Analysis method of steel bridge surface relative humidity
Article Text (Baidu Translation)
-
摘要: 为探究钢桥表面相对湿度时变规律与分布特性,提出了相对湿度边界层的概念,厘清了表面相对湿度与环境相对湿度的差别;基于空气温、湿度物理关系,提出了一种钢桥表面相对湿度计算方法并验证了其准确性;利用提出的方法计算了钢拱桥的表面相对湿度,并量化了表面相对湿度与环境相对湿度的差异。计算结果表明:对于钢拱桥而言,表面相对湿度与环境相对湿度变化规律基本一致,年、日变化规律均具有明显的正弦特征,表面相对湿度变化幅度更大;表面相对湿度高于环境相对湿度的情况普遍发生,且在高湿环境下该状态可能持续数日;拱肋表面相对湿度纵向分布极不均匀,拱顶和拱脚的顶、底板表面相对湿度最大分别相差16%和10%;系梁中部表面相对湿度分布均匀,但端部与中部表面相对湿度差异显著,最大差值超过30%;测试周期内环境湿润时间为1 191.5 h,表面湿润时间为2 016 h,为环境湿润时间的1.71倍;拱肋顶板表面湿润时间大于底板,最大差别达17.5%,系梁顶板表面湿润时间小于底板,最大差别达25.5%;相对湿度差异系数与湿润时间差异系数均可表征钢桥表面环境与大气环境的差异,2种表征方式下差异系数的分布规律基本一致,拱顶附近差异系数大于拱脚,系梁中部差异系数大于端部,同一断面处拱肋顶板差异系数大于底板,系梁顶板差异系数小于底板。Abstract: To explore the temporal variation and distribution characteristics of surface relative humidity, the concept of the relative humidity boundary layer was introduced. The difference between surface relative humidity and environment relative humidity was clarified. Based on the physical relationship between air temperature and humidity, a method for calculating the surface relative humidity of steel bridges was proposed. The accuracy of the method was verified. The surface relative humidity of a steel arch bridge was calculated using this method. The difference between surface relative humidity and environmental relative humidity was quantified. The results show that the variation pattern of surface relative humidity in steel arch bridges is consistent with that of environment relative humidity. Both annual and daily variations exhibit distinct sinusoidal characteristics. The amplitude of surface relative humidity variation is larger. Surface relative humidity commonly exceeds environmental relative humidity. In high-humidity environments, this condition can persist for several days. The longitudinal distribution of surface relative humidity on the arch ribs is highly uneven. The maximum difference in surface relative humidity between the top plate at the arch crown and the arch foot is 16%. The maximum difference in surface relative humidity between the bottom plate at the arch crown and the arch foot is also 10%. The surface relative humidity in the middle of the tie beam is evenly distributed. Significant differences exist between the ends and the middle. The maximum difference exceeds 30%. During the testing period, the environmental wetting time is 1 191.5 hours. The surface wetting time is 2 016 hours, 1.71 times the environmental wetting time. The wetting time of the top plate of the arch rib is greater than that of the bottom plate. The maximum difference reaches 17.5%. The surface wetting time of the top plate of the tie beam is less than that of the bottom plate. The maximum difference reaches 25.5%. Both the difference coefficient in relative humidity and the difference coefficient in wetting time represent the differences between the surface environment of the steel bridge and the atmospheric environment. Two types of the distribution pattern of different coefficients are consistent. The difference coefficients near the arch crown are higher than that near the arch foot. The difference coefficients for the tie beams in the middle are higher than that at the ends. At the same cross-section, the difference coefficients for the top plates of the arch rib are higher than that for the bottom plates. The difference coefficients for the top plates of the tie beam are lower than that for the bottom plates.
-
[1] 乔文靖, 杨帆, 胡启涵, 等. 强腐后Q345钢力学性能退化试验[J]. 交通运输工程学报, 2022, 22(5): 231-246. doi: 10.19818/j.cnki.1671-1637.2022.05.014QIAO Wen-jing, YANG Fan, HU Qi-han, et al. Experiment on mechanical property degradation of Q345 steel after strong corrosion[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 231-246. doi: 10.19818/j.cnki.1671-1637.2022.05.014 [2] 王春生, 张静雯, 段兰, 等. 长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1): 1-26. doi: 10.19818/j.cnki.1671-1637.2020.01.001WANG Chun-sheng, ZHANG Jing-wen, DUAN Lan, et al. Research progress and engineering application of long lasting high performance weathering steel bridges[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 1-26. doi: 10.19818/j.cnki.1671-1637.2020.01.001 [3] 朱劲松, 郭晓宇, 亢景付, 等. 耐候桥梁钢腐蚀力学行为研究及其应用进展[J]. 中国公路学报, 2019, 32(5): 1-16.ZHU Jin-song, GUO Xiao-yu, KANG Jing-fu, et al. Research on corrosion behavior, mechanical property, and application of weathering steel in bridges[J]. China Journal of Highway and Transport, 2019, 32(5): 1-16. [4] 贾晨, 邵永松, 郭兰慧, 等. 建筑结构用钢的大气腐蚀模型研究综述[J]. 哈尔滨工业大学学报, 2020, 52(8): 1-9.JIA Chen, SHAO Yong-song, GUO Lan-hui, et al. A review of atmospheric corrosion models of building structural steel[J]. Journal of Harbin Institute of Technology, 2020, 52(8): 1-9. [5] 刘永健, 陈莎, 王壮. 钢桥大气腐蚀微环境与长寿基因[J]. 建筑科学与工程学报, 2023, 40(5): 1-19.LIU Yong-jian, CHEN Sha, WANG Zhuang. Atmospheric corrosion micro-environment and longevity genes of steel bridges[J]. Journal of Architecture and Civil Engineering. 2023, 40(5): 1-19. [6] OSHIKAWA W, SHINOHARA T, MOTODA S. Estimation of chemical composition and thickness of water film of moist strong electrolyte solution[J]. Zairyo-to-Kankyo, 2003, 52(6): 293-298. doi: 10.3323/jcorr1991.52.293 [7] COLE I S, GANTHER W D. Experimental determination of duration of wetness on metal surfaces[J]. Corrosion Engineering Science and Technology, 2008, 43(2): 156-162. doi: 10.1179/174327807X214554 [8] 姜绍飞, 林金星, 宋华霖, 等. 基于多物理场耦合的大气环境下碳钢点蚀演化及速率预测模型[J]. 材料导报, 2024, 38(19): 231-237.JIANG Shao-fei, LIN Jin-xing, SONG Hua-lin, et al. Evolution and rate prediction model of pitting of carbon steel in atmospheric environment based on multiphysical fields[J]. Materials Reports, 2024, 38(19): 231-237. [9] 夏晨瀚, 杨小佳, 李清, 等. 碳钢大气腐蚀的大数据分析[J]. 腐蚀与防护, 2024, 45(2): 75-84.XIA Chen-han, YANG Xiao-jia, LI Qing, et al. Big data analysis of atmospheric corrosion of carbon steel[J]. Corrosion and Protection, 2024, 45(2): 75-84. [10] 马士东, 姚法仍, 刘其常, 等. 基于大数据的海上风电风机环境腐蚀性分析[J]. 船舶工程, 2024, 46(增1): 123-127, 183.MA Shi-dong, YAO Fa-reng, LIU Qi-chang, et al. Big data-based analysis of environmental corrosivity in offshore wind turbines[J]. Ship Engineering, 2024, 46(S1): 123-127, 183. [11] COSABOOM B, MEHALCHICK G, ZOCCOLA J C. Bridge construction with unpainted high-strength low-alloy steel, eight year progress report[R]. Washington DC: U.S. Department of Transportation, 1979. [12] ZOCCOLA J. Eight-year corrosion test report - 8-mile road interchange[R]. Bethlehem: Bethlehem Steel Corporation, 1976. [13] LARRABEE C P. The effect of specimen position on atmospheric corrosion testing of steel[J]. Transactions of the Electrochemical Society, 1944, 85(1): 297. doi: 10.1149/1.3071601 [14] 王献东. 钢桥易腐蚀构造细节研究[D]. 西安: 长安大学, 2023.WANG Xian-dong. Study on details of corrosion-prone structure of steel bridge[D]. Xi'an: Chang'an University, 2023. [15] HEIDERSBACH R. Corrosion performance of weathering steel structures[J]. Transportation Research Record, 1978(1113): 24-29. [16] JIN Y, KAZUTOSHI N. Considering the surrounding environment of the bridge and the dew condensation condition[C]//KAWASAKI M. Japan Society of Civil Engineers 2011 Annual Meeting. Takamatsu: Japan Society of Civil Engineers National Convention Executive Committee Shikoku Branch of Society of Civil Engineers, 2011: 1177-1178. [17] OHSHIMA M, TAKOH J, SUZUMURA K, et al. Economical dehumidification design and actual proof examination of box girder bridge[J]. Doboku Gakkai Ronbunshuu F, 2007, 63(1): 119-130. doi: 10.2208/jscejf.63.119 [18] KAZUTOSHI N, RYOSUKE N, CHISATO Y, et al. Evaluation methods of dew condensation of steel girders using weather data[J]. Construction Engineering Papers A, 2016(62): 796-803. [19] MOTODA S, SUZUKI Y, SHINOHARA T, et al. Corrosive factors of a marine atmosphere analyzed by ACM sensor for 1 year[J]. Zairyo-to-Kankyo, 1995, 44(4): 218-225. doi: 10.3323/jcorr1991.44.218 [20] JIN Y H, HA M G, JEON S H, et al. Evaluation of corrosion conditions for the steel box members by corrosion monitoring exposure test[J]. Construction and Building Materials, 2020, 258: 120195. doi: 10.1016/j.conbuildmat.2020.120195 [21] JIN Y, HA M, JEONG Y, et al. Relative corrosion environment conditions of steel box members examined by corrosion current measurement[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2020, 24(6): 171-179. [22] HA M G, HEO C J, AHN J H. Correlation evaluation of time of wetness and mean corrosion depth depending on corrosive environment[J]. Journal of Korean Society of Steel Construction, 2022, 34(3): 119-127. doi: 10.7781/kjoss.2022.34.3.119 [23] HA M G, JEON S H, JEONG Y S, et al. Corrosion environment monitoring of local structural members of a steel truss bridge under a marine environment[J]. International Journal of Steel Structures, 2021, 21(1): 167-177. doi: 10.1007/s13296-020-00424-3 [24] LIU C, MIYASHITA T, NAGAI M. Analytical study on shear capacity of steel I-girders with local corrosion nearby supports[J]. Procedia Engineering, 2011(14): 2276-2284. [25] JEON S H, HA M G, JEONG Y S, et al. Evaluation of corrosion damage of structural steel depending on atmospheric exposure test[J]. Journal of Korean Society of Steel Construction, 2019, 31(4): 245-252. doi: 10.7781/kjoss.2019.31.4.245 [26] HA M G, JEONG Y S, AHN J H. Evaluation of relative corrosion rate depending on local location and installation of structural member in steel water gate[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2019, 23(7): 16-24. [27] TOMOMI I, YASUO H, KOSUTO F, et al. Study on soundness assessment techniques for aged transmission tower: research results in a first phase[R]. Yokosu: Central Research Institute of Electric Power Industry, 2016. [28] 王壮, 刘永健, 唐志伟, 等. 基于日照阴影识别的桁式拱肋三维温度场模拟方法[J]. 中国公路学报, 2022, 35(12): 91-105.WANG Zhuang, LIU Yong-jian, TANG Zhi-wei, et al. Three-dimensional temperature field simulation method of truss arch rib based on sunlight shadow recognition[J]. China Journal of Highway and Transport, 2022, 35(12): 91-105. [29] 陈宝春, 刘振宇. 日照作用下钢管混凝土桁拱温度场实测研究[J]. 中国公路学报, 2011, 24(3): 72-79.CHEN Bao-chun, LIU Zhen-yu. Research on thermal field test of concrete filled steel tubular truss arch under solar radiation[J]. China Journal of Highway and Transport, 2011, 24(3): 72-79. [30] 刘永健, 刘江, 张宁, 等. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78.LIU Yong-jian, LIU Jiang, ZHANG Ning, et al. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. [31] CUI Chuang, ZHANG Qing-hua, ZHANG Deng-ke, et al. Monitoring and detection of steel bridge diseases: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2024, 11(2): 188-208. [32] 杨松, 李文强, 黄旭, 等. 基于对流换热系数修正的钢箱梁温度场研究[J]. 华南理工大学学报(自然科学版), 2021, 49(4): 47-58, 64.YANG Song, LI Wen-qiang, HUANG Xu, et al. Study on temperature field of steel box girder based on modified convective heat transfer coefficient[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(4): 47-58, 64. [33] 陈莎, 刘永健, 王壮, 等. 钢桥表面相对湿度的边界条件计算方法[J]. 建筑科学与工程学报, 2024, 41(2): 85-95.CHEN Sha, LIU Yong-jian, WANG Zhuang, et al. Calculation methods for boundary conditions of relative humidity on steel bridge surface[J]. Journal of Architecture and Civil Engineering, 2024, 41(2): 85-95. [34] HOSEINPOOR M, PROŠEK T, BABUSIAUX L. Toward more realistic time of wetness measurement by means of surface relative humidity[J]. Corrosion Science, 2020, 177: 108999. [35] 刘永健, 刘江, 周绪红, 等. 桥梁长寿命设计理论综述[J]. 交通运输工程学报, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001LIU Yong-jian, Liu Jiang, Zhou Xu-hong, et al. Review on long-life design theory for bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001 [36] KLINESMITH D E, MCCUEN R H, ALBRECHT P. Effect of environmental conditions on corrosion rates[J]. Journal of Materials in Civil Engineering, 2007, 19(2): 121-129. [37] 郭杨阳, 吴宪, 赵远辉, 等. 深海载人平台舱壁结露调温除湿方法[J]. 船舶工程, 2024(46): 247-252.GUO Yang-yang, WU Xian, ZHAO Yuan-hui, et al. Bulkhead condensation for cabin temperature regulation and dehumidification of deep-sea manned platform[J]. Ship Engineering, 2024(46): 247-252. [38] PRUSACZYK W K. Precise water vapor pressure value calculations[J]. Computers in Biology and Medicine, 1989: 19(2): 129-130. [39] YOSHIHIRO I. Study on the decaying eclipse environment of steel equipment[D]. Fukuoka: Kyushu University, 2013. [40] UCHIUMI Y, A Study on the environment in the bridge girder of the inner environment of the box girders[J]. Kawada Technical Report, 2002(21): 92-93. -