A priority control method for special vehicles based on heterogeneous vehicle group cooperation
-
摘要: 在网联自动驾驶车辆和人类驾驶车辆混行的异质车辆群体环境中,为应对现有特殊车辆优先运行易受干扰以及对系统扰动严重的问题,在特殊车辆优先控制中加入了个体优先效益和系统运行效益的多目标考量;构建了通行需求差异化分级响应机制,确定了不同车辆对路权资源需求的优先响应等级;设计了集中式路权分配与分布式车辆轨迹规划的分层框架,上层以不同通行需求优先响应等级为依据进行路权分配决策,下层以路权分配结果为目标对自车进行分布式轨迹规划,对特殊车辆进行优先路权的需求响应式供给;为验证控制方法的有效性和先进性,选取了不同饱和度(0.8~1.4)和不同渗透率(0.3~0.8)条件,对比了不同特殊车辆优先控制方法。仿真结果表明:在优先水平方面,所提出方法中的特殊车辆的通行延误在0.1 s以下,有效地保障了特殊车辆在异质车辆群体环境下的绝对优先;在交叉口运行效率方面,当交通需求饱和度小于1.0时,所提出方法可保证较高的交叉口运行效率,当交通需求饱和度大于1.0时,所提出方法受网联自动驾驶车辆渗透率影响显著,且渗透率越大,所提出方法则能更好地保证交叉口运行效率。Abstract: In a heterogeneous vehicle group environment, there is a coexistence between connected and automated vehicles (CAVs) and human-driven vehicles. To address the problems that the priority operation of existing special vehicles was vulnerable to interference and causes severe disturbances to the system, multi-objective considerations of individual priority benefits and system operation benefits were incorporated into the priority control of special vehicles. A differentiated hierarchical response mechanism for various traffic demands was developed, and the priority response levels of different vehicles' demand for right-of-way resources were determined. A hierarchical framework of centralized right-of-way allocation and distributed vehicle trajectory planning was designed. In the upper layer, right-of-way allocation decision-making was implemented based on different priority response levels of traffic demand. In the lower layer, distributed vehicle trajectory planning was achieved with the allocated right-of-way as the goal to provide the demand-responsive supply of priority right-of-way for special vehicles. To validate the effectiveness and advancement of the control method, different saturation (0.8-1.4) and different penetration rates (0.3-0.8) conditions were selected, and different priority control methods for special vehicles were compared. Simulation results show that, as for the priority level, the proposed method can guarantee the special vehicles with delays of less than 0.1 seconds, ensuring absolute priority of special vehicles in a heterogeneous vehicle swarm environment. As for the traffic efficiency at the intersection, the proposed method maintains high efficiency when the traffic demand saturation rate is below 1.0. When traffic demand saturation rate is above 1.0, the efficiency of the proposed method is significantly affected by the CAV penetration rates, and with the increment in the penetration rates, the intersection efficiency can be ensured by the proposed method in a better way.
-
表 1 仿真参数设置
Table 1. Simulation parameter setting
主要参数 量值 控制区域长度/m 400 仿真总时长/s 4 100 仿真预热时长/s 600 优化时间步间隔/s 1 红灯时长/s 36 绿灯时长/s 50 饱和流率/(veh·h-1) 1 308 路段最高限速/(km·h-1) 60 最大加速度/(m·s-2) 3.5 最小加速度/(m·s-2) -2.8 普通车辆平均长度/m 4 特殊车辆平均长度/m 6 安全车头时距/s 2 行程时间目标权重 0.33 车辆油耗目标权重 0.25 交叉口效率目标权重 0.42 表 2 渗透率为0.3下特殊车辆延误对比结果
Table 2. Delay comparison results of special vehicles when CPR is 0.3
s·veh-1 饱和度 空白组 对照组 试验组 0.6 1.978 0 0.018 0.8 5.012 0 0.031 1.0 7.977 0 0.039 1.2 10.823 0 0.045 1.4 18.752 0 0.066 表 3 渗透率为0.4下特殊车辆延误对比结果
Table 3. Delay comparison results of special vehicles when CPR is 0.4
s·veh-1 饱和度 空白组 对照组 试验组 0.6 1.829 0 0.014 0.8 4.647 0 0.032 1.0 7.942 0 0.054 1.2 10.730 0 0.076 1.4 16.552 0 0.086 表 4 渗透率为0.5下特殊车辆延误对比结果
Table 4. Delay comparison results of special vehicles when CPR is 0.5
s·veh-1 饱和度 空白组 对照组 试验组 0.6 1.778 0 0.016 0.8 4.350 0 0.032 1.0 7.954 0 0.044 1.2 10.777 0 0.053 1.4 16.546 0 0.075 表 5 渗透率为0.6下特殊车辆延误对比结果
Table 5. Delay comparison results of special vehicleswhen CPR is 0.6
s·veh-1 饱和度 空白组 对照组 试验组 0.6 1.771 0 0.020 0.8 4.164 0 0.028 1.0 7.640 0 0.045 1.2 10.679 0 0.055 1.4 17.035 0 0.076 表 6 渗透率为0.7下特殊车辆延误对比结果
Table 6. Delay comparison results of special vehicles when CPR is 0.7
s·veh-1 饱和度 空白组 对照组 试验组 0.6 1.975 0 0.015 0.8 4.368 0 0.034 1.0 7.918 0 0.043 1.2 10.704 0 0.059 1.4 17.109 0 0.082 表 7 渗透率为0.8下特殊车辆延误对比结果
Table 7. Delay comparison results of special vehicles when CPR is 0.8
s·veh-1 饱和度 空白组 对照组 试验组 0.6 1.923 0 0.011 0.8 4.386 0 0.032 1.0 7.889 0 0.047 1.2 10.238 0 0.049 1.4 16.994 0 0.077 -
[1] MAKRIDIS M, MATTAS K, CIUFFO B. Response time and time headway of an adaptive cruise control. An empirical characterization and potential impacts on road capacity[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1677-1686. doi: 10.1109/TITS.2019.2948646 [2] HU Jia, SUN Shi-chao, LAI Jin-tao, et al. CACC simulation platform designed for urban scenes[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(4): 2857-2874. doi: 10.1109/TIV.2023.3234890 [3] REN Yi-cheng, ZHAO Jing, ZHOU Xiao-hao. Optimal design of scheduling for bus rapid transit by combining with passive signal priority control[J]. International Journal of Sustainable Transportation, 2021, 15(5): 407-418. doi: 10.1080/15568318.2020.1740954 [4] XU Ming-tao, CHAI Jin-ling, YAN Ya-dan, et al. Multi-agent fuzzy-based transit signal priority control for traffic network considering conflicting priority requests[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1554-1564. doi: 10.1109/TITS.2020.3045122 [5] LIANG Zi-jun, XIAO Yun, FLÖTTERÖD Y P. An overlapping phase approach to optimize bus signal priority control under two-way signal coordination on urban arterials[J]. Journal of Advanced Transportation, 2021, 2021(1): 6624130. [6] AHMED F, HAWAS Y E. An integrated real-time traffic signal system for transit signal priority, incident detection and congestion management[J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 52-76. doi: 10.1016/j.trc.2015.08.004 [7] 高云峰, 席建伟, 孙科. 面向客货分离交叉口的网联货车队列车速引导与信号优先组合优化[J]. 交通运输系统工程与信息, 2023, 23(4): 88-101.GAO Yun-feng, XI Jian-wei, SUN Ke. Joint optimization of speed guidance and signal priority control for connected autonomous truck platoon at intersections with car and truck separation[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4): 88-101. [8] HE H T, GULER S I, MENENDEZ M. Adaptive control algorithm to provide bus priority with a pre-signal[J]. Transportation Research Part C: Emerging Technologies, 2016, 64: 28-44. doi: 10.1016/j.trc.2016.01.009 [9] YAO Jiao, ZHANG Kai-min, YANG Yuan-yuan, et al. Emergency vehicle route oriented signal coordinated control model with two-level programming[J]. Soft Computing, 2018, 22: 4283-4294. doi: 10.1007/s00500-017-2826-x [10] NGUYEN V L, HWANG R H, LIN P C. Controllable path planning and traffic scheduling for emergency services in the internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12399-12413. doi: 10.1109/TITS.2021.3113933 [11] PETIT A, YILDIRIMOGLU M, GEROLIMINIS N, et al. Dedicated bus lane network design under demand diversion and dynamic traffic congestion: an aggregated network and continuous approximation model approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103187. doi: 10.1016/j.trc.2021.103187 [12] BEN-DOR G, BEN-ELIA E, BENENSON I. Assessing the impacts of dedicated bus lanes on urban traffic congestion and modal split with an agent-based model[J]. Procedia Computer Science, 2018, 130: 824-829. doi: 10.1016/j.procs.2018.04.071 [13] BAYRAK M, GULER S I. Optimization of dedicated bus lane location on a transportation network while accounting for traffic dynamics[J]. Public Transport, 2021, 13(2): 325-347. doi: 10.1007/s12469-021-00269-x [14] ZHAO Jing, YU Jie, XIA Xiao-mei, et al. Exclusive bus lane network design: a perspective from intersection operational dynamics[J]. Networks and Spatial Economics, 2019, 19(4): 1143-1171. doi: 10.1007/s11067-019-09448-7 [15] WU W, HEAD L, YAN S H Y, et al. Development and evaluation of bus lanes with intermittent and dynamic priority in connected vehicle environment[J]. Journal of Intelligent Transportation Systems, 2018, 22(4): 301-310. doi: 10.1080/15472450.2017.1313704 [16] LIN Ying-ying, ZHANG Nan, DONG Hong-zhao. Capability of intermittent bus lane utilization for regular vehicles[J]. Journal of Advanced Transportation, 2022, 2022: 4799497. [17] TSITSOKAS D, KOUVELAS A, GEROLIMINIS N. Modeling and optimization of dedicated bus lanes space allocation in large networks with dynamic congestion[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103082. doi: 10.1016/j.trc.2021.103082 [18] 宋现敏, 张明业, 李振建, 等. 动态公交专用道的设置及其仿真分析评价[J]. 吉林大学学报(工学版), 2020, 50(5): 1677-1686.SONG Xian-min, ZHANG Ming-ye, LI Zhen-jian, et al. Setting of dynamic bus lane and its simulation analysis and evaluation[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1677-1686. [19] CHEN Xiang-dong, LIN Xi, HE Fang, et al. Modeling and control of automated vehicle access on dedicated bus rapid transit lanes[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102795. doi: 10.1016/j.trc.2020.102795 [20] 杨晓光, 赖金涛, 张振, 等. 车路协同环境下的轨迹级交通控制研究综述[J]. 中国公路学报, 2023, 36(9): 225-243.YANG Xiao-guang, LAI Jin-tao, ZHANG Zhen, et al. Review of trajectory based traffic control in a vehicle-infrastructure cooperative environment[J]. China Journal of Highway and Transport, 2023, 36(9): 225-243. [21] CHEN S K, DONG J Q, HA P, et al. Graph neural network and reinforcement learning for multi-agent cooperative control of connected autonomous vehicles[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(7): 838-857. doi: 10.1111/mice.12702 [22] MA Cheng-yuan, YU Chun-hui, YANG Xiao-guang. Trajectory planning for connected and automated vehicles at isolated signalized intersections under mixed traffic environment[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103309. doi: 10.1016/j.trc.2021.103309 [23] WANG Jia-wei, ZHENG Yang, XU Qing, et al. Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7445-7459. doi: 10.1109/TITS.2020.3002965 [24] LU Q, JUNG H, KIM K D. Optimization-based approach for resilient connected and autonomous intersection crossing traffic control under V2X communication[J]. IEEE Transactions on Intelligent Vehicles, 2021, 7(2): 354-367. [25] LAI Jin-tao, HU Jia, AN Lian-hua, et al. Trajectory based active traffic management by leveraging connected and automated vehicles[C]//IEEE. 2021 6th International Conference on Transportation Information and Safety (ICTIS). New York: IEEE, 2021: 1129-1131. [26] KANG Zhen, AN Lian-hua, LAI Jin-tao, et al. Eco-speed harmonization with partially connected and automated traffic at an isolated intersection[J]. Journal of Advanced Transportation, 2023, 2023(1): 9948462. [27] 孙伟, 张梦雅, 马成元, 等. 新型混合交通交叉口信号与车辆轨迹协同控制方法[J]. 交通运输系统工程与信息, 2023, 23(1): 97-105.SUN Wei, ZHANG Meng-ya, MA Cheng-yuan, et al. Coordination of signal and vehicle trajectory at intersections for mixed traffic flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 97-105. [28] 马成元, 朱际宸, 赖金涛, 等. 基于群体决策的多交叉口协同控制方法[J]. 交通运输工程学报, 2022, 22(3): 152-161. doi: 10.19818/j.cnki.1671-1637.2022.03.012MA Cheng-yuan, ZHU Ji-chen, LAI Jin-tao, et al. Multi-intersection coordinated control method based on group decision-making[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 152-161. doi: 10.19818/j.cnki.1671-1637.2022.03.012 [29] 吴伟, 刘洋, 刘威, 等. 自动驾驶环境下交叉口车辆路径规划与最优控制模型[J]. 自动化学报, 2020, 46(9): 1971-1985.WU Wei, LIU Yang, LIU Wei, et al. A novel autonomous vehicle trajectory planning and control model for connected-and-autonomous intersections[J]. Acta Automatica Sinica, 2020, 46(9): 1971-1985. [30] TAJALLI M, HAJBABAIE A. Traffic signal timing and trajectory optimization in a mixed autonomy traffic stream[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6525-6538. doi: 10.1109/TITS.2021.3058193 [31] HU Jia, LIAN Zhe-xi, SUN Xiao-xue, et al. Dynamic right-of-way allocation on bus priority lanes considering traffic system resilience[J]. Sustainability, 2024, 16(5): 1801. doi: 10.3390/su16051801 [32] CHEN Chao-yi, WANG Jia-wei, XU Qing, et al. Mixed platoon control of automated and human-driven vehicles at a signalized intersection: dynamical analysis and optimal control[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103138. doi: 10.1016/j.trc.2021.103138 [33] WANG Hao-ran, LAI Jin-tao, ZHANG Xian-hong, et al. Make space to change lane: a cooperative adaptive cruise control lane change controller[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103847. doi: 10.1016/j.trc.2022.103847 [34] ZHANG Yi-ming, WU Zhi-zhou, ZHANG Yu, et al. Human-lead-platooning cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18253-18272. doi: 10.1109/TITS.2022.3156379 [35] LAI Jin-tao, HU Jia, CUI Lian, et al. A generic simulation platform for cooperative adaptive cruise control under partially connected and automated environment[J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102874. doi: 10.1016/j.trc.2020.102874 -
下载: