Wind tunnel test study on shock wave characteristics of low-vacuum tube train
Article Text (Baidu Translation)
-
摘要: 为研究列车在低真空管道内高速运行时面临的激波效应等难题,基于风洞试验采用磁悬浮列车模型测试了管道列车流场出现激波的马赫数及不同马赫数下管道列车出现激波的位置及特征;利用纹影系统拍摄了风洞内管道列车周围流场,深入探讨了管道列车与周围空气之间的相互作用机制和激波现象;采用计算流体力学方法,成功地模拟了管道列车的实际运行情况,并将模拟结果与风洞试验的流场数据进行了比对,发现风洞试验结果与数值计算结果的激波特性一致。研究结果表明:阻塞比为0.112,当马赫数分别为0.5、0.6、0.7时,管道列车流场没有出现激波,当马赫数为0.8时,在管道流场首次出现激波;管道列车激波位置有两处,分别为车肩和车尾位置;气体在列车前端形成流动分离,气流沿车头流经管道和列车中间,横断面减小,马赫数增加,在车肩位置形成声速线,声速线后区域气体密度及压力激增形成激波;气体流经车体与车尾过渡处,横断面增大,马赫数继续增加,在车尾附近形成流动分离,速度减小至声速,气体密度及压力激增形成激波;风洞试验与数值模拟数据吻合,证实了临界马赫数0.8的激波产生阈值。Abstract: To investigate the challenges faced by high-speed trains operating within low-vacuum tubes, particularly the generation of shock waves, wind tunnel tests were conducted using a magnetic levitation (maglev) train model. These tests identified the Mach number at which shock waves first appear in the flow field of tube train, as well as the positions and characteristics of the shock waves at various Mach numbers. The flow field of tube train in the wind tunnel was captured by using the schlieren system, and the interaction mechanism and shock wave characteristics between the tube train and the surrounding air were deeply explored. The actual operation of the tube train was simulated by using the computational fluid dynamics (CFD) method, and the shock wave characteristics of the wind tunnel test results and numerical calculation results were analyzed. Research results indicate that for a blockage ratio of 0.112, no shock waves occurred in the flow field of tube train when the Mach numbers were 0.5, 0.6, and 0.7. When Mach number is 0.8, shock waves first appeared in the flow field at two distinct locations: near the train shoulder and in the wake region. At the front of the train, flow separation occurs, and the airflow flows along the front of the train through the tube and the middle of the train. The cross-sectional area decreases, the Mach number increases, and a sonic line forms near the shoulder. Downstream of this sonic line, a rapid increase in gas density and pressure leads to shock wave generation. As the airflow continues through the transition between the train body and the tail, the cross-sectional area increases, the Mach number continues to rise, and flow separation occurs near the rear. The flow velocity decreases to sonic speed, resulting in a shock wave due to the sudden increase in gas density and pressure. The numerical calculation cloud map revealed the spatial distribution characteristics of the shock wave and the evolution law of flow separation. The shock wave locations in both at the train shoulder and in the wake, agreed well with the schlieren images from the wind tunnel experiments, confirming that the critical Mach number for shock wave generation is 0.8.
-
Key words:
- tube train /
- wind tunnel test /
- Mach number /
- schlieren system /
- shock wave characteristic /
- CFD
-
表 1 组合模型
Table 1. Combination models
各部分名称 长/mm 宽/mm 高/mm 列车 360 74 60 导轨 1 100 63 53 垫高块 1 100 63 37 下壁板 1 100 340 28 -
[1] 侯自豪, 毛凯, 朱雨建, 等. 低真空管道列车关键气动问题研究进展[J]. 空气动力学学报, 2024, 42(2): 1-20.HOU Zi-hao, MAO Kai, ZHU Yu-jian, et al. Progresses in key aerodynamic problems of low-vacuum tube trains[J]. Acta Aerodynamica Sinica, 2024, 42(2): 1-20. [2] SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33: 371-414. doi: 10.1146/annurev.fluid.33.1.371 [3] 寇杰, 符澄, 高兴龙, 等. 真空管道列车流固耦合研究进展及关键技术分析[J]. 实验流体力学, 2023, 37(3): 37-49.KOU Jie, FU Cheng, GAO Xing-long, et al. Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology[J]. Experimental Fluid Mechanics, 2023, 37(3): 37-49. [4] KIM T K, KIM K H, KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(12): 1187-1196. doi: 10.1016/j.jweia.2011.09.001 [5] KIM D W, KIM T H, KIM H D. A study on characteristics of shock train inside a shock tube[J]. Theoretical and Applied Mechanics Letters, 2017, 7(6): 366-371. doi: 10.1016/j.taml.2017.09.005 [6] ZHOU P, ZHANG J Y, LI T, et al. Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 61-70. doi: 10.1016/j.jweia.2019.04.003 [7] ZHOU P, ZHANG J Y. Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train[J]. Vacuum, 2020, 173: 109142. doi: 10.1016/j.vacuum.2019.109142 [8] 张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182-190.ZHANG Xiao-han, LI Tian, ZHANG Ji-ye, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182-190. [9] 张银龙, 王潇飞, 张琨, 等. 不同阻塞比下真空管道磁浮交通气动热特性[J]. 真空科学与技术学报, 2022, 42(5): 394-403.ZHANG Yin-long, WANG Xiao-fei, ZHANG Kun, et al. Aerothermal characteristics of maglev transportation in evacuated tube with different blocking ratios[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(5): 394-403. [10] 宋嘉源, 李田, 张继业, 等. 管道断面外形对亚音速真空管道磁浮系统气动特性的影响[J]. 真空, 2022, 59(1): 7-12.SONG Jia-yuan, LI Tian, ZHANG Ji-ye, et al. Effect of tube cross-section shape on aerodynamic characteristics of subsonic evacuated tube maglev system[J]. Vacuum, 2022, 59(1): 7-12. [11] 周鹏, 李田, 张继业, 等. 真空管道超级列车气动热效应[J]. 机械工程学报, 2020, 56(8): 190-199.ZHOU Peng, LI Tian, ZHANG Ji-ye, et al. Aerothermal effect generated by hyper train in the evacuated tube[J]. Chinese Journal of Mechanical Engineering, 2020, 56(8): 190-199. [12] 张俊博, 李红梅, 王俊彪, 等. 低真空管道磁悬浮列车热效应仿真分析研究[J]. 中国铁路, 2020(11): 100-106.ZHANG Jun-bo, LI Hong-mei, WANG Jun-biao, et al. Simulation analysis and research on thermal effect of maglev train in low vacuum tube[J]. China Railway, 2020(11): 100-106. [13] 胡啸, 马天昊, 王潇飞, 等. 真空管道磁浮交通气动特性的尺度效应[J]. 西南交通大学学报, 2023, 58(4): 808-819.HU Xiao, MA Tian-hao, WANG Xiao-fei, et al. Scale effect of aerodynamic characteristics in evacuated tube maglev transport[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 808-819. [14] 黄尊地, 伊严严, 常宁. 超声速运行时管道列车激波特性分析[J]. 真空, 2022, 59(5): 55-62.HUANG Zun-di, YI Yan-yan, CHANG Ning. Analysis on shock wave characteristics of supersonic train running in tube[J]. Vacuum, 2022, 59(5): 55-62. [15] 刘超, 吴昊, 曲士荣, 等. 1 000km/h真空管磁浮纵断面参数取值研究[J]. 铁道工程学报, 2023, 40(9): 116-121.LIU Chao, WU Hao, QU Shi-rong. et al. Research of vertical section parameters of 1 000 km/h vacuum tube maglev[J]. Journal of Railway Engineering Society, 2023, 40(9): 116-121. [16] 宋嘉源, 李田, 张继业. 真空管道列车动态运行气动特性研究[J]. 实验流体力学, 2023, 37(1): 64-71.SONG Jia-yuan, LI Tian, ZHANG Ji-ye, et al. Research on aerodynamic characteristics of evacuated tube train in dynamic operation[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 64-71. [17] 王潇飞, 胡啸, 李宗澎, 等. 轨道结构对真空管道磁浮列车气动特性的影响[J]. 实验流体力学, 2023, 37(3): 9-18.WANG Xiao-fei, HU Xiao, LI Zong-peng, et al. The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 9-18. [18] 黄志祥, 陈立, 张为卓. 高速列车模型风洞试验的模拟方法研究[J]. 铁道科学与工程学报, 2013, 10(3): 87-93.HUANG Zhi-xiang, CHEN Li, ZHANG Wei-zhuo. Study on simulation manner of wind tunnel test of high-speed train model[J]. Journal of Railway Science and Engineering, 2013, 10(3): 87-93. [19] 黄志祥, 陈立, 蒋科林, 等. 高速列车模型风洞试验数据的影响因素分析[J]. 铁道学报, 2016, 38(7): 34-39.HUANG Zhi-xiang, CHEN Li, JIANG Ke-lin, et al. The analysis of effect factors on wind tunnel testing data of high-speed train model[J]. Journal of the China Railway Society, 2016, 38(7): 34-39. [20] 张在中, 周丹. 不同头部外形高速列车气动性能风洞试验研究[J]. 中南大学学报: 自然科学版, 2013, 44(6): 2603-2608.ZHANG Zai-zhong, ZHOU Dan. Wind tunnel experiment on aerodynamic characteristic of streamline head of high speed train with different head shapes[J]. Journal of Central South University: Science and Technology, 2013, 44(6): 2603-2608. [21] 李鲲, 梁习锋, 杨明智. 高速铁路挡风墙防风特性风洞试验及优化比选[J]. 中南大学学报: 自然科学版, 2018, 49(5): 1297-1305.LI Kun, LIANG Xi-feng, YANG Ming-zhi. Anti-wind aerodynamic performance of high-speed train and wind-break wall optimization[J]. Journal of Central South University: Science and Technology, 2018, 49(5): 1297-1305. [22] TELENTA M, DUHOVNIK J, KOSEL F, et al. Numerical and experimental study of the flow through a geometrically accurate porous wind barrier model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124(1): 99-108. [23] WANG M, LI X Z, XIAO J, et al. An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177: 92-100. [24] 吕乾乾. 低真空管道结构温度应力模拟实验研究[J]. 铁道工程学报, 2022, 39(1): 18-24, 72.LYU Qian-qian. Model experimental research on the temperature stress of low vacuum pipeline structure[J]. Journal of Railway Engineering Society, 2022, 39(1): 18-24, 72. [25] 黄河峡. 背景激波系干扰下隔离段内激波串特性及其控制研究[D]. 南京: 南京航空航天大学, 2017.HUANG He-xia. Behaviors of shock train in isolator with background shocks and its control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. [26] 黄河峡, 谭慧俊, 庄逸, 等. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术, 2018, 39(10): 2252-2273.HUANG He-xia, TAN Hui-jun, ZHUANG Yi, et al. Progress in internal flow characteristics of hypersonic inlet/ isolator[J]. Propulsion Technology, 2018, 39(10): 2252-2273. [27] 曹学斌. 矩形隔离段流动特性及控制规律研究[D]. 南京: 南京航空航天大学, 2011.CAO Xue-bin. Research on flow characteristics and control rules of rectangular isolators[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. [28] 曹学斌, 朱守梅, 满延进, 等. 考虑进气道喉道非均匀流场影响的隔离段直连试验验[J]. 推进技术, 2015, 36(4): 547-555.CAO Xue-bin, ZHU Shou-mei, MAN Yan-jin, et al. Direction connect test on isolator considering effects of nonuniform flow at inlet throat[J]. Journal of Propulsion Technology, 2015, 36(4): 547-555. [29] 陈植. 超燃冲压发动机隔离段流动机理及其控制的试验研究[D]. 长沙: 国防科学技术大学, 2015.CHEN Zhi. Experimental study of the scramjet engine isolator flow and its flow control mechanism[D]. Changsha: National University of Defense Technology, 2015. [30] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展[J]. 物理学报, 2015, 64(19): 199401.YI Shi-he, CHEN Zhi. Review of recent experimental studies of the shock train flow field in the isolator[J]. Acta Physica Sinica, 2015, 64(19): 199401. -
下载: