留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于异质车辆群体协同的特殊车辆优先控制方法

张振 赖金涛 杨晓光

张振, 赖金涛, 杨晓光. 基于异质车辆群体协同的特殊车辆优先控制方法[J]. 交通运输工程学报, 2025, 25(2): 156-169. doi: 10.19818/j.cnki.1671-1637.2025.02.010
引用本文: 张振, 赖金涛, 杨晓光. 基于异质车辆群体协同的特殊车辆优先控制方法[J]. 交通运输工程学报, 2025, 25(2): 156-169. doi: 10.19818/j.cnki.1671-1637.2025.02.010
ZHANG Zhen, LAI Jin-tao, YANG Xiao-guang. A priority control method for special vehicles based on heterogeneous vehicle group cooperation[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 156-169. doi: 10.19818/j.cnki.1671-1637.2025.02.010
Citation: ZHANG Zhen, LAI Jin-tao, YANG Xiao-guang. A priority control method for special vehicles based on heterogeneous vehicle group cooperation[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 156-169. doi: 10.19818/j.cnki.1671-1637.2025.02.010

基于异质车辆群体协同的特殊车辆优先控制方法

doi: 10.19818/j.cnki.1671-1637.2025.02.010
基金项目: 

国家自然科学基金项目 52472350

郑州市重大科技创新专项 2021KJZX0060-9

广西科技计划项目 GuikeAA23062022

国家资助博士后研究人员计划 GZB20240541

详细信息
    作者简介:

    张振(1996-),男,山东威海人,同济大学工学博士研究生,从事车路协同、交通控制研究

    杨晓光(1959-),男,江苏宿迁人,同济大学教授,工学博士

  • 中图分类号: U491.4

A priority control method for special vehicles based on heterogeneous vehicle group cooperation

Funds: 

National Natural Science Foundation of China 52472350

Zhengzhou Major Science and Technology Project 2021KJZX0060-9

Science and Technology Plan Project of Guangxi Province GuikeAA23062022

Postdoctoral Fellowship Program of China Postdoctoral Science Foundation GZB20240541

More Information
Article Text (Baidu Translation)
  • 摘要: 在网联自动驾驶车辆和人类驾驶车辆混行的异质车辆群体环境中,为应对现有特殊车辆优先运行易受干扰以及对系统扰动严重的问题,在特殊车辆优先控制中加入了个体优先效益和系统运行效益的多目标考量;构建了通行需求差异化分级响应机制,确定了不同车辆对路权资源需求的优先响应等级;设计了集中式路权分配与分布式车辆轨迹规划的分层框架,上层以不同通行需求优先响应等级为依据进行路权分配决策,下层以路权分配结果为目标对自车进行分布式轨迹规划,对特殊车辆进行优先路权的需求响应式供给;为验证控制方法的有效性和先进性,选取了不同饱和度(0.8~1.4)和不同渗透率(0.3~0.8)条件,对比了不同特殊车辆优先控制方法。仿真结果表明:在优先水平方面,所提出方法中的特殊车辆的通行延误在0.1 s以下,有效地保障了特殊车辆在异质车辆群体环境下的绝对优先;在交叉口运行效率方面,当交通需求饱和度小于1.0时,所提出方法可保证较高的交叉口运行效率,当交通需求饱和度大于1.0时,所提出方法受网联自动驾驶车辆渗透率影响显著,且渗透率越大,所提出方法则能更好地保证交叉口运行效率。

     

  • 图  1  研究场景

    Figure  1.  Research scenario

    图  2  控制框架

    Figure  2.  Control framework

    图  3  分布式轨迹规划流程

    Figure  3.  Flow of distributed trajectory planning

    图  4  饱和度为1.2且渗透率为0.7条件下空白组中普通车道上车辆轨迹运行结果

    Figure  4.  Vehicle trajectory results on GL in blank group when saturation is 1.2 and CPR is 0.7

    图  5  饱和度为1.2且渗透率为0.7条件下空白组中动态优先车道上车辆轨迹运行结果

    Figure  5.  Vehicle trajectory results on DPL in blank group when saturation is 1.2 and CPR is 0.7

    图  6  饱和度为1.2且渗透率为0.7条件下对照组中普通车道上车辆轨迹运行结果

    Figure  6.  Vehicle trajectory results on GL in control group when saturation is 1.2 and CPR is 0.7

    图  7  饱和度为1.2且渗透率为0.7条件下对照组中动态优先车道上车辆轨迹运行结果

    Figure  7.  Vehicle trajectory results on DPL in control group when saturation is 1.2 and CPR is 0.7

    图  8  饱和度为1.2且渗透率为0.7条件下试验组中普通车道上车辆轨迹运行结果

    Figure  8.  Vehicle trajectory results on GL in experimental group when saturation is 1.2 and CPR is 0.7

    图  9  饱和度为1.2且渗透率为0.7条件下试验组中动态优先车道上车辆轨迹运行结果

    Figure  9.  Vehicle trajectory results on DPL in experimental group when saturation is 1.2 and CPR is 0.7

    图  10  饱和度为0.8的交叉口通过量对比结果

    Figure  10.  Throughput comparison results when saturation is 0.8

    图  11  饱和度为1.0的交叉口通过量对比结果

    Figure  11.  Throughput comparison results when saturation is 1.0

    图  12  饱和度为1.2的交叉口通过量对比结果

    Figure  12.  Throughput comparison results when saturation is 1.2

    图  13  饱和度为1.4的交叉口通过量对比结果

    Figure  13.  Throughput comparison results when saturation is 1.4

    图  14  饱和度为0.8的交叉口延误对比结果

    Figure  14.  Delay comparison results when saturation is 0.8

    图  15  饱和度为1.0的交叉口延误对比结果

    Figure  15.  Delay comparison results when saturation is 1.0

    图  16  饱和度为1.2的交叉口延误对比结果

    Figure  16.  Delay comparison results when saturation is 1.2

    图  17  饱和度为1.4的交叉口延误对比结果

    Figure  17.  Delay comparison results when saturation is 1.4

    表  1  仿真参数设置

    Table  1.   Simulation parameter setting

    主要参数 量值
    控制区域长度/m 400
    仿真总时长/s 4 100
    仿真预热时长/s 600
    优化时间步间隔/s 1
    红灯时长/s 36
    绿灯时长/s 50
    饱和流率/(veh·h-1) 1 308
    路段最高限速/(km·h-1) 60
    最大加速度/(m·s-2) 3.5
    最小加速度/(m·s-2) -2.8
    普通车辆平均长度/m 4
    特殊车辆平均长度/m 6
    安全车头时距/s 2
    行程时间目标权重 0.33
    车辆油耗目标权重 0.25
    交叉口效率目标权重 0.42
    下载: 导出CSV

    表  2  渗透率为0.3下特殊车辆延误对比结果

    Table  2.   Delay comparison results of special vehicles when CPR is 0.3  s·veh-1

    饱和度 空白组 对照组 试验组
    0.6 1.978 0 0.018
    0.8 5.012 0 0.031
    1.0 7.977 0 0.039
    1.2 10.823 0 0.045
    1.4 18.752 0 0.066
    下载: 导出CSV

    表  3  渗透率为0.4下特殊车辆延误对比结果

    Table  3.   Delay comparison results of special vehicles when CPR is 0.4  s·veh-1

    饱和度 空白组 对照组 试验组
    0.6 1.829 0 0.014
    0.8 4.647 0 0.032
    1.0 7.942 0 0.054
    1.2 10.730 0 0.076
    1.4 16.552 0 0.086
    下载: 导出CSV

    表  4  渗透率为0.5下特殊车辆延误对比结果

    Table  4.   Delay comparison results of special vehicles when CPR is 0.5  s·veh-1

    饱和度 空白组 对照组 试验组
    0.6 1.778 0 0.016
    0.8 4.350 0 0.032
    1.0 7.954 0 0.044
    1.2 10.777 0 0.053
    1.4 16.546 0 0.075
    下载: 导出CSV

    表  5  渗透率为0.6下特殊车辆延误对比结果

    Table  5.   Delay comparison results of special vehicleswhen CPR is 0.6  s·veh-1

    饱和度 空白组 对照组 试验组
    0.6 1.771 0 0.020
    0.8 4.164 0 0.028
    1.0 7.640 0 0.045
    1.2 10.679 0 0.055
    1.4 17.035 0 0.076
    下载: 导出CSV

    表  6  渗透率为0.7下特殊车辆延误对比结果

    Table  6.   Delay comparison results of special vehicles when CPR is 0.7  s·veh-1

    饱和度 空白组 对照组 试验组
    0.6 1.975 0 0.015
    0.8 4.368 0 0.034
    1.0 7.918 0 0.043
    1.2 10.704 0 0.059
    1.4 17.109 0 0.082
    下载: 导出CSV

    表  7  渗透率为0.8下特殊车辆延误对比结果

    Table  7.   Delay comparison results of special vehicles when CPR is 0.8  s·veh-1

    饱和度 空白组 对照组 试验组
    0.6 1.923 0 0.011
    0.8 4.386 0 0.032
    1.0 7.889 0 0.047
    1.2 10.238 0 0.049
    1.4 16.994 0 0.077
    下载: 导出CSV
  • [1] MAKRIDIS M, MATTAS K, CIUFFO B. Response time and time headway of an adaptive cruise control. An empirical characterization and potential impacts on road capacity[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1677-1686. doi: 10.1109/TITS.2019.2948646
    [2] HU Jia, SUN Shi-chao, LAI Jin-tao, et al. CACC simulation platform designed for urban scenes[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(4): 2857-2874. doi: 10.1109/TIV.2023.3234890
    [3] REN Yi-cheng, ZHAO Jing, ZHOU Xiao-hao. Optimal design of scheduling for bus rapid transit by combining with passive signal priority control[J]. International Journal of Sustainable Transportation, 2021, 15(5): 407-418. doi: 10.1080/15568318.2020.1740954
    [4] XU Ming-tao, CHAI Jin-ling, YAN Ya-dan, et al. Multi-agent fuzzy-based transit signal priority control for traffic network considering conflicting priority requests[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1554-1564. doi: 10.1109/TITS.2020.3045122
    [5] LIANG Zi-jun, XIAO Yun, FLÖTTERÖD Y P. An overlapping phase approach to optimize bus signal priority control under two-way signal coordination on urban arterials[J]. Journal of Advanced Transportation, 2021, 2021(1): 6624130.
    [6] AHMED F, HAWAS Y E. An integrated real-time traffic signal system for transit signal priority, incident detection and congestion management[J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 52-76. doi: 10.1016/j.trc.2015.08.004
    [7] 高云峰, 席建伟, 孙科. 面向客货分离交叉口的网联货车队列车速引导与信号优先组合优化[J]. 交通运输系统工程与信息, 2023, 23(4): 88-101.

    GAO Yun-feng, XI Jian-wei, SUN Ke. Joint optimization of speed guidance and signal priority control for connected autonomous truck platoon at intersections with car and truck separation[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4): 88-101.
    [8] HE H T, GULER S I, MENENDEZ M. Adaptive control algorithm to provide bus priority with a pre-signal[J]. Transportation Research Part C: Emerging Technologies, 2016, 64: 28-44. doi: 10.1016/j.trc.2016.01.009
    [9] YAO Jiao, ZHANG Kai-min, YANG Yuan-yuan, et al. Emergency vehicle route oriented signal coordinated control model with two-level programming[J]. Soft Computing, 2018, 22: 4283-4294. doi: 10.1007/s00500-017-2826-x
    [10] NGUYEN V L, HWANG R H, LIN P C. Controllable path planning and traffic scheduling for emergency services in the internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12399-12413. doi: 10.1109/TITS.2021.3113933
    [11] PETIT A, YILDIRIMOGLU M, GEROLIMINIS N, et al. Dedicated bus lane network design under demand diversion and dynamic traffic congestion: an aggregated network and continuous approximation model approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103187. doi: 10.1016/j.trc.2021.103187
    [12] BEN-DOR G, BEN-ELIA E, BENENSON I. Assessing the impacts of dedicated bus lanes on urban traffic congestion and modal split with an agent-based model[J]. Procedia Computer Science, 2018, 130: 824-829. doi: 10.1016/j.procs.2018.04.071
    [13] BAYRAK M, GULER S I. Optimization of dedicated bus lane location on a transportation network while accounting for traffic dynamics[J]. Public Transport, 2021, 13(2): 325-347. doi: 10.1007/s12469-021-00269-x
    [14] ZHAO Jing, YU Jie, XIA Xiao-mei, et al. Exclusive bus lane network design: a perspective from intersection operational dynamics[J]. Networks and Spatial Economics, 2019, 19(4): 1143-1171. doi: 10.1007/s11067-019-09448-7
    [15] WU W, HEAD L, YAN S H Y, et al. Development and evaluation of bus lanes with intermittent and dynamic priority in connected vehicle environment[J]. Journal of Intelligent Transportation Systems, 2018, 22(4): 301-310. doi: 10.1080/15472450.2017.1313704
    [16] LIN Ying-ying, ZHANG Nan, DONG Hong-zhao. Capability of intermittent bus lane utilization for regular vehicles[J]. Journal of Advanced Transportation, 2022, 2022: 4799497.
    [17] TSITSOKAS D, KOUVELAS A, GEROLIMINIS N. Modeling and optimization of dedicated bus lanes space allocation in large networks with dynamic congestion[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103082. doi: 10.1016/j.trc.2021.103082
    [18] 宋现敏, 张明业, 李振建, 等. 动态公交专用道的设置及其仿真分析评价[J]. 吉林大学学报(工学版), 2020, 50(5): 1677-1686.

    SONG Xian-min, ZHANG Ming-ye, LI Zhen-jian, et al. Setting of dynamic bus lane and its simulation analysis and evaluation[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1677-1686.
    [19] CHEN Xiang-dong, LIN Xi, HE Fang, et al. Modeling and control of automated vehicle access on dedicated bus rapid transit lanes[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102795. doi: 10.1016/j.trc.2020.102795
    [20] 杨晓光, 赖金涛, 张振, 等. 车路协同环境下的轨迹级交通控制研究综述[J]. 中国公路学报, 2023, 36(9): 225-243.

    YANG Xiao-guang, LAI Jin-tao, ZHANG Zhen, et al. Review of trajectory based traffic control in a vehicle-infrastructure cooperative environment[J]. China Journal of Highway and Transport, 2023, 36(9): 225-243.
    [21] CHEN S K, DONG J Q, HA P, et al. Graph neural network and reinforcement learning for multi-agent cooperative control of connected autonomous vehicles[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(7): 838-857. doi: 10.1111/mice.12702
    [22] MA Cheng-yuan, YU Chun-hui, YANG Xiao-guang. Trajectory planning for connected and automated vehicles at isolated signalized intersections under mixed traffic environment[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103309. doi: 10.1016/j.trc.2021.103309
    [23] WANG Jia-wei, ZHENG Yang, XU Qing, et al. Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7445-7459. doi: 10.1109/TITS.2020.3002965
    [24] LU Q, JUNG H, KIM K D. Optimization-based approach for resilient connected and autonomous intersection crossing traffic control under V2X communication[J]. IEEE Transactions on Intelligent Vehicles, 2021, 7(2): 354-367.
    [25] LAI Jin-tao, HU Jia, AN Lian-hua, et al. Trajectory based active traffic management by leveraging connected and automated vehicles[C]//IEEE. 2021 6th International Conference on Transportation Information and Safety (ICTIS). New York: IEEE, 2021: 1129-1131.
    [26] KANG Zhen, AN Lian-hua, LAI Jin-tao, et al. Eco-speed harmonization with partially connected and automated traffic at an isolated intersection[J]. Journal of Advanced Transportation, 2023, 2023(1): 9948462.
    [27] 孙伟, 张梦雅, 马成元, 等. 新型混合交通交叉口信号与车辆轨迹协同控制方法[J]. 交通运输系统工程与信息, 2023, 23(1): 97-105.

    SUN Wei, ZHANG Meng-ya, MA Cheng-yuan, et al. Coordination of signal and vehicle trajectory at intersections for mixed traffic flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 97-105.
    [28] 马成元, 朱际宸, 赖金涛, 等. 基于群体决策的多交叉口协同控制方法[J]. 交通运输工程学报, 2022, 22(3): 152-161. doi: 10.19818/j.cnki.1671-1637.2022.03.012

    MA Cheng-yuan, ZHU Ji-chen, LAI Jin-tao, et al. Multi-intersection coordinated control method based on group decision-making[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 152-161. doi: 10.19818/j.cnki.1671-1637.2022.03.012
    [29] 吴伟, 刘洋, 刘威, 等. 自动驾驶环境下交叉口车辆路径规划与最优控制模型[J]. 自动化学报, 2020, 46(9): 1971-1985.

    WU Wei, LIU Yang, LIU Wei, et al. A novel autonomous vehicle trajectory planning and control model for connected-and-autonomous intersections[J]. Acta Automatica Sinica, 2020, 46(9): 1971-1985.
    [30] TAJALLI M, HAJBABAIE A. Traffic signal timing and trajectory optimization in a mixed autonomy traffic stream[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6525-6538. doi: 10.1109/TITS.2021.3058193
    [31] HU Jia, LIAN Zhe-xi, SUN Xiao-xue, et al. Dynamic right-of-way allocation on bus priority lanes considering traffic system resilience[J]. Sustainability, 2024, 16(5): 1801. doi: 10.3390/su16051801
    [32] CHEN Chao-yi, WANG Jia-wei, XU Qing, et al. Mixed platoon control of automated and human-driven vehicles at a signalized intersection: dynamical analysis and optimal control[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103138. doi: 10.1016/j.trc.2021.103138
    [33] WANG Hao-ran, LAI Jin-tao, ZHANG Xian-hong, et al. Make space to change lane: a cooperative adaptive cruise control lane change controller[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103847. doi: 10.1016/j.trc.2022.103847
    [34] ZHANG Yi-ming, WU Zhi-zhou, ZHANG Yu, et al. Human-lead-platooning cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18253-18272. doi: 10.1109/TITS.2022.3156379
    [35] LAI Jin-tao, HU Jia, CUI Lian, et al. A generic simulation platform for cooperative adaptive cruise control under partially connected and automated environment[J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102874. doi: 10.1016/j.trc.2020.102874
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  658
  • HTML全文浏览量:  139
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-20
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回