Calculation mode for dynamic load allowance of negative bending moment of short and medium-span continuous girder bridge under design load
-
摘要: 为明确中小跨径连续梁桥在设计荷载作用下的负弯矩冲击系数,采用理论推导和数值仿真相结合的方法开展了中小跨径连续梁桥负弯矩冲击系数研究。根据欧拉-伯努利梁理论推导了两等跨连续梁在多个移动集中力作用下负弯矩冲击系数的解析表达式,以不同标准跨径连续梁桥为研究对象,选用空间三轴车辆模型,基于负弯矩截面荷载效应相等原理,将设计车道荷载等效为准设计状态的重车荷载谱;采用ANSYS软件建立了车辆-桥梁耦合数值仿真振动分析模型,开展了桥梁频率、桥面不平整度和车辆行驶速度对负弯矩冲击系数影响的显著性分析;通过大量的数值仿真结果进行了统计,以桥梁结构频率为自变量,以桥面不平整度为分项标准,提出了负弯矩冲击系数计算模式及其建议取值,并与国内外规范值展开对比分析。研究结果表明:跨径相同但跨数不同的中小跨径连续梁桥的负弯矩冲击系数最大相差38%;随着桥面不平整度等级的降低,负弯矩冲击系数逐渐增大,B级和C级桥面不平整度的负弯矩冲击系数平均值分别为A级对应平均值的2.07倍和4.15倍;车辆行驶速度对负弯矩冲击系数有较大影响,但并未表现出显著规律;在B级和C级桥面不平整度时,各国规范均不同程度地低估了负弯矩冲击系数,建议中小跨径连续梁桥负弯矩冲击系数设计值取为0.335。Abstract: To clarify the dynamic load allowance (DLA) of negative bending moment of short and medium-span continuous girder bridges under design load, theoretical derivation and numerical simulation were adopted to conduct the research on the DLA of negative bending moment of short and medium-span continuous girder bridges. Based on the Euler-Bernoulli girder theory, an analytical expression for the DLA of negative bending moment of a two-span continuous girder under multiple moving concentrated forces was derived. Continuous girder bridges with different standard spans were selected as research objects, and a spatial three-axis vehicle model was applied. Based on the principle of equivalent load effect in the negative bending moment section, the design load of lanes was equated to the heavy vehicle load spectrum in a quasi-design state. The vibration analysis model of coupled vehicle and bridge numerical simulation was established by ANSYS software. The significance analysis of the influence of bridge frequency, deck roughness, and vehicle speed on the DLA of negative bending moment was carried out. Plenty of numerical simulation results were counted. With the frequency of bridge structure as the independent variable and the deck roughness as the sub-standard, a calculation mode of DLA of negative bending moment and its suggested value were proposed, and they were compared with the standard values in China and abroad. Research results show that the maximum difference between the DLA of negative bending moment of short and medium-span continuous girder bridges with the same span but different span numbers is 38%. The DLA of negative bending moment gradually increases as the deck roughness class decreases. The average DLA of negative bending moment for deck roughness of Class B and Class C is 2.07 times and 4.15 times the corresponding average value for roughness of Class A, respectively. Vehicle speed has a great influence on the DLA of negative bending moment, but the relationship is not clear. When the deck roughness is Class B and Class C, the DLA of negative bending moment in the specifications of various countries are underestimated. The design value of the DLA of negative bending moment of the short and medium-span continuous girder bridge is suggested to be 0.335.
-
表 1 连续梁主要参数
Table 1. Main parameters of continuous girders
截面类型 跨径/m 截面面积/m2 截面惯性矩/m4 连续箱梁 2×20 1.070 0.181 2×30 1.212 0.378 2×40 1.418 0.688 连续T梁 2×20 0.779 0.194 2×30 0.896 0.438 2×40 1.096 0.930 -
[1] 交通运输部. 2023年交通运输行业发展统计公报[N]. 中国交通报, 2024-06-18.Ministry of transport. Statistical bulletin on the development of transportation industry in 2023[N]. China Transport News, 2024-06-18. [2] 周勇军, 薛宇欣, 李冉冉, 等. 桥梁冲击系数理论研究和应用进展[J]. 中国公路学报, 2021, 34(4): 31-50. doi: 10.3969/j.issn.1001-7372.2021.04.003ZHOU Yong-jun, XUE Yu-xin, LI Ran-ran, et al. State-of-the-art of theory and applications of bridge dynamic load allowance[J]. China Journal of Highway and Transport, 2021, 34(4): 31-50. doi: 10.3969/j.issn.1001-7372.2021.04.003 [3] WANG Ton-lo, HUANG Dong-zhou, SHAHAWY M. Dynamic response of multi-girder bridges[J]. Journal of Structural Engineering, 1992, 118(8): 2222-2238. doi: 10.1061/(ASCE)0733-9445(1992)118:8(2222) [4] OBRIEN E J, CANTERO D, ENRIGHT B, et al. Characteristic dynamic increment for extreme traffic loading events on short and medium span highway bridges[J]. Engineering Structures, 2010, 32(12): 3827-3835. [5] 邓露, 段林利, 何维, 等. 中国公路车-桥耦合振动车辆模型研究[J]. 中国公路学报, 2018, 31(7): 92-100. doi: 10.3969/j.issn.1001-7372.2018.07.007DENG Lu, DUAN Lin-li, HE Wei, et al. Study on vehicle model for vehicle-bridge coupling vibration of highway bridges in China[J]. China Journal of Highway and Transport, 2018, 31(7): 92-100. doi: 10.3969/j.issn.1001-7372.2018.07.007 [6] 刘伯权, 黄华, 刘鸣. 简支梁桥在车辆荷载谱作用下的动力分析[J]. 土木工程学报, 2006, 53(3): 76-80, 128. doi: 10.3321/j.issn:1000-131X.2006.03.011LIU Bo-quan, HUANG Hua, LIU Ming. Dynamic analysis of simply supported beam bridges under vehicle load spectrum[J]. China Civil Engineering Journal, 2006, 53(3): 76-80, 128. doi: 10.3321/j.issn:1000-131X.2006.03.011 [7] 韩万水, 闫君媛, 武隽, 等. 基于长期监测的特重车流作用下桥梁动态放大系数研究[J]. 振动工程学报, 2014, 27(2): 222-232. doi: 10.3969/j.issn.1004-4523.2014.02.010HAN Wan-shui, YAN Jun-yuan, WU Juan, et al. Research on bridge dynamic amplification factor under the action of heavy vehicle flow based on long-term monitoring[J]. Journal of Vibration Engineering, 2014, 27(2): 222-232. doi: 10.3969/j.issn.1004-4523.2014.02.010 [8] 殷新锋, 邓露. 随机车流作用下桥梁冲击系数分析[J]. 湖南大学学报(自然科学版), 2015, 42(9): 68-75. doi: 10.3969/j.issn.1674-2974.2015.09.009YIN Xin-feng, DENG Lu. Impact factor analysis of bridges under random traffic loads[J]. Journal of Hunan University (Natural Sciences), 2015, 42(9): 68-75. doi: 10.3969/j.issn.1674-2974.2015.09.009 [9] 刘晨光, 张连振, 高庆飞, 等. 考虑车队叠加效应与桥面平整度影响的梁式桥动力冲击系数研究[J]. 振动与冲击, 2019, 38(19): 226-232, 268.LIU Chen-guang, ZHANG Lian-zhen, GAO Qing-fei, et al. Research on the dynamic amplification factor of girder bridges considering interaction effect of vehicle string and bridge deck evenness[J]. Journal of Vibration and Shock, 2019, 38(19): 226-232, 268. [10] 桂水荣, 陈水生, 万水. 路面激励空间效应对车-桥耦合随机振动的影响[J]. 振动、测试与诊断, 2019, 39(3): 611-618, 675.GUI Shui-rong, CHEN Shui-sheng, WAN Shui. Effect spatial of road roughness excitation on vehicle-bridge coupling random vibration[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(3): 611-618, 675. [11] 周勇军, 蔡军哲, 石雄伟, 等. 基于加权法的桥梁冲击系数计算方法[J]. 交通运输工程学报, 2013, 13(4): 29-36. doi: 10.3969/j.issn.1671-1637.2013.04.005ZHOU Yong-jun, CAI Jun-zhe, SHI Xiong-wei, et al. Computing method of bridge impact factor based on weighted method[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 29-36. doi: 10.3969/j.issn.1671-1637.2013.04.005 [12] SAMAAN M, KENNEDY J B, SENNAH K. Impact factors for curved continuous composite multiple-box girder bridges[J]. Journal of Bridge Engineering, 2007, 12(1): 80-88. doi: 10.1061/(ASCE)1084-0702(2007)12:1(80) [13] 邓露, 段林利, 邹启令. 桥梁应变与挠度动力放大系数的大小关系研究[J]. 工程力学, 2018, 35(1): 126-135.DENG Lu, DUAN Lin-li, ZOU Qi-ling. Comparison of dynamic amplification factors calculated from bridge strain and deflection[J]. Engineering Mechanics, 2018, 35(1): 126-135. [14] 邓露, 何维, 俞扬, 等. 公路车-桥耦合振动的理论和应用研究进展[J]. 中国公路学报, 2018, 31(7): 38-54. doi: 10.3969/j.issn.1001-7372.2018.07.003DENG Lu, HE Wei, YU Yang, et al. Research progress in theory and applications of highway vehicle-bridge coupling vibration[J]. China Journal of Highway and Transport, 2018, 31(7): 38-54. doi: 10.3969/j.issn.1001-7372.2018.07.003 [15] 亓兴军, 孙绪法, 赵越, 等. 基于环境激励的连续梁桥挠度评定方法研究[J]. 建筑科学与工程学报, 2021, 38(4): 73-79.QI Xing-jun, SUN Xu-fa, ZHAO Yue, et al. Research on deflection evaluation method of continuous girder bridge based on environmental excitation[J]. Journal of Architecture and Civil Engineering, 2021, 38(4): 73-79. [16] 冯威, 朱伟庆, 胡强. 连续梁桥冲击系数与频率的对应关系[J]. 长安大学学报(自然科学版), 2020, 40(2): 56-65.FENG Wei, ZHU Wei-qing, HU Qiang. Relation between frequencies and impact coefficients of continuous beam bridges[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(2): 56-65. [17] 高庆飞, 张坤, 刘晨光, 等. 移动车辆荷载作用下桥梁冲击系数的若干讨论[J]. 哈尔滨工业大学学报, 2020, 52(3): 44-50.GAO Qing-fei, ZHANG Kun, LIU Chen-guang, et al. Discussions on the impact factor of bridges subjected to moving vehicular loads[J]. Journal of Harbin institute of technology, 2020, 52(3): 44-50. [18] GAO Qing-fei, WANG Zong-lin, LI Jun, et al. Dynamic load allowance in different positions of the multi-span girder bridge with variable cross-section[J]. Journal of Vibro-engineering, 2015, 17(4): 2025-2039. [19] 周勇军, 石雄伟, 袁卓亚, 等. 一种中小跨径连续梁桥负弯矩冲击系数的计算方法: 中国, 201510717108.7[P], 2015-10-29.ZHOU Yong-jun, SHI Xiong-wei, YUAN Zhuo-ya et al. A calculation method of negative moment impact coefficient for medium and small span continuous beam bridge: China. 201510717108.7[P], 2015-10-29. [20] 薛宇欣, 周勇军, 王业路, 等. 基于悬锤系统的简支梁桥冲击系数测试方法适用性[J]. 吉林大学学报(工学版), 2024, 54(9): 2557-2567.XUE Yu-xin, ZHOU Yong-jun, WANG Ye-lu, et al. Application of dynamic load allowance test method of simply supported girder bridge based on suspension hammer system[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(9): 2557-2567. [21] 周勇军, 薛宇欣, 高徐军, 等. 基于模态叠加法的公路简支梁桥动力放大系数研究[J]. 交通运输工程学报, 2023, 23(6): 146-155. doi: 10.19818/j.cnki.1671-1637.2023.06.008ZHOU Yong-jun, XUE Yu-xin, GAO Xu-jun, et al. Research on dynamic amplification factor of highway simply supported girder bridge based on modal superposition method[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 146-155. doi: 10.19818/j.cnki.1671-1637.2023.06.008 [22] 周勇军, 赵洋, 赵煜, 等. 基于动载试验荷载效率的简支梁桥冲击系数研究[J]. 振动与冲击, 2021, 40(20): 207-216.ZHOU Yong-jun, ZHAO Yang, ZHAO Yu, et al. A study on dynamic load allowance of a simply supported girder bridge based on load efficiency of a dynamic load test[J]. Journal of Vibration and Shock, 2021, 40(20): 207-216. [23] YANG Y, LU H, TAN X, et al. Fundamental mode shape estimation and element stiffness evaluation of girder bridges by using passing tractor-trailers[J]. Mechanical Systems and Signal Processing, 2022, 169: 108746. doi: 10.1016/j.ymssp.2021.108746 [24] MA L, WU L, CAI C S, et al. The theoretical impact factor spectrum for highway beam bridges[J]. Journal of Bridge Engineering, 2021(12): 26. [25] MA L, ZHANG W, HAN W S, et al. Determining the dynamic amplification factor of multi-span continuous box girder bridges in highways using vehicle-bridge interaction analyses[J]. Engineering Structures, 2019, 181: 47-59. [26] TIMOSHENKO S. On the forced vibrations of bridges[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1922, 43(257): 1018-1019. [27] A H H, B M N. Evaluation of dynamic responses of bridges considering traffic flow and surface roughness-science direct[J]. Engineering Structures, 225. DOI: 10.1016/j.engstruct.2020.111256. [28] 邓露, 陈雅仙, 韩万水, 等. 中小跨径公路混凝土简支梁桥冲击系数研究及建议取值[J]. 中国公路学报, 2020, 33(1): 69-78.DENG Lu, CHEN Ya-xian, HAN Wan-shui, et al. Studying impact factors for short and medium span simply supported concrete highway bridges and its suggested values[J]. China Journal of Highway and Transport, 2020, 33(1): 69-78. [29] LING Tian-yang, DENG Lu, HE Wei, et al. Determination of dynamic amplification factors for small and medium-span highway bridges considering the effect of automated truck platooning loads[J]. Mechanical Systems and Signal Processing, 2023, 204: 110812. -