留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经常微分方程的自适应图时空同步交通流预测方法

史昕 胡欣倩 赵祥模 马峻岩 王建

史昕, 胡欣倩, 赵祥模, 马峻岩, 王建. 基于神经常微分方程的自适应图时空同步交通流预测方法[J]. 交通运输工程学报, 2025, 25(2): 170-188. doi: 10.19818/j.cnki.1671-1637.2025.02.011
引用本文: 史昕, 胡欣倩, 赵祥模, 马峻岩, 王建. 基于神经常微分方程的自适应图时空同步交通流预测方法[J]. 交通运输工程学报, 2025, 25(2): 170-188. doi: 10.19818/j.cnki.1671-1637.2025.02.011
SHI Xin, HU Xin-qian, ZHAO Xiang-mo, MA Jun-yan, WANG Jian. Adaptive graph spatio-temporal synchronization for traffic flow prediction based on NODEs[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 170-188. doi: 10.19818/j.cnki.1671-1637.2025.02.011
Citation: SHI Xin, HU Xin-qian, ZHAO Xiang-mo, MA Jun-yan, WANG Jian. Adaptive graph spatio-temporal synchronization for traffic flow prediction based on NODEs[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 170-188. doi: 10.19818/j.cnki.1671-1637.2025.02.011

基于神经常微分方程的自适应图时空同步交通流预测方法

doi: 10.19818/j.cnki.1671-1637.2025.02.011
基金项目: 

国家自然科学基金项目 52472340

国家自然科学基金项目 52131204

详细信息
    作者简介:

    史昕(1987-),男,河南南阳人,长安大学副教授,工学博士,从事交通大数据分析研究

  • 中图分类号: U491.14

Adaptive graph spatio-temporal synchronization for traffic flow prediction based on NODEs

Funds: 

National Natural Science Foundation of China 52472340

National Natural Science Foundation of China 52131204

More Information
    Corresponding author: SHI Xin (1987-), male, associate professor, PhD, alu_steven@qq.com
Article Text (Baidu Translation)
  • 摘要: 针对现有交通流预测中时空特征获取的连续性与同步性问题,提出了一种基于神经常微分方程的自适应图(AGNODE)时空同步交通流预测模型;基于历史交通流量数据的语义和距离相关性构建了双路先验邻接矩阵,利用动态滤波和节点嵌入设计了权重可自动调整的自适应邻接矩阵;结合先验和自适应邻接矩阵,利用线性加权融合建立了静动态图融合层,通过虚拟连接层内顶点特征构建了包含时间和空间2个维度的自适应时空同步结构图;引入神经常微分方程(NODE)求解图卷积网络(GCN)形成了图卷积神经常微分方程(GCNODE),利用求解步长时间对齐和GCNODE双层堆叠构建了AGNODE模型;利用加州高速公路公开交通数据集(PeMS04和PeMS08),结合平均绝对误差(MAE)、均方根误差(RMSE)以及训练和推理时间等指标,测试验证了AGNODE模型。分析结果表明:相比最优基线模型STGODE,AGNODE的单步预测(5 min)在PeMS04上MAE和RMSE分别降低了3.6%和2.8%,在PeMS08上MAE和RMSE分别降低了2.2%和1.7%;AGNODE的多步预测(15、30、60 min)在PeMS04上MAE和RMSE分别平均降低了3.0%和2.4%,在PeMS08上MAE和RMSE分别平均降低了3.6%和1.2%;随着模型网络层数增大,AGNODE的MAE和RMSE分别降低了5.3%和2.6%,STGODE的MAE和RMSE分别降低了0.7%和0.6%;AGNODE的训练和推理时间相比ASTGCN,在PeMS04和PeMS08上分别减少了11.4%和7.5%,相比STGODE以增加不超过7.7%的时间成本得到更好预测精度。可见,AGNODE模型具有较强的时空建模和参数适应能力,可以准确预测短时交通流量,能够为交通参与者提供可靠的流量信息与决策依据。

     

  • 图  1  交通流预测基于图的时空问题表述

    Figure  1.  Graph based representation of spatio-temporal problems in traffic flow prediction

    图  2  交通流时空相关性

    Figure  2.  Spatio-temporal correlation in traffic flow

    图  3  时空特征连续性分析

    Figure  3.  Analysis of spatio-temporal feature continuity

    图  4  AGNODE及前端核心模块结构

    Figure  4.  Structure of AGNODE and its front core modules

    图  5  自适应邻接矩阵计算流程

    Figure  5.  Computational process of adaptive adjacency matrix

    图  6  时空同步图NODE卷积层模块

    Figure  6.  NODE convolution layer module in spatio-temporal synchronization diagram

    图  7  PeMS采集数据的路网结构和部分传感器部署位置

    Figure  7.  Road network structure and selected sensor deployment locations in PeMS data collection

    图  8  PeMS04上不同模型不同预测时长的性能比较

    Figure  8.  Performance comparison of different models with different prediction durations in PeMS04

    图  9  PeMS08上不同模型不同预测时长的性能比较

    Figure  9.  Performance comparison of different models with different prediction durations in PeMS08

    图  10  PeMS04消融试验结果

    Figure  10.  Ablation experiment results in PeMS04

    图  11  PeMS08消融试验结果

    Figure  11.  Ablation experiment results in PeMS08

    图  12  PeMS04数据集(一周/一天)预测可视化结果

    Figure  12.  Visualization results for one week/one day prediction in PeMS04

    图  13  PeMS08数据集(一周/一天)预测可视化结果

    Figure  13.  Visualization results for one week/one day prediction in PeMS08

    图  14  网络深度增加性能对比

    Figure  14.  Performance comparison based on increasing network depth

    图  15  PeMS04邻接矩阵对比

    Figure  15.  Comparison of adjacency matrices in PeMS04

    图  16  PeMS08邻接矩阵对比

    Figure  16.  Comparison of adjacency matrices in PeMS08

    图  17  PeMS04、PeMS08数据集训练时间及平均误差值

    Figure  17.  Training time and average errors for PeMS04 and PeMS08 datasets

    表  1  交通流预测模型的性能对比

    Table  1.   Performance comparison of traffic flow prediction models

    数据集 模型 5 min 15 min 30 min 60 min
    MAE/veh RMSE/veh MAE/veh RMSE/veh MAE/veh RMSE/veh MAE/veh RMSE/veh
    PeMS04 HA 26.49 38.14 30.12 44.27 37.13 54.11 50.99 72.23
    VAR 19.79 33.05 24.03 43.59 30.34 63.76 44.36 110.33
    ARIMA 29.69 45.74 32.50 49.81 33.96 51.88 36.86 55.89
    FC-LSTM 18.45 29.10 22.86 37.00 25.11 38.58 32.98 49.77
    STGCN 19.25 28.73 20.53 31.29 21.67 35.41 24.34 41.57
    ASTGCN 19.25 30.06 20.60 32.92 21.67 33.82 24.04 37.03
    STSGCN 18.13 29.12 19.80 31.58 21.31 33.84 24.47 38.46
    STGODE 17.95 28.49 19.54 30.82 21.37 33.21 24.85 37.72
    AGNODE 17.31 27.70 18.71 29.12 20.39 32.75 23.89 36.93
    PeMS08 HA 21.54 31.74 24.95 37.36 30.14 43.71 38.62 57.00
    VAR 14.80 22.92 19.87 32.70 24.82 42.98 33.94 59.44
    ARIMA 15.33 22.53 19.51 28.70 22.30 32.62 25.78 37.22
    FC-LSTM 21.44 34.28 24.55 38.52 31.69 46.63 39.45 56.33
    STGCN 16.40 24.55 17.48 26.46 18.40 27.92 19.90 29.94
    ASTGCN 14.79 22.92 16.46 25.66 17.87 28.09 19.99 31.89
    STSGCN 14.52 22.39 16.10 25.08 17.41 27.26 19.52 30.37
    STGODE 14.71 22.02 15.96 24.21 16.80 25.62 18.34 27.98
    AGNODE 14.20 21.65 15.23 23.54 16.09 25.29 17.95 28.13
    下载: 导出CSV

    表  2  交通流预测模型效率对比

    Table  2.   Efficiency comparison of traffic flow prediction models

    数据集 模型 每次迭代训练时间/s 推理时间/s
    PeMS04 STGCN 15.12 3.46
    FC-LSTM 13.55 1.82
    ASTGCN 47.78 8.68
    STSGCN 80.43 27.32
    STGODE 40.38 6.27
    AGNODE 42.46 7.79
    PeMS08 STGCN 8.28 2.05
    FC-LSTM 13.37 0.98
    ASTGCN 28.78 6.89
    STSGCN 50.57 12.54
    STGODE 26.74 5.23
    AGNODE 27.35 5.84
    下载: 导出CSV
  • [1] TEDJOPURNOMO D A, BAO Z F, ZHENG B H, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(4): 1544-1561. http://www.keyanzhidian.com/doc/detail?id=2067034755
    [2] 姚俊峰, 何瑞, 史童童, 等. 基于机器学习的交通流预测方法综述[J]. 交通运输工程学报, 2023, 23(3): 44-67. doi: 10.19818/j.cnki.1671-1637.2023.03.003

    YAO Jun-feng, HE Rui, SHI Tong-tong, et al. Review on machine learning-based traffic flow prediction methods[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 44-67. doi: 10.19818/j.cnki.1671-1637.2023.03.003
    [3] SHI X M, QI H, SHEN Y M, et al. A spatial-temporal attention approach for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 4909-4918. http://www.xueshufan.com/publication/3015712039
    [4] GUO K, HU Y L, QIAN Z, et al. Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(2): 1138-1149. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8959420
    [5] KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7(3): 1-9. http://www.onacademic.com/detail/journal_1000038119292110_dd14.html
    [6] CHEN C Y, HU J M, MENG Q, et al. Short-time traffic flow prediction with ARIMA-GARCH model[C]// IEEE. 2011 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2011: 607-612.
    [7] ZIVOT E, WANG J H. Modeling Financial Time Series with S-PLUS[M]. New York: Springer, 2006.
    [8] ZHANG L, LIU Q C, YANG W C, et al. An improved K-nearest neighbor model for short-term traffic flow prediction[J]. Procedia-Social and Behavioral Sciences, 2013, 96: 653-662. http://core.ac.uk/download/pdf/82079242.pdf
    [9] FENG X X, LING X Y, ZHENG H F, et al. Adaptive multi-kernel SVM with spatial-temporal correlation for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2001-2013. http://www.onacademic.com/detail/journal_1000040874769110_8054.html
    [10] BOUKERCHE A, WANG J H. Machine learning-based traffic prediction models for intelligent transportation systems[J]. Computer Networks, 2020, 181: 1389-1286.
    [11] ZHANG W B, YU Y H, QI Y, et al. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportmetrica A: Transport Science, 2019, 15(2): 1688-1711.
    [12] RAMAKRISHNAN N, SONI T. Network traffic prediction using recurrent neural networks[C]//IEEE. 2018 the 17th IEEE International Conference on Machine Learning and Applications. New York: IEEE, 2018: 187-193.
    [13] MA X L, TAO Z M, WANG Y H, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. http://www.researchgate.net/profile/Xiaolei_Ma2/publication/274736791_Long_short-term_memory_neural_network_for_traffic_speed_prediction_using_remote_microwave_sensor_data/links/5588c86608aeb2994444aaf9.pdf
    [14] ZHAO Z, CHEN W H, WU X M, et al. LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75. http://www.keyanzhidian.com/doc/detail?id=2032310304
    [15] FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction[C]//IEEE. 2016 the 31st Youth Academic Annual Conference of Chinese Association of Automation. New York: IEEE, 2016: 324-328.
    [16] MA X L, DAI Z, HE Z B, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818-827. http://www.xueshufan.com/publication/2579495707
    [17] LIU Y P, ZHENG H F, FENG X X, et al. Short-term traffic flow prediction with Conv-LSTM[C]//IEEE. 2017 the 9th International Conference on Wireless Communications and Signal Processing. New York: IEEE, 2017: 1-6.
    [18] CUI Z Y, HENRICKSON K, KE R M, et al. Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4883-4894.
    [19] MEDINA B, SÁNCHEZ E, POZOS P, et al. Urban traffic flow prediction techniques: a review[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 2210-5379. http://www.sciencedirect.com/science/article/pii/S2210537922000725
    [20] 户佐安, 邓锦程, 韩金丽, 等. 图神经网络在交通预测中的应用综述[J]. 交通运输工程学报, 2023, 23(5): 39-61. doi: 10.19818/j.cnki.1671-1637.2023.05.003

    HU Zuo-an, DENG Jin-cheng, HAN Jin-li, et al. Review on application of graph neural network in traffic prediction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 39-61. doi: 10.19818/j.cnki.1671-1637.2023.05.003
    [21] LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[J]. ArXiv Preprint, 2018, DOI: 10.48550arXiv.1707.01926.
    [22] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//ACM. Proceedings of the 21th International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 3634-3640.
    [23] ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
    [24] WU Z H, PAN S R, LONG G D, et al. Graph wavenet for deep spatial-temporal graph modeling[J]. ArXiv Preprint, 2019, DOI: 10.24963/ijcai.2019/264.
    [25] GUO S N, LIN Y F, WAN H Y, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(11): 5415-5428. http://www.keyanzhidian.com/doc/detail?id=2069830564
    [26] WANG X, ZHU M Q, BO D Y, et al. AM-GCN: adaptive multi-channel graph convolutional networks[C]//ACM. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1243-1253.
    [27] 曲栩, 甘锐, 安博成, 等. 基于广义时空图卷积网络的交通群体运动态势预测[J]. 交通运输工程学报, 2022, 22(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2022.03.006

    QU Xu, GAN Rui, AN Bo-cheng, et al. Prediction of traffic swarm movement situation based on generalized spatio-temporal graph convolution network[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2022.03.006
    [28] FANG Z, LONG Q Q, SONG G J, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]// ACM. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 364-373.
    [29] 崔建勋, 要甲, 赵泊媛. 基于深度学习的短期交通流预测方法综述[J]. 交通运输工程学报, 2024, 24(2): 50-64. doi: 10.19818/j.cnki.1671-1637.2024.02.003

    CUI Jian-xun, YAO Jia, ZHAO Bo-yuan. Review on short-term traffic flow prediction methods based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 50-64. doi: 10.19818/j.cnki.1671-1637.2024.02.003
    [30] WU Y K, TAN H C, QIN L Q, et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d7a038c4f0d3776bcead726010596c60
    [31] AL-NAYMAT G, CHAWLA S, TAHERI J. Sparse DTW: a novel approach to speed up dynamic time warping[J]. ArXiv Preprint, 2012, DOI: 10.48550arXiv.1201.2969.
    [32] LI M Z, ZHU Z X. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]//AAAI. Proceedings of the 35th AAAI Conference on Artificial Intelligence. New York: AAAI, 2021: 4189-4196.
    [33] JIN M, ZHENG Y, LI Y F, et al. Multivariate time series forecasting with dynamic graph neural odes[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(9): 9168-9180.
    [34] BUI K N, CHO J, YI H. Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues[J]. Applied Intelligence, 2022, 52(3): 2763-2774. doi: 10.1007/s10489-021-02587-w?utm_content=meta
    [35] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//AAAI. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. New York: AAAI, 2019: 922-929.
    [36] SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]// AAAI. Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 914-921.
    [37] VINAYAKUMAR R, SOMAN K P, POORNACHANDRAN P. Applying deep learning approaches for network traffic prediction[C]//IEEE. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). New York: IEEE, 2017: 2353-2358.
    [38] TAGGAR R J. Point forecasting and forecast evaluation with generalized Huber loss[J]. Electronic Journal of Statistics, 2022, 16(1): 201-231. http://arxiv.org/pdf/2108.12426
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  122
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-31
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回