留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速磁悬浮列车技术综述

熊嘉阳 沈志云 池茂儒 吴兴文 梁树林

熊嘉阳, 沈志云, 池茂儒, 吴兴文, 梁树林. 高速磁悬浮列车技术综述[J]. 交通运输工程学报, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001
引用本文: 熊嘉阳, 沈志云, 池茂儒, 吴兴文, 梁树林. 高速磁悬浮列车技术综述[J]. 交通运输工程学报, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001
XIONG Jia-yang, SHEN Zhi-yun, CHI Mao-ru, WU Xing-wen, LIANG Shu-lin. Review on high-speed maglev train technology[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001
Citation: XIONG Jia-yang, SHEN Zhi-yun, CHI Mao-ru, WU Xing-wen, LIANG Shu-lin. Review on high-speed maglev train technology[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001

高速磁悬浮列车技术综述

doi: 10.19818/j.cnki.1671-1637.2025.02.001
基金项目: 

国家自然科学基金区域联合基金项目 U21A20168

详细信息
    作者简介:

    熊嘉阳(1969-),男,四川峨眉人,西南交通大学副教授,工学博士,从事车辆轨道系统动力学与磁悬浮车辆系统动力学研究

    通讯作者:

    沈志云(1929-),男,湖南长沙人,西南交通大学教授,中国科学院院士,中国工程院院士,苏联副博士

  • 中图分类号: U266.4

Review on high-speed maglev train technology

Funds: 

Regional Joint Fund of National Natural Science Foundation of China U21A20168

More Information
    Corresponding author: SHEN Zhi-yun (1929-), male, professor, academician of Chinese Academy of Sciences and Chinese Academy of Engineering, zyshen@swjtu.edu.cn.
Article Text (Baidu Translation)
  • 摘要: 从高速磁悬浮交通技术发展历程出发,综述了常导电磁悬浮(EMS)、超导电动磁悬浮(EDS)、高温超导(HTS)磁悬浮(钉扎磁悬浮)和“超级高铁”(Hyperloop)永磁电动悬浮等4种高速磁悬浮列车的基本原理和技术特点;从安全性能、运营速度、运营维护、应用前景等四方面综合比较了4种高速磁悬浮列车技术方案的优缺点。研究结果表明:应以政府为主导,统筹谋划中国高速磁悬浮交通的未来发展建议,在常导电磁悬浮列车技术研发经验基础上,将超导电动磁悬浮、高温超导磁悬浮和真空管道高速磁悬浮关键技术研究列入国家科技研发计划,建设中试线试验基地进行布局研发,并有序规划试验线,从而构建中国在磁悬浮交通领域的综合研究体系、试验体系、标准体系和产品体系;在中国特色社会主义制度优势下,应充分把握高速磁悬浮交通发展的战略机遇,遵循科学与技术发展规律和大型系统工程创新研发流程,立足于已有研究基础,持续推进技术进步;4种高速磁悬浮列车由于技术成熟度不同,研究进程安排应循序渐进,分类实施,确保中国在高速及超高速交通运输领域的持续领先地位,为“交通强国”战略的实施作出积极贡献。

     

  • 图  1  常导电磁悬浮系统结构

    Figure  1.  Structure for conventional EMS system

    图  2  常导电磁悬浮列车原理

    Figure  2.  Principle for conventional EMS train

    图  3  超导电动磁悬浮列车悬浮和导向原理

    Figure  3.  Suspension and guidance principle for superconducting EDS train

    图  4  超导电动磁悬浮列车驱动原理

    Figure  4.  Driving principle for superconducting EDS train

    图  5  高温超导磁悬浮列车原理

    Figure  5.  Principle of HTS maglev train

    图  6  真空管道运输系统

    Figure  6.  Vacuum pipeline transportation system

    图  7  Hyperloop胶囊列车

    Figure  7.  Hyperloop capsule train

    图  8  Hyperloop原型车

    Figure  8.  Hyperloop prototype train

    图  9  磁悬浮列车的速度等级

    Figure  9.  Speed levels of maglev train

    图  10  速度600 km·h-1高速磁悬浮试验样车

    Figure  10.  High-speed maglev test prototype train with a speed of 600 km·h-1

    图  11  日本L0磁悬浮列车

    Figure  11.  L0 maglev train in Japan

    图  12  “高速飞车”超高速磁悬浮与电磁推进试验

    Figure  12.  Ultra-high-speed maglev and electromagnetic propulsion test of high-speed flying train

    图  13  中车长客高温超导电动磁悬浮列车

    Figure  13.  HTS EDS train of CRRC Changchun

    图  14  首台高温超导高速磁悬浮工程化样车及试验线

    Figure  14.  First HTS high-speed maglev engineering prototype train and test line

    图  15  多态耦合轨道交通动模试验平台

    Figure  15.  Test platform of multi-state coupled rail transit dynamic model

    图  16  Hyperloop超级列车

    Figure  16.  Hyperloop super train

    图  17  日本高速磁悬浮中央新干线路线

    Figure  17.  Route of high-speed maglev central Shinkansen in Japan

    图  18  迪拜至阿布扎比的Hyperloop线路

    Figure  18.  Hyperloop line from Dubai to Abu Dhabi

    图  19  中国高速磁悬浮六大廊道

    Figure  19.  Six high-speed maglev corridors in China

    表  1  各国磁悬浮列车试验速度一览

    Table  1.   List of test speeds of maglev trains in various countries

    时间 国家 列车 速度/(km·h-1) 工况
    1971年 德国 Prinzipfahrzeug 90
    1971年 德国 TR02(TSST) 164
    1972年 日本 ML100 60 载人
    1973年 德国 TR04 250 载人
    1974年 德国 EET-01 230 无人
    1975年 德国 Komet 401 无人,蒸汽火箭推进
    1978年 日本 HSST-01 308 无人,蒸汽火箭推进
    1978年 日本 HSST-02 110 载人
    1979年 日本 ML-500R 517 无人
    1987年 德国 TR06 406 载人
    1987年 日本 MLU001 401 载人
    1988年 德国 TR06 413 载人
    1989年 德国 TR07 436 载人
    1993年 德国 TR07 450 载人
    1993年 韩国 HML-03 60 无人,世博会展示
    1994年 日本 MLU002N 431 无人
    1997年 日本 MLX01 531 载人
    1997年 韩国 UTM-01 70 无人
    1999年 德国 TR08 420 载人
    1999年 日本 MLX01 552 载人/5车编组
    2003年 中国 Transrapid SMT 501 载人/5车编组
    2003年 日本 MLX01 581 载人/3车编组
    2009年 德国 TR09 550
    2014年 韩国 仁川机场磁悬浮列车 110 载人运营,无人驾驶
    2015年 日本 L0 590 载人/7车编组
    2015年 日本 L0 603 载白鼠/7车编组
    2016年 美国 空军基地原型车 1 019 无人,火箭推进
    2016年 美国 Hyperloop one 96 无人
    2017年 中国 L型磁悬浮列车 80 载人/6车编组
    2017年 美国 Hyperloop one 387 无人,真空管道
    下载: 导出CSV

    表  2  日本高速磁悬浮中央新干线基本情况

    Table  2.   Basic information of high-speed maglev central Shinkansen in Japan

    线路工程 线路长度/km 最快运行时长/min 计划投资/亿日元 计划开通时间
    一期:东京—名古屋 286 40 55 235.5 2027年
    二期:名古屋—大阪 152 27 35 235.5 2045年
    合计 438 67 90 471.0
    下载: 导出CSV

    表  3  四种磁悬浮列车的情况比较

    Table  3.   Comparison of 4 types of maglev trains

    列车类型 常导电磁悬浮列车 超导电动悬浮列车 高温超导磁悬浮列车 Hyperloop超级列车
    开始时间 1934年专利 1966年专利 20世纪90年代开始,2001年中国专利 20世纪初专利
    原创国家 德国 日本 中国 美国
    基本原理 电磁力相吸 动生电磁场相斥 感生磁通钉扎 永磁体同极相斥
    导轨类型 T型导轨 U型导轨 平板式导轨 弧形导体板轨道
    车载磁体 线圈(电磁铁) 超导线圈 超导块材 永磁体
    路轨铺设 硅钢片 “8”字形线圈 永磁导轨 金属感应板
    车辆质量/t 56.5(德国TR09) 25(日本JR东海L0) 12(中国工程化样车) 5(Hyperloop胶囊)
    悬浮间隙/mm 8~12 80~150 10~30 20~30
    驱动方式 直线电机 直线电机 直线电机 直线电机
    悬浮导向控制系统 需主动控制,控制复杂,要求高 需专设导向机构
    牵引悬浮能耗 较高 较小 较小
    悬浮特点 电磁吸力,需能耗,静止与低速可悬浮,悬浮气隙较小 电动斥力,悬浮力大,静止和低速时无法悬浮,需轮子支撑,悬浮气隙大,高速需引入阻尼以保证稳定 磁通钉扎力,悬浮力相对较小,不通电、静止与低速可悬浮,无源自悬浮、自稳定、自导向 电动斥力,悬浮不耗能,高速时悬浮,临界稳定,高速需引入阻尼以保证稳定
    安全性 无脱轨、追尾风险;突发失控不可控;某个悬浮架失效时整车可低速运行;应急滑橇滑行,存在摩擦起火风险;T型轨道窄而平,救援难;悬浮交变电磁场有磁辐射 无脱轨、追尾风险;失超突发,不可控;某个悬浮架悬浮失效整车必须紧急制动;起跑轮滑行,存在爆胎风险;U型槽两侧矮墙高,救援难;车载强磁场高(3 T) 无脱轨、追尾风险;失超缓慢,可预知;由于杜瓦连续分布,某一杜瓦悬浮失效整车可正常运行,失效杜瓦多时可降速运行;应急轮只许低速使用;救援容易;磁轨表面静磁场低(0.5 T) 无脱轨风险;紧急制动能力难以保证每个管道区段安全;未设置轨距固定装置;尚未形成完备的系统安全和应急理念与措施
    低速支撑轮 不需要 需要 不需要 视悬浮制式
    最高试验速度/ (km·h-1) 550(德国TR09) 603(日本JR东海L0) 335(模型) 463(模型)
    最高应用速度/ (km·h-1) 430(中国上海TR08) 505(日本山梨L0)
    低真空超高速适用性 不合适(低真空下悬浮导向系统无法散热) 较适合(强磁场在管道内可能引起电涡流) 很合适(低气压下悬浮导向性能更好) 视悬浮制式
    技术成熟度 2002年开始商业运营至今 准商业运营 工程化试验研究 概念方案探索和原理性试验研究
    工程化能力 已具备;难在悬浮控制,悬浮导向控制对芯片依赖度高 正在具备;低温环境保持很难;对芯片依赖度低 基本具备;无源无控制,对芯片无依赖 尚不具备
    发展模式 前期国家支持 国家支持 国家支持 民间资本,合作推广
    应用情况 上海浦东磁悬浮示范线,最高运行速度430 km·h-1;同济大学1.5 km试验线,5辆编组,试验速度50 km·h-1;中车四方600 m试验线,列车试验速度30 km·h-1;美国AMT磁悬浮系统 山西大同(阳高)2 km实车试验线,最高试验速度接近200 km·h-1;涞水380 m悬浮架试验线;中车长客高温超导电动磁悬浮220 m试验线,最高设计速度100 km·h-1;日本在建东京-大阪线 西南交通大学165 m工程化试验线,1辆头车,试验速度30 km·h-1;成都天府新区1 620 m动模试验线,最高试验速度1 500 km·h-1;德国SupraTrans系列载人环形线;巴西Maglev Cobra悬浮试验线;意大利拉奎拉大学V形轨道 美国HTT方案;荷兰Hardt Hyperloop全尺寸试验系统;西班牙Zeleros Hyperloop“Tubeloop”概念
    下载: 导出CSV

    表  4  六条示范线综合评价结果

    Table  4.   Comprehensive evaluation results of six demonstration lines

    区段 北京—石家庄 上海—南京 上海—杭州 南京—合肥 成都—重庆 广州—深圳
    评价结果 4.22 4.45 4.55 3.75 4.16 4.52
    建设排序 4 3 1 6 5 2
    下载: 导出CSV
  • [1] THORNTON R D. Efficient and affordable maglev opportunities in the United States[J]. Proceedings of the IEEE, 2009, 97(11): 1901-1921. doi: 10.1109/JPROC.2009.2030251
    [2] 罗炜宁, 王强. 磁悬浮列车未来发展与展望[J]. 硅谷, 2013, 6(5): 2, 11.

    LUO Wei-ning, WANG Qiang. Maglev train and prospect about the future[J]. Silicon Valley, 2013, 6(5): 2, 11.
    [3] GOU J S. Development status and global competition trends analysis of maglev transportation technology based on patent data[J]. Urban Rail Transit, 2018, 4(3): 117-129. doi: 10.1007/s40864-018-0087-3
    [4] 彭皓. 高速磁悬浮列车关键技术的国际研究态势和技术主题分析[J]. 高科技与产业化, 2022, 28(3): 40-47.

    PENG Hao. International research situation and technical theme analysis of key technologies for high-speed maglev trains[J]. High-Technology and Commercialization, 2022, 28(3): 40-47.
    [5] MEINS J, MILLER L, MAYER W J. The high speed maglev transport system TRANSRAPID[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811. doi: 10.1109/20.11347
    [6] 苏靖棋. 超级高铁Hyperloop理念分析[J]. 现代城市轨道交通, 2021(4): 134-137.

    SU Jing-qi. Analysis on the concept of Hyperloop[J]. Modern Urban Transit, 2021(4): 134-137.
    [7] 沃尔特·安特勒夫, 弗郎索瓦G拜纳德, 凯文C柯兹, 等. 上海磁悬浮高速轨道[J]. 中国西部科技, 2005(6): 54-56.

    ANTELEFF W, BARNARD G, KURTZ C, et al. Shanghai maglev high-speed rail[J]. Science and Technology of West China, 2005(6): 54-56.
    [8] 吴祥明. 高速磁浮上海示范线的建设[J]. 综合运输, 2003, 25(8): 38-39, 48.

    WU Xiang-ming. Construction of Shanghai maglev demonstration line[J]. China Transportation Review, 2003, 25(8): 38-39, 48.
    [9] 周厚文, 陈旭. 我国发展高速磁浮必要性及发展战略分析[J]. 机车电传动, 2021(2): 1-5.

    ZHOU Hou-wen, CHEN Xu. Research on necessity and development strategy of developing high-speed maglev in China[J]. Electric Drive for Locomotives, 2021(2): 1-5.
    [10] 苏靖棋. 超级高铁(Hyperloop)可行性分析[J]. 现代城市轨道交通, 2020(5): 114-118.

    SU Jing-qi. Feasibility analysis of Hyperloop[J]. Modern Urban Transit, 2020(5): 114-118.
    [11] 冯仲伟, 方兴, 李红梅, 等. 低真空管道高速磁悬浮系统技术发展研究[J]. 中国工程科学, 2018, 20(6): 105-111.

    FENG Zhong-wei, FANG Xing, LI Hong-mei, et al. Technological development of high speed maglev system based on low vacuum pipeline[J]. Strategic Study of CAE, 2018, 20(6): 105-111.
    [12] 连级三. 磁浮列车原理及技术特征[J]. 电力机车技术, 2001(3): 23-26. doi: 10.3969/j.issn.1672-1187.2001.03.008

    LIAN Ji-san. Principle and technology characteristic of maglev vehicle[J]. Technology for Electric Locomotives, 2001(3): 23-26. doi: 10.3969/j.issn.1672-1187.2001.03.008
    [13] 张瑞华, 严陆光, 徐善纲. 几种典型的高速磁悬浮列车方案比较[J]. 电工电能新技术, 2004, 23(2): 46-50. doi: 10.3969/j.issn.1003-3076.2004.02.012

    ZHANG Rui-hua, YAN Lu-guang, XU Shan-gang. Comparison of several projects of high speed maglev[J]. Advanced Technology of Electrical Engineering and Energy, 2004, 23(2): 46-50. doi: 10.3969/j.issn.1003-3076.2004.02.012
    [14] 邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063-1072.

    DENG Zi-gang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072.
    [15] 刘挺. 面向线路设计的磁浮车——线耦合动力学研究[D]. 成都: 西南交通大学, 2006.

    LIU Ting. Research on vehicle—guideway coupling dynamics of hi-speed maglev train system[D]. Chengdu: Southwest Jiaotong University, 2006.
    [16] ROBERT H B, JOHN R R. High speed transportation via magnetically suspended vehicles[J]. A Study of the Magnetic Forces, 1971(3): 197-209.
    [17] POWELL J R, DANBY G R. A 300 mph magnetically suspended trains[J]. Mechanical Engineering, 1966, 89: 30-35.
    [18] 李彦兴. 高温超导磁悬浮车/桥耦合振动仿真分析[D]. 成都: 西南交通大学, 2019.

    LI Yan-xing. Dynamics of vehicle/track coupled systems in high temperature superconducting maglev vehicle[D]. Chengdu: Southwest Jiaotong University, 2019.
    [19] 王滢, 张昆仑, 张慧娴, 等. 高速磁浮交通系统制式特征与适应性[J]. 前瞻科技, 2023, 2(4): 19-30.

    WANG Ying, ZHANG Kun-lun, ZHANG Hui-xian, et al. Characteristics and adaptability of different types of high-speed maglev transportation systems[J]. Science and Technology Foresight, 2023, 2(4): 19-30.
    [20] 秦晓峰. 磁阻式磁力悬浮系统的设计与控制研究[D]. 焦作: 河南理工大学, 2011.

    QIN Xiao-feng. Design and control detent-force-based magnetic suspension system[D]. Jiaozuo: Henan Polytechnic University, 2011.
    [21] 卢志远. 混合磁悬浮车动力学建模及姿态控制研究[D]. 北京: 北京工业大学, 2009.

    LU Zhi-yuan. Research on dynamic modeling and attitude control of hybrid magnetic levitation vehicle[D]. Beijing: Beijing University of Technology, 2009.
    [22] TERAI M, IGARASHI M, KUSADA S, et al. The R & D project of HTS magnets for the superconducting maglev[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1124-1129. doi: 10.1109/TASC.2006.871342
    [23] MIZUNO K, SUGINO M, TANAKA M, et al. Experimental production of a real-scale REBCO magnet aimed at its application to maglev[J]. IEEE Transactions on Applied Superconductivity, 2016, DOI: 10.1109/TASC.2016.2645127.
    [24] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [25] BORCHERTS R H, DAVIS L C. Force on a coil moving over a conducting surface including edge and channel effects[J]. Journal of Applied Physics, 1972, 43(5): 2418-2427. doi: 10.1063/1.1661513
    [26] IWAMOTO M, YAMADA T, OHNO E. Magnetic damping force in electrodynamically suspended trains[J]. IEEE Transactions on Magnetics, 1974, 10(3): 458-461. doi: 10.1109/TMAG.1974.1058446
    [27] HE J, COFFEY H. Magnetic damping forces in figure-eight-shaped null-flux coil suspension systems[J]. IEEE Transactions on Magnetics, 2002, 33(5): 4230-4232. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=619719
    [28] WATANABE K, YOSHIOKA H, SUZUKI E, et al. A study of vibration control systems for superconducting maglev vehicles(vibration control of lateral and rolling motions)[J]. Journal of System Design and Dynamics, 2007, 1(3): 593-604. doi: 10.1299/jsdd.1.593
    [29] HOSHINO H, SUZUKI E, WATANABE K. Reduction of vibrations in maglev vehicles using active primary and secondary suspension control[J]. Quarterly Report of RTRI, 2008, 49(2): 113-118. doi: 10.2219/rtriqr.49.113
    [30] WERFEL F N, FLOEGEL-DELOR U, ROTHFELD R, et al. Superconductor bearings, flywheels and transportation[J]. Superconductor Science and Technology, 2012, 25(1): 1-16. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6B797E3FD3AF38853A7747E3E393AC05?doi=10.1.1.475.4664&rep=rep1&type=pdf
    [31] 刘文旭, 李文龙, 方进. 高温超导磁悬浮技术研究论述[J]. 低温与超导, 2020, 48(2): 44-49.

    LIU Wen-xu, LI Wen-long, FANG Jin. Review of research on high temperature maglev[J]. Cryogenics and Superconductivity, 2020, 48(2): 44-49.
    [32] WU M K, ASHBURN J R, TORNG C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908-910. doi: 10.1103/PhysRevLett.58.908
    [33] 赵忠贤, 陈立泉, 杨乾声, 等. Ba-Y-Cu氧化物液氮温区的超导电性[J]. 科学通报, 1987(6): 412-414.

    ZHAO Zhong-xian, CHEN Li-quan, YANG Qian-sheng, et al. Superconductivity of Ba-Y-Cu oxide liquid nitrogen temperature zone[J]. Chinese Science Bulletin, 1987(6): 412-414.
    [34] AWAJI S, WATANABE K, KOBAYASHI N. Crossover from intrinsic to extrinsic pinning for YBa2Cu3O7 films[J]. Cryogenics, 1999, 39(7): 569-577. doi: 10.1016/S0011-2275(99)00079-X
    [35] SCHULTZ L, DE HAAS O, VERGES P, et al. Superconductively levitated transport system-the SupraTrans project[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2301-2305. doi: 10.1109/TASC.2005.849636
    [36] OKANO M, IWAMOTO T, FURUSE M, et al. Running performance of a pinning-type superconducting magnetic levitation guide[J]. Journal of Physics: Conference Series, 2006, 43: 999-1002. doi: 10.1088/1742-6596/43/1/244
    [37] MOTTA E S, DIAS D H N, SOTELO G G, et al. Optimization of a linear superconducting levitation system[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(5): 3548-3554. doi: 10.1109/TASC.2011.2161986
    [38] LANZARA G, D'OVIDIO G, CRISI F. UAQ4 levitating train: Italian maglev transportation system[J]. IEEE Vehicular Technology Magazine, 2014, 9(4): 71-77. doi: 10.1109/MVT.2014.2362859
    [39] WANG J S, WANG S Y, ZENG Y W, et al. The first man-loading high temperature superconducting maglev test vehicle in the world[J]. Physica C: Super Conductivity and Its Applications, 2002, 378(1): 809-814. http://www.researchgate.net/profile/He_Jiang2/publication/223443976_The_first_man-loading_high_temperature_superconducting_Maglev_test_vehicle_in_the_world/links/00b7d52c47d01c23d5000000.pdf
    [40] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198.

    XIONG Jia-yang, DENG Zi-gang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198.
    [41] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006

    XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006
    [42] 包世杰. 低真空管道高速磁浮列车气动热特性研究[D]. 成都: 西南交通大学, 2020.

    BAO Shi-jie. Study on aerodynamic heating characteristics of high-speed maglev train in low-vacuum tube[D]. Chengdu: Southwest Jiaotong University, 2020.
    [43] 张耀平. 真空管道运输——真空产业发展的新机遇[J]. 真空, 2006(2): 56-59. doi: 10.3969/j.issn.1002-0322.2006.02.016

    ZHANG Yao-ping. Evacuated tube transportation(ETT) —a new opportunity for vacuum industry[J]. Vacuum, 2006(2): 56-59. doi: 10.3969/j.issn.1002-0322.2006.02.016
    [44] 万潇. 真空管道高温超导磁浮车的恒速控制[D]. 成都: 西南交通大学, 2014.

    WAN Xiao. The constant speed control of HTS maglev system in evacuated tube[D]. Chengdu: Southwest Jiaotong University, 2014.
    [45] MICHELE M, PIERRE R. Swissmetro: a revolution in the high-speed passenger transport systems[C]//IEEE. 1st Swiss Transport Research Conference. New York: IEEE, 2001: 1-16.
    [46] ROBERT M S. Trans-planetary subway systems: a burgeoning capability[J/OL]. Rand Organization, 1978, https://www.rand.org/content/dam/rand/pubs/papers/2009/P6092.pdf.
    [47] 吴丹. 高速磁悬浮列车运行控制与传统轮轨列车运行控制的比较[J]. 交通运输系统工程与信息, 2003(4): 79-81, 88. doi: 10.3969/j.issn.1009-6744.2003.04.015

    WU Dan. A comparison between operation control systems for high-speed maglev transportation and for conventional railway[J]. Journal of Transportation Systems Engineering and Information Technology, 2003(4): 79-81, 88. doi: 10.3969/j.issn.1009-6744.2003.04.015
    [48] 汤友富. 超级高铁发展趋势及关键问题分析[J]. 铁道建筑技术, 2019(4): 1-4. doi: 10.3969/j.issn.1009-4539.2019.04.001

    TANG You-fu. Research on the development trend and analysis of key problems of Hyperloop[J]. Railway Construction Technology, 2019(4): 1-4. doi: 10.3969/j.issn.1009-4539.2019.04.001
    [49] 刘晓艳. Transrapid磁悬浮列车和喷气式火车技术比较[J]. 国外铁道车辆, 2005(4): 1-5, 12. doi: 10.3969/j.issn.1002-7610.2005.04.001

    LIU Xiao-yan. Comparison between technologies in transrapid maglev and jettrain[J]. Foreign Rolling Stock, 2005(4): 1-5, 12. doi: 10.3969/j.issn.1002-7610.2005.04.001
    [50] 林国斌, 刘万明, 徐俊起, 等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技, 2023, 2(4): 7-18.

    LIN Guo-bin, LIU Wan-ming, XU Jun-qi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
    [51] 沈志云. 对磁悬浮高速列车技术认识的两个错误观点[J]. 交通运输工程学报, 2004, 4(1): 1-2. doi: 10.3321/j.issn:1671-1637.2004.01.001

    SHEN Zhi-yun. Two wrong understanding of high-speed maglev train technology point of view[J]. Journal of Traffic and Transportation Engineering, 2004, 4(1): 1-2. doi: 10.3321/j.issn:1671-1637.2004.01.001
    [52] 世界首条高温超导高速磁浮真车验证线启用[J]. 西部交通科技, 2021(4): 209.

    The world first high-temperature superconducting high-speed maglev real vehicle verification line is put into use[J]. Western China Communications Science and Technology, 2021(4): 209.
    [53] KWON H B, PARK Y W, LEE D H, et al. Wind tunnel experiments on Korean high-speed trains using various ground simulation techniques[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(13): 1179-1195. doi: 10.1016/S0167-6105(01)00107-6
    [54] HU X, DENG Z G, ZHANG J W, et al. Aerodynamic behaviors in supersonic evacuated tube transportation with different train nose lengths[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122-130. http://www.sciencedirect.com/science/article/pii/S0017931021012369?dgcid=rss_sd_all
    [55] 蓝建中. 日本超导磁浮列车时速创纪录[J]. 城市轨道交通研究, 2015, 18(5): 134.

    LAN Jian-zhong. Superconducting maglev train reaches record speed in Japan[J]. Urban Mass Transit, 2015, 18(5): 134.
    [56] TSUGE K. Central Japan Railway Company[EB/OL]. (2016-03-30)[2023-6-16]. http://English.Jr-central.Co.jp/compa-ny/ir/investor-meeting/_pdf/im_2016_03.Pdf.
    [57] PALMER C. Engineered to go fast, maglev trains inch forward[J]. Engineering, 2021, 7(7): 891-893. doi: 10.1016/j.eng.2021.06.001
    [58] 马光同, 杨文姣, 王志涛, 等. 超导磁浮交通研究进展[J]. 华南理工大学学报(自然科学版), 2019, 47(7): 68-74.

    MA Guang-tong, YANG Wen-jiao, WANG Zhi-tao, et al. Superconducting maglev transportation research progress[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(7): 68-74.
    [59] BOSMAJIAN N, MINTO D, HOLLAND L. Status of the magnetic levitation upgrade to the Holloman High Speed Test Track[C]//AIAA. 21st Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2000: 2289.
    [60] 张杨, 吴超. 磁悬浮列车技术发展路线研究[J]. 技术与市场, 2017, 24(6): 101-102, 104. doi: 10.3969/j.issn.1006-8554.2017.06.036

    ZHANG Yang, WU Chao. The maglev technology development route[J]. Technology and Market, 2017, 24(6): 101-102, 104. doi: 10.3969/j.issn.1006-8554.2017.06.036
    [61] 于子良, 任坤华, 许文天. 高速轨道交通发展趋势[J]. 装备制造技术, 2020(3): 230-232, 240. doi: 10.3969/j.issn.1672-545X.2020.03.063

    YU Zi-liang, REN Kun-hua, XU Wen-tian. Development trend of high speed rail transit[J]. Equipment Manufacturing Technology, 2020(3): 230-232, 240. doi: 10.3969/j.issn.1672-545X.2020.03.063
    [62] 邓自刚, 张卫华. 高温超导磁悬浮或将引发交通运输的大变革[J]. 金融经济, 2016(11): 42-43.

    DENG Zi-gang, ZHANG Wei-hua. High temperature superconducting maglev or will cause a revolution in transport[J]. Finance Economy, 2016(11): 42-43.
    [63] MA K B, POSTREKHIN Y V, CHU W K. Superconductor and magnet levitation devices[J]. Review of Scientific Instrunents, 2003, 74(12): 4989-5017. doi: 10.1063/1.1622973
    [64] 邓自刚, 李海涛. 高温超导磁悬浮车研究进展[J]. 中国材料进展, 2017, 36(5): 329-334.

    DENG Zi-gang, LI Hai-tao. Recent development of high-temperature superconducting maglev[J]. Materials China, 2017, 36(5): 329-334.
    [65] 信赢, 赵超群. 超导材料及技术在轨道交通领域的应用[J]. 新材料产业, 2017(2): 9-16. doi: 10.3969/j.issn.1008-892X.2017.02.004

    XIN Ying, ZHAO Chao-qun. Application of superconducting materials and technologies in rail transportation[J]. Advanced Materials Industry, 2017(2): 9-16. doi: 10.3969/j.issn.1008-892X.2017.02.004
    [66] 王家素, 王素玉. 高温超导磁悬浮列车研究综述[J]. 电气工程学报, 2015, 10(11): 1-10. doi: 10.11985/2015.11.001

    WANG Jia-su, WANG Su-yu. High temperature superconducting maglev train[J]. Journal of Electrical Engineering, 2015, 10(11): 1-10. doi: 10.11985/2015.11.001
    [67] 苏靖棋. 空气阻力对铁路车辆和超级高铁Hyperloop节能影响研究[J]. 现代城市轨道交通, 2019(12): 104-107.

    SU Jing-qi. Research on air resistance impact on energy saving of railway vehicles and Hyperloop capsules[J]. Modern Urban Transit, 2019(12): 104-107.
    [68] 魏丽兵. 磁悬浮球系统线性自抗扰控制算法研究[D]. 赣州: 江西理工大学, 2023.

    WEI Li-bing. Research on linear active disturbance rejection control algorithm for magnetic levitation ball system[D]. Ganzhou: Jiangxi University of Science and Technology, 2023.
    [69] 沈通, 马志文, 杜晓洁, 等. 世界高速磁悬浮铁路发展现状与趋势分析[J]. 中国铁路, 2020(11): 94-99. doi: 10.3969/j.issn.1007-9971.2020.11.010

    SHEN Tong, MA Zhi-wen, DU Xiao-jie, et al. Development status and trend analysis of high speed maglev railways worldwide[J]. China Railway, 2020(11): 94-99. doi: 10.3969/j.issn.1007-9971.2020.11.010
    [70] VUCHIC V R, CASELLO J M. An evaluation of maglev technology and its comparison with high speed rail[J]. Transportation Quarterly, 2002, 56(2): 33-49.
    [71] LIN Guo-bin, SHENG Xiong-wei. Application and further development of maglev transportation in China[J]. Transportation Systems and Technology, 2018, 4(3): 36-43. doi: 10.17816/transsyst20184336-43
    [72] 孙玉玲, 秦阿宁, 董璐. 全球磁浮交通发展态势、前景展望及对中国的建议[J]. 世界科技研究与发展, 2019, 41(2): 109-119.

    SUN Yu-ling, QIN A-ning, DONG Lu. Research on development and prospects of maglev transportation and suggestions to China[J]. World Sci-Tech R & D, 2019, 41(2): 109-119.
    [73] 吴超华, 李思佶. 日本磁悬浮线路规划建设的经验启示[J]. 交通与运输, 2023, 39(3): 25-29. doi: 10.3969/j.issn.1671-3400.2023.03.006

    WU Chao-hua, LI Si-ji. Experience and enlightenment of Japan's maglev line planning and construction[J]. Traffic and Transportation, 2023, 39(3): 25-29. doi: 10.3969/j.issn.1671-3400.2023.03.006
    [74] 熊嘉阳, 沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002

    XIONG Jia-yang, SHEN Zhi-yun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002
    [75] 邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474, 530.

    DENG Zi-gang, LIU Zong-xin, LI Hai-tao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474, 530.
    [76] 叶常青. 高温超导磁悬浮智能优化算法及其应用[D]. 成都: 西南交通大学, 2016.

    YE Chang-qing. Intelligent optimization algorithm for high temperature superconducting levitation and its applications[D]. Chengdu: Southwest Jiaotong University, 2016.
    [77] LI J P, ZHENG J, HUANG H, et al. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7-x high-Tc superconducting bulks and NdFeB magnets[J]. Journal of Applied Physics, 2017, 122(15): 1-8.
    [78] LI J P, LI H T, ZHENG J, et al. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field[J]. Journal of Applied Physics, 2017, 121(24): 1-6.
    [79] JIN L W, ZHENG J, LI H T, et al. Effect of eddy current damper on the dynamic vibration characteristics of high-temperature superconducting maglev system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(3): 1-6.
    [80] LI H T, DENG Z G, JIN L, et al. Lateral motion stability of high-temperature superconducting maglev systems derived from a nonlinear guidance force hysteretic model[J]. Superconductor Science and Technology, 2018, 31(7): 1-8.
    [81] HUANG H, ZHENG J, LIAO H P, et al. Effect laws of different factors on levitation characteristics of high-Tc superconducting maglev system with numerical solutions[J]. Journal of Superconductivity and Novel Magnetism, 2019, 32(8): 2351-2358. doi: 10.1007/s10948-018-4985-0
    [82] WANG H D, DENG Z G, MA S S, et al. Dynamic simulation of the HTS maglev vehicle-bridge coupled system based on levitation force experiment[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-6.
    [83] LI J P, DENG Z G, XIA C C, et al. Subharmonic resonance in magnetic levitation of the high temperature superconducting bulks YBa2Cu3O7-x under harmonic excitation[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(4): 1-8.
    [84] DENG Z G, LI J P, WANG H D, et al. Dynamic simulation of the vehicle/bridge coupled system in high-temperature superconducting maglev[J]. Computing in Science and Engineering, 2019, 21(3): 60-71. doi: 10.1109/MCSE.2019.2902452
    [85] LI H T, LIU D, HONG Y, et al. Modeling and identification of the hysteresis nonlinear levitation force in HTS maglev systems[J]. Superconductor Science and Technology, 2020, 33(5): 054001. doi: 10.1088/1361-6668/ab7845
    [86] LI H T, HUANG H, YU J B, et al. Nonlinear vibration suppression of HTS maglev utilizing electromagnetic shunt damper[C]//IEEE. 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices. New York: IEEE, 2020: 1-2.
    [87] 陈志贤, 池茂儒, 吴兴文, 等. 高温超导磁悬浮车辆曲线通过动态特性分析[J]. 机车电传动, 2020(4): 70-75.

    CHEN Zhi-xian, CHI Mao-ru, WU Xing-wen, et al. Analysis of dynamic characteristics of high temperature superconducting maglev vehicle in curve passing[J]. Electric Drive for Locomotives, 2020(4): 70-75.
    [88] LI Y J, DAI Q, ZHANG Y, et al. Design and analysis of an electromagnetic turnout for the superconducting maglev system[J]. Physica C: Superconductivity and Its Applications, 2016, 528: 84-89. doi: 10.1016/j.physc.2016.07.021
    [89] ZHENG J, SUN R X, LI H T, et al. A manned hybrid maglev vehicle applying permanent magnetic levitation (PML) and superconducting magnetic levitation (SML)[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(1): 1-7.
    [90] DENG Z G, ZHANG W F, CHEN Y, et al. Optimization study of the halbach permanent magnetic guideway for high temperature superconducting magnetic levitation[J]. Superconductor Science and Technology, 2020, 33(3): 1-11.
    [91] 范俊怀, 黄强. 真空管道超高速磁浮交通换乘与安全环境分析[J]. 铁道运输与经济, 2021, 43(2): 125-130.

    FAN Jun-huai, HUANG Qiang. Analysis of traffic transfer and safety environment for vacuum tube ultra-high speed maglev[J]. Railway Transport and Economy, 2021, 43(2): 125-130.
    [92] 科技舆情分析研究所. 超级高铁: 时速或将突破4 000公里[J]. 今日科技, 2021(3): 41-43.

    The Science and Technology Institute of Public Opinion Analysis. Super high-speed rail: or will break through 4 000 kilometers per hour[J]. Science and Technology Today, 2021(3): 41-43.
    [93] 梁建英. 中国高速磁浮交通系统发展现状与展望[J]. 科学, 2022, 74(5): 31-36, 2, 69.

    LIANG Jian-ying. Development status and future prospects of the high-speed maglev transportation system in China[J]. Science, 2022, 74(5): 31-36, 2, 69.
    [94] 高静. 高速磁浮商业化时代何时到来?[J]. 群言, 2020(9): 34-36.

    GAO Jing. When will the commercialization era of high-speed maglev arrive?[J]. Popular Tribune, 2020(9): 34-36.
    [95] 于青松, 李凯, 胡浩, 等. 超导电动悬浮应用研究与技术展望[J]. 机车电传动, 2023(4): 1-8.

    YU Qing-song, LI Kai, HU Hao, et al. Research and technological prospects of applications for superconducting electrodynamic suspension[J]. Electric Drive for Locomotives, 2023(4): 1-8.
    [96] 熊嘉阳, 沈志云. 中国高铁永葆工程领跑[J]. 西南交通大学学报, 2023, 58(4): 711-719.

    XIONG Jia-yang, SHEN Zhi-yun. High-speed railway in China would continuously retain world-leading position in engineering[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 711-719.
    [97] 张云娇, 王修华, 黄成名, 等. 超高速管道磁浮系统示范线比选评价体系研究[J]. 铁道标准设计, 2023, 67(12): 1-6, 14.

    ZHANG Yun-jiao, WANG Xiu-hua, HUANG Cheng-ming, et al. Research on the evaluation system of ultra-high speed pipeline maglev system demonstration line[J]. Railway Standard Design, 2023, 67(12): 1-6, 14.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  2163
  • HTML全文浏览量:  471
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-05
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回