Residual stress measurement and lifetime evaluation of railway axles by neutron scattering technology
-
摘要: 为准确预测表面强化铁路车轴剩余寿命,提出了考虑三维残余应力的损伤容限分析方法;以感应淬火碳钢S38C车轴为例,综合利用中子布拉格边透射成像与角度分散中子衍射试验,开展残余应变二维分布表征以及三维残余应力测试;采用数值方法,将三维残余应力植入车轴模型,研究了在实测载荷谱、压装载荷以及残余应力耦合作用下全尺寸车轴的剩余寿命。试验结果表明:轴向和切向均呈现约3 mm的压缩残余应变梯度层,表层最大压缩残余应变达-4.5×10-3,但芯部的最大应变为1.0×10-3;车轴最大轴向和切向压缩残余应力分别约为-500、-303 MPa,而径向应力整体保持在零平均应力范围波动,距表层4.5 mm深度以后,3个分量均为拉伸应力;车轴表层受压缩残余应力影响,深度小于4.5 mm时不会发生裂纹扩展,当深度大于4.5 mm以后裂纹扩展加速;裂纹扩展深度阈值不同,导致无残余应力条件下的剩余寿命计算结果大于考虑三维残余应力情形,但在最保守条件下车轴的剩余服役里程22.7万公里超过3.5个探伤周期,有较大安全裕度。试验结果可以为表面强化铁路车轴的无损探伤周期制定和优化提供科学参考。Abstract: To accurately predict the remaining lifetime of surface-strengthed railway axles, a damage tolerance analysis method considering three-dimensional (3D) residual stresses was proposed. By taking the induction-hardened carbon steel S38C axle as an example, two-dimensional (2D) distribution characterization of residual strain and 3D residual stress measurement were performed through comprehensive application of the neutron Bragg-edge transmission imaging and angle-dispersive neutron diffraction experiments. A numerical method was employed to implant the 3D residual stress into the axle model, and the remaining lifetime of the full-scale axle was studied by coupling the measured load spectrum, press-fit loads, and residual stresses. Experimental results show that, both axial and hoop directions present a compressive residual strain gradient layer of about 3 mm, with a maximum compressive residual strain of up to -4.5×10-3 in the surface layer, yet a maximum strain of up to 1.0×10-3 in the core. The maximum axial and hoop compressive residual stresses of the axle are about -500 and -303 MPa, respectively, while radial stresses overall fluctuate in the zero mean stress range. At depths beyond 4.5 mm from the surface layer, all three components are tensile stresses. The axle surface layer is subjected to compressive residual stresses, and crack propagation does not occur if the crack depth is less than 4.5 mm. Nevertheless, cracks propagate accelerates when the crack depth is greater than 4.5 mm. Different crack propagation depth thresholds lead to a larger calculated remaining lifetime for the residual stress-free condition than for the case where 3D residual stresses are taken into account. However, the axle remaining service mileage of the axle of 227 000 km under the most conservative conditions exceeds 3.5 non-destructive inspection (NDI) cycles, with a large safety margin. The experimental results can provide a scientific reference for the development and optimization of NDI cycles for surface-strengthed railway axles.
-
表 1 实测载荷谱(测试里程848 km)
Table 1. Measured load spectrum (848 km tested mileage)
载荷级数 1 2 3 4 5 6 7 8 幅值/kN 67.93 72.55 77.16 81.78 86.40 91.02 95.64 100.26 频数 5 155 4 967 4 400 3 036 1 136 435 115 15 -
[1] 吴毅, 尹鸿祥, 张澎湃, 等. 含异物击打伤高速动车组车轴疲劳寿命预测[J]. 中国铁道科学, 2021, 42(2): 116-124.WU Yi, YIN Hong-xiang, ZHANG Peng-pai, et al. Fatigue life prediction of high-speed EMU axle with foreign object damage[J]. China Railway Science, 2021, 42(2): 116-124. [2] 王华胜, 钱小磊, 朱庆龙, 等. 动车组设计寿命中后期运维策略研究[J]. 中国铁路, 2023(7): 60-65.WANG Hua-sheng, QIAN Xiao-lei, ZHU Qing-long, et al. Research on O&M strategy in the middle and later stages of EMU design life[J]. China Railway, 2023(7): 60-65. [3] 周素霞, 段粟宇, 吴毅, 等. 含缺陷的30NiCrMoV12车轴钢的多变量疲劳性能研究[J]. 机械工程学报, 2023, 59(14): 237-244.ZHOU Su-xia, DUAN Su-yu, WU Yi, et al. Multivariate fatigue performance study of 30NiCrMoV12 defective axles[J]. Journal of Mechanical Engineering, 2023, 59(14): 237-244. [4] GAO J W, YU M H, LIAO D, et al. Fatigue and damage tolerance assessment of induction hardened S38C axles under different foreign objects[J]. International Journal of Fatigue, 2021, 149: 106276. doi: 10.1016/j.ijfatigue.2021.106276 [5] 吴圣川, 罗艳, 王文静, 等. 异物致损铁道车轴的疲劳强度及寿命评估[J]. 力学学报, 2021, 53(1): 84-95.WU Sheng-chuan, LUO Yan, WANG Wen-jing, et al. Fatigue strength and residual lifetime assessment of railway axles subjected to foreign object damage[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 84-95. [6] BERETTA S, CARBONI M, FIORE G, et al. Corrosion-fatigue of A1N railway axle steel exposed to rainwater[J]. International Journal of Fatigue, 2010, 32(6): 952-961. doi: 10.1016/j.ijfatigue.2009.08.003 [7] LUKE M, BURDACK M, MOROZ S, et al. Experimental and numerical study on crack initiation under fretting fatigue loading[J]. International Journal of Fatigue, 2016, 86: 24-33. doi: 10.1016/j.ijfatigue.2015.09.022 [8] 纪东东, 张继旺, 徐俊生, 等. 基于扩展有限元法的含损伤深滚压车轴剩余寿命预测[J]. 中国科学: 技术科学, 2023, 53(3): 417-429.JI Dong-dong, ZHANG Ji-wang, XU Jun-sheng, et al. Residual life prediction of a deep-rolled axle with flaws based on the extended finite element method[J]. Scientia Sinica Technologica, 2023, 53(3): 417-429. [9] GAO J W, YU M H, LIAO D, et al. Foreign object damage tolerance and fatigue analysis of induction hardened S38C axles[J]. Materials and Design, 2021, 202: 109488. doi: 10.1016/j.matdes.2021.109488 [10] UNAL O, MALEKI E, KARADEMIR I, et al. Effects of conventional shot peening, severe shot peening, re-shot peening and precised grinding operations on fatigue performance of AISI 1050 railway axle steel[J]. International Journal of Fatigue, 2022, 155: 106613. doi: 10.1016/j.ijfatigue.2021.106613 [11] 吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-114. doi: 10.19818/j.cnki.1671-1637.2021.01.004WU Sheng-chuan, REN Xin-yan, KANG Guo-zheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-114. doi: 10.19818/j.cnki.1671-1637.2021.01.004 [12] ZERBST U, SCHÖDEL M, BEIER H T. Parameters affecting the damage tolerance behaviour of railway axles[J]. Engineering Fracture Mechanics, 2011, 78(5): 793-809. doi: 10.1016/j.engfracmech.2010.03.013 [13] GIANNELLA V. Stochastic approach to fatigue crack-growth simulation for a railway axle under input data variability[J]. International Journal of Fatigue, 2021, 144: 106044. doi: 10.1016/j.ijfatigue.2020.106044 [14] ZERBST U, BERETTA S, KÖHLER G, et al. Safe life and damage tolerance aspects of railway axles—a review[J]. Engineering Fracture Mechanics, 2013, 98: 214-271. doi: 10.1016/j.engfracmech.2012.09.029 [15] GUO F, WU S C, LIU J X, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing[J]. International Journal of Fatigue, 2020, 132: 105353. doi: 10.1016/j.ijfatigue.2019.105353 [16] HU Y N, QIN Q B, WU S C, et al. Fatigue resistance and remaining life assessment of induction-hardened S38C steel railway axles[J]. International Journal of Fatigue, 2021, 144: 106068. doi: 10.1016/j.ijfatigue.2020.106068 [17] 林浩博. 