型弹条静力学分析[J]. 工程力学, 2023, 40(1): 238-248.LIU Yan, LIU Huan, LI Qiu-tong, et al. A static analysis of e-type clips based on installation process of DT-Ⅲ fastening systems[J]. Engineering Mechanics, 2023, 40(1): 238-248. [3] 康熙, 陈光雄, 何俊华, 等. 轮轨滑动对高速铁路扣件弹条振动特性的影响[J]. 振动与冲击, 2023, 42(18): 63-70.KANG Xi, CHEN Guang-xiong, HE Jun-hua, et al. Effect of wheel-rail slip on the vibration characteristics of fastener clips in high-speed railways[J]. Journal of Vibration and Shock, 2023, 42(18): 63-70. [4] 王开云. 轨道交通结构服役性能演变与安全控制[J]. 科学通报, 2019, 64(25): 2564-2565.WANG Kai-yun. Service performance evolution and safety control of rail transportation structure[J]. Chinese Science Bulletin, 2019, 64(25): 2564-2565. [5] ZHOU L, SHEN Z Y. Dynamic analysis of a high-speed train operating on a curved track with failed fasteners[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2013, 14(6): 447-458. doi: 10.1631/jzus.A1200321 [6] 侯博文, 李佳静, 高亮, 等. 基于脉冲激励下钢轨振动响应的扣件失效识别方法[J]. 工程力学, 2021, 38(2): 122-133.HOU Bo-wen, LI Jia-jing, GAO Liang, et al. Failure identification method of fastening system based on rail response under pulse excitation[J]. Engineering Mechanics, 2021, 38(2): 122-133. [7] ZENG Z, TIAN C, TU Q, et al. Experimental study on the longitudinal resistance of WJ-8 fasteners subjected to torque and vertical loading in continuously welded rails[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1071-1080. doi: 10.1177/0954409719880667 [8] WEI J, LIU C, REN T, et al. Online condition monitoring of a rail fastening system on high-speed railways based on wavelet packet analysis[J]. Sensors, 2017, 17(2): 318-329. doi: 10.3390/s17020318 [9] 杨逸凡, 凌亮, 杨云帆, 等. 重载机车车轮擦伤下的轮轨动态响应[J]. 工程力学, 2020, 37(12): 213-219. doi: 10.6052/j.issn.1000-4750.2020.01.0033YANG Yi-fan, LING Liang, YANG Yun-fan, et al. Wheel/rail dynamic responses due to the wheel flat of heavy-haul locomotives[J]. Engineering Mechanics, 2020, 37(12): 213-219. doi: 10.6052/j.issn.1000-4750.2020.01.0033 [10] 戴公连, 葛浩. 基于半解析有限元法的钢轨导波适用模态研究[J]. 铁道工程学报, 2020, 37(1): 18-24. doi: 10.3969/j.issn.1006-2106.2020.01.004DAI Gong-lian, GE Hao. Modal applicability analysis of rail guided wave based on semi-analytical finite element method[J]. Journal of Railway Engineering Society, 2020, 37(1): 18-24. doi: 10.3969/j.issn.1006-2106.2020.01.004 [11] XIAO Jun-heng, YAN Zi-quan, SHI Jin, et al. Effects of wheel-rail impact on the fatigue performance of fastening clips in rail joint area of high-speed railway[J]. KSCE Journal of Civil Engineering, 2022, 26(1): 120-130. doi: 10.1007/s12205-021-1905-9 [12] 肖乾, 王丹红, 陈道云, 等. 高速列车轮轨激励作用机理及其影响综述[J]. 交通运输工程学报, 2021, 21(3): 93-109. doi: 10.19818/j.cnki.1671-1637.2021.03.005XIAO Qian, WANG Dan-hong, CHEN Dao-yun, et al. Review on mechanism and influence of wheel-rail excitation of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 93-109. doi: 10.19818/j.cnki.1671-1637.2021.03.005 [13] 高晓刚, 冯青松, 马宇飞, 等. 地铁减振扣件轨下弹性垫刚度特性与寿命预测[J]. 交通运输工程学报, 2023, 23(3): 127-136. doi: 10.19818/j.cnki.1671-1637.2023.03.009GAO Xiao-gang, FENG Qing-song, MA Yu-fei, et al. Stiffness characteristics and life prediction of rail pads of subway damping fasteners[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 127-136. doi: 10.19818/j.cnki.1671-1637.2023.03.009 [14] 肖新标, 金学松, 温泽峰. 钢轨扣件失效对列车动态脱轨的影响[J]. 交通运输工程学报, 2006, 6(1): 10-15. doi: 10.3321/j.issn:1671-1637.2006.01.002XIAO Xin-biao, JIN Xue-song, WEN Ze-feng. Influence of rail fastener failure on vehicle dynamic derailment[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 10-15. doi: 10.3321/j.issn:1671-1637.2006.01.002 [15] FERREÑO D, CASADO J A, CARRASCAL I A, et al. Experimental and finite element fatigue assessment of the spring clip of the SKL-1 railway fastening system[J]. Engineering Structures, 2019, 188: 553-563. doi: 10.1016/j.engstruct.2019.03.053 [16] 张莎莎, 刘亚超, 杨晓华, 等. 粗粒盐渍土区既有高铁路基变形特性试验研究[J]. 建筑科学与工程学报, 2022, 39(2): 135-142.ZHANG Sha-sha, LIU Ya-chao, YANG Xiao-hua, et al. Experimental study on deformation characteristics of existing high-speed railway subgrade in coarse saline soil area[J]. Journal of Architecture and Civil Engineering, 2022, 39(2): 135-142. [17] 朱胜阳, 蔡成标, 尹镪, 等. 高速铁路扣件弹条动力学分析[J]. 工程力学, 2013, 30(6): 254-258, 287.ZHU Sheng-yang, CAI Cheng-biao, YIN Qiang, et al. Dynamic analysis of rail fastening clip in high-speed railway[J]. Engineering Mechanics, 2013, 30(6): 254-258, 287. [18] 尚红霞, 温泽峰, 吴磊, 等. 地铁扣件Ⅲ型弹条失效有限元分析[J]. 工程力学, 2015, 32(9): 210-215.SHANG Hong-xia, WEN Ze-feng, WU Lei, et al. Finite element analysis of type Ⅲ rail fastening clip failure in metro lines[J]. Engineering Mechanics, 2015, 32(9): 210-215. [19] CUI Xiao-lu, PENG Shuang-qian, YU Le-tian, et al. Fracture mechanism and control method of elastic strip of Cologne-egg fastener in the high-prevalence section of rail corrugation[J]. Engineering Failure Analysis, 2023, 152: 107463. [20] CUI Xiao-lu, BAO Peng-yu, LI Tong, et al. Research on the failure mechanism of elastic strip fracture in corrugated sections of metros[J]. Engineering Failure Analysis, 2023, 143: 106837. doi: 10.1016/j.engfailanal.2022.106837 [21] HASAP A, PAITEKUL P, NORAPHAIPHIPAKSA N, et al. Influence of toe load on the fatigue resistance of elastic rail clips[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(4): 1078-1087. doi: 10.1177/0954409717707834 [22] WANG Wen-bin, WU Zong-zhen, LIU Li, et al. Analysis of T-bolts abnormal fracture of DTVI2 fastener based on metro pass-by dynamic monitoring[J]. Procedia Engineering, 2017, 199: 2753-2758. [23] LING L, LI W, SHANG H X, et al. Experimental and numerical investigation of the effect of rail corrugation on the behaviour of rail fastenings[J]. Vehicle System Dynamics, 2014, 52(9): 1211-1231. doi: 10.1080/00423114.2014.934844 [24] MA Deng-ke, SHI Jin, YAN Zi-quan, et al. Failure analysis of fatigue damage for fastening clips in the ballastless track of high-speed railway considering random track irregularities[J]. Engineering Failure Analysis, 2022, 131: 105897. doi: 10.1016/j.engfailanal.2021.105897 [25] 向俊, 袁铖, 余翠英, 等. 高速铁路无砟轨道扣件弹条断裂原因分析[J]. 铁道科学与工程学报, 2019, 16(7): 1605-1613.XIANG Jun, YUAN Cheng, YU Cui-ying, et al. Analysis of elastic bar fracture causes of fasteners in ballastless track of high-speed railway[J]. Journal of Railway Science and Engineering, 2019, 16(7): 1605-1613. [26] 辛涛, 杨学敏, 肖宏, 等. 基于车轨耦合和扣件精细模型的弹条疲劳分析[J]. 中南大学学报(自然科学版), 2016, 47(12): 4270-4276.XIN Tao, YANG Xue-min, XIAO Hong, et al. Fatigue analysis of spring clip based on vehicle-track coupled model and detailed fastener model[J]. Journal of Central South University (Science and Technology), 2016, 47(12): 4270-4276. [27] 余自若, 袁媛, 张远庆, 等. 高速铁路扣件系统弹条疲劳性能研究[J]. 铁道学报, 2014, 36(7): 90-95. doi: 10.3969/j.issn.1001-8360.2014.07.015YU Zi-ruo, YUAN Yuan, ZHANG Yuan-qing, et al. Fatigue properties of elastic bars of fastening systems installed with high-speed railways[J]. Journal of the China Railway Society, 2014, 36(7): 90-95. doi: 10.3969/j.issn.1001-8360.2014.07.015 [28] 杨新文, 张英杰, 刘姝彤, 等. 高速铁路SKL15扣件弹条断裂原因分析[J]. 哈尔滨工业大学学报, 2023, 55(3): 10-19.YANG Xin-wen, ZHANG Ying-jie, LIU Shu-tong, et al. Analysis on fracture causes of SKL15 fastener clips in high-speed railway[J]. Journal of Harbin Institute of Technology, 2023, 55(3): 10-19. [29] 刘艳, 姜秀杰, 李秋彤, 等. W300-1型扣件弹条疲劳寿命的预测和评估[J]. 同济大学学报(自然科学版), 2021, 49(8): 1152-1161.LIU Yan, JIANG Xiu-jie, LI Qiu-tong, et al. Fatigue life prediction and evaluation of the W300-1 fastening clip[J]. Journal of Tongji University (Natural Science), 2021, 49(8): 1152-1161. [30] 潘振, 马战国, 郄录朝, 等. 27 t轴重条件下轨道结构劣化规律和适应性分析[J]. 铁道建筑, 2020, 60(1): 89-94.PAN Zhen, MA Zhan-guo, QIE Lu-chao, et al. Analysis of deterioration law and adaptability of track structure under 27 t axle load[J]. Railway Engineering, 2020, 60(1): 89-94. [31] 房建, 杨敏超, 雷晓燕, 等. 桥上CRTS Ⅱ型板式无砟轨道参数对轨道结构振动响应的影响[J]. 铁道科学与工程学报, 2022, 19(8): 2125-2132.FANG Jian, YANG Min-chao, LEI Xiao-yan, et al. Study on the impact of track parameters on the CRTS Ⅱ slab track structure vibration characteristics on bridges[J]. Journal of Railway Science and Engineering, 2022, 19(8): 2125-2132. [32] 徐磊, 陈宪麦, 李晓健, 等. 朔黄重载铁路轨道不平顺谱分析[J]. 中南大学学报(自然科学版), 2013, 44(12): 5147-5153.XU Lei, CHEN Xian-mai, LI Xiao-jian, et al. Track irregularity spectrum analysis of shenchi-huanghua heavy haul railway[J]. Journal of Central South University (Science and Technology), 2013, 44(12): 5147-5153. [33] 郝晓莉, 杨建, 杨飞, 等. 重载铁路轨道不平顺谱的分析和表征[J]. 铁道学报, 2023, 45(7): 115-125.HAO Xiao-li, YANG Jian, YANG Fei, et al. Analysis and expression of track irregularity spectrum of heavy-haul railway[J]. Journal of the China Railway Society, 2023, 45(7): 115-125. [34] 高建敏, 赖思成. 重载铁路轨道不平顺谱构建与分析[J]. 铁道工程学报, 2022, 39(3): 32-39.GAO Jian-min, LAI Si-cheng. Construction and analysis of track irregularity spectrum of heavy haul railway[J]. Journal of Railway Engineering Society, 2022, 39(3): 32-39. [35] 闫子权, 孙林林, 肖俊恒, 等. 铁路扣件弹条用60Si2Mn弹簧钢力学性能试验研究[J]. 铁道科学与工程学报, 2023, 20(1): 127-135.YAN Zi-quan, SUN Lin-lin, XIAO Jun-heng, et al. Experimental study on mechanical properties of 60Si2Mn spring steel for railway fastener clips[J]. Journal of Railway Science and Engineering, 2023, 20(1): 127-135. [36] GIANNELLA V, CITARELLA R, FELLINGER J, et al. LCF assessment on heat shield components of nuclear fusion experiment "Wendelstein 7-X" by critical plane criteria[J]. Procedia Structural Integrity, 2018, 8: 318-331. [37] 唐宇翔, 肖建庄, 夏冰. 三点弯曲下再生砂浆断裂性能与裂纹扩展过程[J]. 建筑科学与工程学报, 2025, 42(2): 114-121.TANG Yu-xiang, XIAO Jian-zhuang, XIA Bing. Fracture properties and crack propagation process of recycled mortar under three-point bending[J]. Journal of Architecture and Civil Engineering, 2025, 42(2): 114-121. [38] 刘嘉, 季则亮, 瞿伟廉, 等. 铁路钢桥节点既有腐蚀疲劳裂纹扩展寿命[J]. 长安大学学报(自然科学版), 2018, 38(2): 69-77.LIU Jia, JI Ze-liang, QU Wei-lian, et al. Corrosion fatigue crack propagation life of joints of railway steel bridge[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(2): 69-77. [39] 赵瑞, 刘永健, 姜磊, 等. 考虑弯曲应力占比的矩形钢管K型节点疲劳评估[J]. 建筑科学与工程学报, 2023, 40(5): 119-128.ZHAO Rui, LIU Yong-jian, JIANG Lei, et al. Fatigue assessment of rectangular hollow section K-joints due to degree of bending[J]. Journal of Architecture and Civil Engineering, 2023, 40(5): 119-128. [40] 刘艳, 赵威, 李秋彤, 等. 基于数字图像相关法的扣件弹条模态特征识别试验研究[J]. 实验力学, 2021, 36(6): 804-816.LIU Yan, ZHAO Wei, LI Qiu-tong, et al. Experimental study on the modal characteristics identification for the clip based on the digital image correlation[J]. Journal of Experimental Mechanics, 2021, 36(6): 804-816. [41] 董俊利, 冷伍明, 徐方, 等. 双线重载铁路路基动力响应规律研究[J]. 铁道学报, 2024, 46(1): 145-155.DONG Jun-li, LENG Wu-ming, XU Fang, et al. Study on dynamic response law of double-track heavy-haul railway subgrade[J]. Journal of the China Railway Society, 2024, 46(1): 145-155. [42] 冷伍明, 梅慧浩, 聂如松, 等. 重载铁路路基足尺模型试验研究[J]. 振动与冲击, 2018, 37(4): 1-6, 18.LENG Wu-ming, MEI Hui-hao, NIE Ru-song, et al. Full-scale model test of heavy haul railway subgrade[J]. Journal of Vibration and Shock, 2018, 37(4): 1-6, 18. [43] 吴洁好, 王时越, 伍曾, 等. W1型铁路弹条疲劳性能研究[J]. 实验力学, 2019, 34(6): 1003-1009.WU Jie-hao, WANG Shi-yue, WU Zeng, et al. Experimental study on the fatigue failure of W1-type spring clip[J]. Journal of Experimental Mechanics, 2019, 34(6): 1003-1009. -