高速动车组S38C车轴疲劳、裂纹扩展特性及可靠性研究[D]. 北京: 北京交通大学, 2017.LIN Hao-bo. Studies on the fatigue, crack propagation characteristics and reliability of EMU high speed S38C axle[D]. Beijing: Beijing Jiaotong University, 2017. [18] 秦庆斌, 吴圣川, 胡雅楠, 等. 高速动车组S38C车轴疲劳强度及剩余寿命评价[J]. 中国科学: 技术科学, 2019, 49(7): 840-850.QIN Qing-bin, WU Sheng-chuan, HU Ya-nan, et al. Fatigue strength and residual life assessment of high-speed railway vehicle used S38C hollow axles[J]. Scientia Sinica Technologica, 2019, 49(7): 840-850. [19] ZHANG H, WU S C, AO N, et al. Fatigue crack non-propagation behavior of a gradient steel structure from induction hardened railway axles[J]. International Journal of Fatigue, 2023, 166: 107296. doi: 10.1016/j.ijfatigue.2022.107296 [20] ABUBAKAR A A, ADESINA A Y, ARIF A F M, et al. Evaluation of residual stress in thick metallic coatings using the combination of hole drilling and micro-indentation methods[J]. Journal of Materials Research and Technology, 2022, 20: 867-881. doi: 10.1016/j.jmrt.2022.07.081 [21] WANG Q, ZHAO Y, ZHAO T Y, et al. Influence of restraint conditions on residual stress and distortion of 2219-T8 aluminum alloy TIG welded joints based on contour method[J]. Journal of Manufacturing Processes, 2021, 68: 796-806. doi: 10.1016/j.jmapro.2021.05.065 [22] 郝林坡, 曹洪志, 张祥林, 等. 冷轧无取向硅钢冲裁边缘残余应力研究[J]. 材料导报, 2016, 30(增2): 512-515.HAO Lin-po, CAO Hong-zhi, ZHANG Xiang-lin, et al. Research on residual stress in the near cutting edge of non-oriented silicon steel[J]. Materials Reports, 2016, 30(S2): 512-515. [23] SMITH D J, FARRAHI G H, ZHU W X, et al. Obtaining multiaxial residual stress distributions from limited measurements[J]. Materials Science and Engineering: A, 2001, 303(1/2): 281-291. [24] 李时磊, 李阳, 王友康, 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.LI Shi-lei, LI Yang, WANG You-kang, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology[J]. Acta Metallurgica Sinica, 2023, 59(8): 1001-1014. [25] 邓鸿文, 张仪, 权澳冬, 等. 同步辐射及中子衍射技术在增材制造领域的应用[J]. 中国激光, 2022, 49(19): 92-108.DENG Hong-wen, ZHANG Yi, QUAN Ao-dong, et al. Application of synchrotron radiation and neutron diffraction technologies in additive manufacturing[J]. Chinese Journal of Lasers, 2022, 49(19): 92-108. [26] ZHU B, LEUNG N, KOCKELMANN W, et al. Revealing the residual stress distribution in laser welded Eurofer97 steel by neutron diffraction and Bragg edge imaging[J]. Journal of Materials Science and Technology, 2022, 114: 249-260. doi: 10.1016/j.jmst.2021.12.004 [27] NYCZ A, LEE Y, NOAKES M, et al. Effective residual stress prediction validated with neutron diffraction method for metal large-scale additive manufacturing[J]. Materials and Design, 2021, 205: 109751. doi: 10.1016/j.matdes.2021.109751 [28] 尚勇, 冯阳, 刘巧沐, 等. 大型科学装置在航空发动机高温结构材料和涂层上的研究与应用综述[J]. 航空学报, 2022, 43(10): 527481.SHANG Yong, FENG Yang, LIU Qiao-mu, et al. Research and application of large scientific facility on high-temperature structural materials and coatings of aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527481. [29] CHEN Y, CERNATESCU I, VENKATESH V, et al. On the residual stress relaxation in Inconel 718 superalloys at high temperature by real-time neutron diffraction[J]. Materials and Design, 2023, 232: 112135. doi: 10.1016/j.matdes.2023.112135 [30] JAMES M N, NEWBY M, DOUBELL P, et al. Weld residual stresses near the bimetallic interface in clad RPV steel: a comparison between deep-hole drilling and neutron diffraction data[J]. Nuclear Engineering and Design, 2014, 274: 56-65. doi: 10.1016/j.nucengdes.2014.03.042 [31] ALESSANDRONI M, PARADOWSKA A M, CIPPO E P, et al. Investigation of residual stress distribution of wheel rims using neutron diffraction[J]. Materials Science Forum, 2011, 681: 522-526. doi: 10.4028/www.scientific.net/MSF.681.522 [32] REZENDE A B, FONSECA S T, MINICUCCI D J, et al. Residual stress characterization by X-ray diffraction and correlation with hardness in a class D railroad wheel[J]. Journal of Materials Engineering and Performance, 2020, 29: 6223-6227. doi: 10.1007/s11665-020-05097-x [33] JUN T S, HOFMANN F, BELNOUE J, et al. Triaxial residual strains in a railway rail measured by neutron diffraction[J]. The Journal of Strain Analysis for Engineering Design, 2009, 44(7): 563-568. doi: 10.1243/03093247JSA545 [34] SASAKI T, TAKAHASHI S, KANEMATSU Y, et al. Measurement of residual stresses in rails by neutron diffraction[J]. Wear, 2008, 265(9/10): 1402-1407. [35] ROY T, PARADOWSKA A, ABRAHAMS R, et al. Residual stress in laser cladded heavy-haul rails investigated by neutron diffraction[J]. Journal of Materials Processing Technology, 2020, 278: 116511. doi: 10.1016/j.jmatprotec.2019.116511 [36] DLH AY'G P, PODUŠKA J, POKORN AY'G P, et al. Estimation of residual stress distribution in railway axles[J]. Engineering Failure Analysis, 2022, 135: 106142. doi: 10.1016/j.engfailanal.2022.106142 [37] DLH AY'G P, PODUŠKA J, POKORN AY'G P, et al. Methodology for estimation of residual stresses in hardened railway axle[J]. Procedia Structural Integrity, 2019, 23: 185-190. doi: 10.1016/j.prostr.2020.01.084 [38] ZHOU L, ZHANG H, QIN T Y, et al. Gradient residual strain measurement procedure in surface impacted railway steel axles by using neutron scattering[J]. Metallurgical and Materials Transactions A, 2024, 55(7): 2175-2185. doi: 10.1007/s11661-024-07352-5 [39] HU F F, QIN T Y, AO N, et al. Gradient residual strain determination of surface impacted railway S38C axles by neutron Bragg-edge transmission imaging[J]. Engineering Fracture Mechanics, 2024, 306: 110267. doi: 10.1016/j.engfracmech.2024.110267 [40] HU F F, QIN T Y, SU Y H, et al. Residual stress relaxation of gradient S38C steel during fatigue crack growth by neutron imaging and diffraction[J]. International Journal of Fatigue, 2025, 193: 108826. doi: 10.1016/j.ijfatigue.2025.108826 [41] QIN T Y, HU F F, XU P G, et al. Gradient residual stress and fatigue life prediction of induction hardened carbon steel axles: experiment and simulation[J]. International Journal of Fatigue, 2024, 185: 108336. doi: 10.1016/j.ijfatigue.2024.108336 [42] RAMADHAN R S, GLASER D, SOYAMA H, et al. Mechanical surface treatment studies by Bragg edge neutron imaging[J]. Acta Materialia, 2022, 239: 118259. doi: 10.1016/j.actamat.2022.118259 [43] SU Y H, OIKAWA K, SHINOHARA T, et al. Residual stress relaxation by bending fatigue in induction-hardened gear studied by neutron Bragg edge transmission imaging and X-ray diffraction[J]. International Journal of Fatigue, 2023, 174: 107729. doi: 10.1016/j.ijfatigue.2023.107729 [44] SANTISTEBAN J R, VICENTE-ALVAREZ M A, VIZCAINO P, et al. Texture imaging of zirconium based components by total neutron cross-section experiments[J]. Journal of Nuclear Materials, 2012, 425(1/2/3): 218-227. [45] KANARACHOS S, RAMADHAN R S, KOCKELMANN W, et al. Strain imaging of corroded steel fasteners using neutron transmission imaging[J]. Measurement, 2022, 203: 111904. doi: 10.1016/j.measurement.2022.111904 [46] LI J, WANG H, SUN G G, et al. Neutron diffractometer RSND for residual stress analysis at CAEP[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 783: 76-79. [47] 韩松柏, 刘蕴韬, 陈东风. 中国先进研究堆中子散射大科学装置[J]. 科学通报, 2015, 60(22): 2068-2078.HAN Song-bai, LIU Yun-tao, CHEN Dong-feng. Large-scale scientific facility at China advanced research reactor for neutron scattering[J]. Chinese Science Bulletin, 2015, 60(22): 2068-2078. [48] HAO J Z, TAN Z J, LU H L, et al. Residual stress measurement system of the general purpose powder diffractometer at CSNS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1055: 168532. doi: 10.1016/j.nima.2023.168532 [49] GAO J B, ZHANG S Y, ZHOU L, et al. Novel engineering materials diffractometer fabricated at the China Spallation Neutron Source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1034: 166817. doi: 10.1016/j.nima.2022.166817 [50] ZHANG H, WU S C, AO N, et al. The effect of gradient order on impact toughness of carbon S38C axle steels with induction hardening[J]. Engineering Failure Analysis, 2023, 149: 107254. doi: 10.1016/j.engfailanal.2023.107254 [51] IMAI Y, KUMAGAI S I. X-ray investigation of low-cycle fatigue in martensitic steels[J]. Journal of the Society of Materials Science, 1970, 19(207): 1121-1127. doi: 10.2472/jsms.19.1121 [52] 张哲维. 基于中子/X射线衍射与有限元法的涡轮盘模拟件三维残余应力场演变研究[D]. 北京: 北京科技大学, 2021.ZHANG Zhe-wei. Study on the evolution of three-dimensional residual stress field in turbine discs by using neutron/X-ray diffraction and finite element method[D]. Beijing: University of Science and Technology Beijing, 2021. [53] WITHERS P J, PREUSS M, STEUWER A, et al. Methods for obtaining the strain-free lattice parameter when using diffraction to determine residual stress[J]. Journal of Applied Crystallography, 2007, 40(5): 891-904. doi: 10.1107/S0021889807030269 [54] SHINOHARA T, KAI T, OIKAWA K, et al. The energy-resolved neutron imaging system, RADEN[J]. Review of Scientific Instruments, 2020, 91(4): 043302. doi: 10.1063/1.5136034 [55] PARKER J D, HATTORI K, FUJIOKA H, et al. Neutron imaging detector based on the μPIC micro-pixel chamber[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 697: 23-31. [56] PYZALLA A. Determination of the residual stress state in components using neutron diffraction[J]. Journal of Neutron Research, 2000, 8(3): 187-213. doi: 10.1080/10238160008200054 [57] WANG Y, YUAN L C, ZHANG S J, et al. The influence of combined gradient structure with residual stress on crack-growth behavior in medium carbon steel[J]. Engineering Fracture Mechanics, 2019, 209: 369-381. doi: 10.1016/j.engfracmech.2019.01.037 [58] STARON P, SCHREYER A, CLEMENS H, et al. Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Applications[M]. Weinheim: Wiley-VCH, 2017. [59] 彭光健, 张泰华. 表面残余应力的仪器化压入检测方法研究进展[J]. 力学学报, 2022, 54(8): 2287-2303.PENG Guang-jian, ZHANG Tai-hua. Progress in instrumented indentation methods for determination of surface residual stress[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2287-2303. [60] SATO H, KUSUMI A, SHIOTA Y, et al. Visualising martensite phase fraction in bulk ferrite steel by superimposed Bragg-edge profile analysis of wavelength-resolved neutron transmission imaging[J]. ISIJ International, 2022, 62(11): 2319-2330. doi: 10.2355/isijinternational.ISIJINT-2022-197 [61] SATO H, KAMIYAMA T, KIYANAGI Y. A rietveld-type analysis code for pulsed neutron Bragg-edge transmission imaging and quantitative evaluation of texture and microstructure of a welded α-iron plate[J]. Materials Transactions, 2011, 52(6): 1294-1302. doi: 10.2320/matertrans.M2010328 [62] OIKAWA K, SATO H, WATANABE K, et al. Update of Bragg edge analysis software "GUI-RITS"[J]. Journal of Physics: Conference Series, 2023, 2605(1): 012013. doi: 10.1088/1742-6596/2605/1/012013 [63] SU Y H, OIKAWA K, SHINOHARA T, et al. Neutron Bragg-edge transmission imaging for microstructure and residual strain in induction hardened gears[J]. Scientific Reports, 2021, 11: 4155. doi: 10.1038/s41598-021-83555-9 [64] MAKINO T, KATO T, HIRAKAWA K. Review of the fatigue damage tolerance of high-speed railway axles in Japan[J]. Engineering Fracture Mechanics, 2011, 78(5): 810-825. doi: 10.1016/j.engfracmech.2009.12.013 [65] 林浩博, 仲崇成, 高玉龙, 等. 残余压应力对车轴表面裂纹扩展的仿真研究[J]. 铁道车辆, 2023, 61(4): 38-41. doi: 10.3969/j.issn.1002-7602.2023.04.007LIN Hao-bo, ZHONG Chong-cheng, GAO Yu-long, et al. Simulation research of crack propagation on the surface of axle due to residual compressive stress[J]. Rolling Stock, 2023, 61(4): 38-41. doi: 10.3969/j.issn.1002-7602.2023.04.007 [66] ZENG D F, XU Y, WANG X, et al. Fatigue strength evaluation of scale railway axle with surface defect considering mean stress effect[J]. International Journal of Fatigue, 2023, 177: 107974. doi: 10.1016/j.ijfatigue.2023.107974 [67] 董智超. 高速轮轴载荷谱及疲劳强度分析[D]. 北京: 北京交通大学, 2013.DONG Zhi-chao. Analysis on load spectrum and fatigue of high-speed wheel and axle[D]. Beijing: Beijing Jiaotong University, 2013. [68] BERETTA S, CARBONI M. Variable amplitude fatigue crack growth in a mild steel for railway axles: experiments and predictive models[J]. Engineering Fracture Mechanics, 2011, 78(5): 848-862. doi: 10.1016/j.engfracmech.2010.11.019 [69] PUGNO N, CIAVARELLA M, CORNETTI P, et al. A generalized Paris' law for fatigue crack growth[J]. Journal of the Mechanics and Physics of Solids, 2006, 54(7): 1333-1349. doi: 10.1016/j.jmps.2006.01.007 [70] WU S C, LI C H, LUO Y, et al. A uniaxial tensile behavior based fatigue crack growth model[J]. International Journal of Fatigue, 2020, 131: 105324. doi: 10.1016/j.ijfatigue.2019.105324 [71] AO N, ZHANG X, ZHAO X, et al. Remaining fatigue life assessment of high-speed railway wheel web under measured load spectra[J]. Engineering Fracture Mechanics, 2024, 295: 109813. doi: 10.1016/j.engfracmech.2023.109813 [72] HU F F, WU S C, XIN X, et al. Determination of the critical defect and fatigue life of high-speed railway axles under variable amplitude loads[J]. International Journal of Fatigue, 2023, 168: 107446. doi: 10.1016/j.ijfatigue.2022.107446 [73] MAKINO T, SAKAI H, KOZUKA C, et al. Overview of fatigue damage evaluation rule for railway axles in Japan and fatigue property of railway axle made of medium carbon steel[J]. International Journal of Fatigue, 2020, 132: 105361. doi: 10.1016/j.ijfatigue.2019.105361 [74] NEWMAN J C. A crack opening stress equation for fatigue crack growth[J]. International Journal of Fracture, 1984, 24: R131-R135. doi: 10.1007/BF00020751 [75] 罗艳. 异物致损合金钢EA4T车轴抗疲劳评估方法[D]. 成都: 西南交通大学, 2020.LUO Yan. Fatigue resistance assessment of externally impacted railway EA4T axle steel[D]. Chengdu: Southwest Jiaotong University, 2020. [76] YAN R G, WANG W J, DING R, et al. Study on the method of establishing the probability of detection curve for ultrasonic detection on railway hollow axle cracks[J]. Measurement, 2024, 224: 113866. doi: 10.1016/j.measurement.2023.113866 [77] HOLMBERG J, STEUWER A, STORMVINTER A, et al. Residual stress state in an induction hardened steel bar determined by synchrotron-and neutron diffraction compared to results from lab-XRD[J]. Materials Science and Engineering: A, 2016, 667: 199-207. doi: 10.1016/j.msea.2016.04.075 [78] WU S C. Time-resolved 3D CT with failure physics (5D CT) for quantifying internal defect evolution behaviors of criticality safety AM components[J]. Engineering Fracture Mechanics, 2025, 319: 111036. doi: 10.1016/j.engfracmech.2025.111036 -
下载: