留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢结构用高强度螺栓摩擦型连接抗剪性能的腐蚀退化

卢林枫 聂少锋 丁松林 马忠义 李瑞 王为 RAFTERYGary

卢林枫, 聂少锋, 丁松林, 马忠义, 李瑞, 王为, RAFTERYGary. 钢结构用高强度螺栓摩擦型连接抗剪性能的腐蚀退化[J]. 交通运输工程学报, 2025, 25(2): 218-234. doi: 10.19818/j.cnki.1671-1637.2025.02.014
引用本文: 卢林枫, 聂少锋, 丁松林, 马忠义, 李瑞, 王为, RAFTERYGary. 钢结构用高强度螺栓摩擦型连接抗剪性能的腐蚀退化[J]. 交通运输工程学报, 2025, 25(2): 218-234. doi: 10.19818/j.cnki.1671-1637.2025.02.014
LU Lin-feng, NIE Shao-feng, DING Song-lin, MA Zhong-yi, LI Rui, WANG Wei, RAFTERY Gary. Corrosion degradation of shear performance in friction-type connections with high-strength bolts for steel structures[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 218-234. doi: 10.19818/j.cnki.1671-1637.2025.02.014
Citation: LU Lin-feng, NIE Shao-feng, DING Song-lin, MA Zhong-yi, LI Rui, WANG Wei, RAFTERY Gary. Corrosion degradation of shear performance in friction-type connections with high-strength bolts for steel structures[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 218-234. doi: 10.19818/j.cnki.1671-1637.2025.02.014

钢结构用高强度螺栓摩擦型连接抗剪性能的腐蚀退化

doi: 10.19818/j.cnki.1671-1637.2025.02.014
基金项目: 

国家留学基金资助项目 202206560008

详细信息
    作者简介:

    卢林枫(1972-),男,黑龙江龙江人,长安大学教授,工学博士,从事钢结构研究

    通讯作者:

    聂少锋(1981-),男,河北石家庄人,长安大学教授,工学博士

  • 中图分类号: U448.36

Corrosion degradation of shear performance in friction-type connections with high-strength bolts for steel structures

Funds: 

China Scholarship Council 202206560008

More Information
    Corresponding author: NIE Shao-feng (1981-), male, professor, PhD, niesf@chd.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为了调查和对比外部和内部涂料防腐对高强度螺栓摩擦型连接抗剪性能的影响,开展了相关试验研究;在摩擦面有无防腐涂层和有无外部防腐涂装,以及考虑外部防腐涂装施工维护的预设条件下,进行了17组43个高强度螺栓摩擦型连接件的未腐蚀和腐蚀后的抗剪性能试验,对涂刷环氧富锌底漆和醇溶性桥梁专用无机防锈防滑底漆的摩擦面抗滑移系数,摩擦面采用常见喷砂处理的摩擦面抗滑移系数进行了校准试验。试验结果表明:摩擦面喷砂的抗滑移系数为0.44,达不到规范建议值;摩擦面涂环氧富锌底漆的抗滑移系数为0.27,摩擦面涂刷醇溶性桥梁专用无机防锈防滑底漆的抗滑移系数为0.50,二者都高于规范建议值。人工模拟C4大气腐蚀环境,开展干湿交替铜加速乙酸盐雾试验(CASS);完成了摩擦面喷砂处理、涂刷环氧富锌底漆、涂刷醇溶性桥梁专用无机防锈防滑底漆和外部涂装防腐以及未防腐试件的一次腐蚀试验;外部防腐涂料经施工维护后的二次腐蚀试验。试验结果表明:室内加速腐蚀试验的加速性是可预和可控的;外部防腐涂料不能阻止高强度螺栓摩擦型连接抗剪承载力的显著退化,退化幅度为4.9%~19.0%;摩擦面经涂料防腐后,能有延缓连接抗剪承载力的腐蚀退化;钢结构外部防腐涂料经过施工维护后的防腐蚀能力会逐渐下降。通过高强度螺栓摩擦型连接的抗滑移试验,调查了在人工模拟C4大气腐蚀环境下,不同预设条件(内外防腐涂料、外防腐涂料维护)下腐蚀对高强度螺栓摩擦型连接抗剪承载力退化的影响;研究结果表明:外部无防腐的高强度螺栓摩擦型连接的抗剪承载力退化程度约为有外涂料防腐对比试件的1.5~1.8倍;C4大气腐蚀环境下,有外防腐的高强度螺栓摩擦型连接抗剪承载力退化的主因是抗滑移系数降低;无外防腐的高强度螺栓摩擦型连接抗剪承载力退化的主因是高强度螺栓预拉力损失。

     

  • 图  1  抗滑移系数试件(单位:mm)

    Figure  1.  Anti-slip coefficient specimen (unit: mm)

    图  2  抗剪试验示意

    Figure  2.  Schematic of shear test

    图  3  三种摩擦面处理方式

    Figure  3.  Three types of friction surface treatment methods

    图  4  测量涂层厚度

    Figure  4.  Measure the coating thickness

    图  5  校准及施加螺栓的预拉力

    Figure  5.  Calibration and application of bolt clamping force

    图  6  三种试件代表

    Figure  6.  Three representative specimens

    图  7  测算腐蚀速率小试样

    Figure  7.  Small samples for measuring corrosion rate

    图  8  表面防腐处理后的抗滑移试件

    Figure  8.  Anti-slip specimen after surface anti-corrosion treatment

    图  9  盐雾试验机及试件

    Figure  9.  Salt spray testing machine and specimens

    图  10  滑移后的螺栓连接

    Figure  10.  Bolt connection after sliding

    图  11  抗滑移系数校准试件滑移后的摩擦面

    Figure  11.  Anti-slip coefficient calibration specimens' friction surface after slipping

    图  12  M16螺栓系列试件荷载-位移曲线

    Figure  12.  Load-displacement curves of M16 bolt series specimens

    图  13  M18螺栓系列试件荷载-位移曲线

    Figure  13.  Load-displacement curves of M18 bolt series specimens

    图  14  M20螺栓系列试件荷载-位移曲线

    Figure  14.  Load-displacement curves of M20 bolt series specimens

    图  15  Q355B钢试样的腐蚀

    Figure  15.  Corrosion of Q355B steel sample

    图  16  外防腐和未防腐试件的腐蚀情况

    Figure  16.  Corrosion conditions of externally protected and unprotected specimens

    图  17  腐蚀试件滑移后的摩擦面

    Figure  17.  Friction surface of corroded specimen after sliding

    图  18  M20腐蚀试件的荷载-位移曲线

    Figure  18.  Load-displacement curves of M20 corroded specimens

    图  19  M20腐蚀试件的滑移荷载退化率

    Figure  19.  Slip load degradation rates of M20 corroded specimen

    表  1  碳钢大气环境腐蚀性等级分类

    Table  1.   Classification of atmospheric corrosiveness levels of carbon steel

    腐蚀性等级 腐蚀名称 碳钢第1年的腐蚀速率/(μm·年-1)
    C1 微腐蚀性 ≤1.3
    C2 弱腐蚀性 1.3~25
    C3 中等腐蚀性 25~50
    C4 强腐蚀性 50~80
    C5 很强腐蚀性 80~200
    CX 极强腐蚀性 200~700
    下载: 导出CSV

    表  2  主要城市碳钢第1年腐蚀速率及腐蚀性分级

    Table  2.   First-year corrosion rate and corrosion classification of carbon steel in major cities

    城市 腐蚀速率/(μm·年-1) 腐蚀等级
    Q235钢 A3钢 3C钢 20钢 平均
    北京 45.0 37.4 31.6 35.8 37.5 C3
    青岛 79.0 74.9 58.9 71.5 71.1 C4
    武汉 58.0 40.5 39.7 49.4 46.9 C3
    江津 88.0 69.0 58.3 80.6 74.0 C4
    广州 53.0 56.8 50.3 56.2 54.1 C4
    琼海 36.0 31.4 28.2 32.2 31.9 C3
    下载: 导出CSV

    表  3  钢结构表面防腐涂层配套做法

    Table  3.   Anti-corrosion coating on surface of steel structure

    腐蚀环境 涂层 涂料名称 厚度/μm
    C4强腐蚀性 底层 环氧富锌底漆 70
    中间层 环氧云铁漆 70
    面层 丙烯酸聚氨酯涂料 100
    总干膜厚度 240
    下载: 导出CSV

    表  4  试件编号及实测尺寸

    Table  4.   Number and measured dimensions of specimens

    试件 d0/mm t1/mm t2/mm b/mm 摩擦面涂层厚度/μm
    W20-1 22.0 15.67 7.63 100.2 0.00
    W20-2 22.0 15.73 7.62 99.6 0.00
    W20-3 22.0 15.75 7.64 100.7 0.00
    C20-1 22.0 15.71 7.60 98.8 113.84
    C20-2 22.0 17.75 7.67 98.6 110.75
    C20-3 22.0 15.76 7.65 99.7 109.63
    S20-1 22.0 15.74 7.66 100.1 92.85
    S20-2 22.0 15.75 7.64 99.4 90.84
    S20-3 22.0 15.69 7.64 99.2 95.67
    W18-1 20.0 15.74 7.65 98.5 0.00
    W18-2 20.0 15.74 7.65 99.8 0.00
    W18-3 20.0 15.76 7.62 100.0 0.00
    C18-1 20.0 15.73 7.62 100.6 116.43
    C18-2 20.0 15.73 7.61 100.2 113.40
    C18-3 20.0 15.71 7.64 99.4 108.49
    S18-1 20.0 17.72 7.60 98.9 89.73
    S18-2 20.0 15.73 7.66 99.8 96.26
    S18-3 20.0 15.76 7.65 100.7 92.44
    W16-1 17.5 15.69 7.62 100.4 0.00
    W16-2 17.5 15.74 7.63 99.8 0.00
    W16-3 17.5 15.74 7.63 99.3 0.00
    C16-1 17.5 15.72 7.65 101.1 112.46
    C16-2 17.5 15.73 7.64 100.4 114.73
    C16-3 17.5 15.72 7.64 99.5 110.71
    S16-1 17.5 15.71 7.63 99.7 92.28
    S16-2 17.5 15.75 7.62 100.8 92.36
    S16-3 17.5 15.75 7.61 99.6 90.73
    下载: 导出CSV

    表  5  Q355B试样编号及实测数据

    Table  5.   Number and measured data of Q355B sample

    试块 腐蚀区域面积/mm×mm 腐蚀前质量/g 试块厚度/mm 腐蚀时间/d
    C1-1 20×20 282.09 15.72 1
    C1-2 20×20 257.55 15.73 1
    C2-1 20×20 111.70 7.66 1
    C2-2 20×20 119.13 7.63 1
    C3-1 20×20 238.55 15.73 3
    C3-2 20×20 255.76 15.68 3
    C4-1 20×20 113.65 7.62 3
    C4-2 20×20 117.10 7.62 3
    C5-1 20×20 264.70 15.75 5
    C5-2 20×20 257.56 15.74 5
    C6-1 20×20 118.38 7.64 5
    C6-2 20×20 113.16 7.65 5
    C7-1 20×20 282.06 15.70 10
    C7-2 20×20 257.52 15.72 10
    C8-1 20×20 111.61 7.63 10
    C8-2 20×20 119.07 7.65 10
    C9-1 20×20 238.46 15.72 20
    C9-2 20×20 255.67 15.72 20
    C10-1 20×20 113.54 7.62 20
    C10-2 20×20 116.99 7.66 20
    C11-1 20×20 264.52 15.74 40
    C11-2 20×20 257.40 15.71 40
    C12-1 20×20 118.23 7.63 40
    C12-2 20×20 112.98 7.64 40
    下载: 导出CSV

    表  6  腐蚀试件编号及实测数据

    Table  6.   Number and measured data of corrosion specimen

    试件编号 d0/mm t1/mm t2/mm b/mm 摩擦面涂层厚度/μm
    WC20-1 22 15.69 7.62 99.2
    WC20-2 22 15.76 7.62 99.8
    WC20-3 22 15.73 7.64 100.4
    WC20-4 22 15.69 7.66 100.6
    CC20-1 22 15.75 7.64 100.2 109.65
    CC20-2 22 15.72 7.65 101.3 115.29
    CC20-3 22 15.68 7.65 101.0 113.48
    CC20-4 22 15.70 7.62 100.8 114.66
    SC20-1 22 15.72 7.63 100.6 88.27
    SC20-2 22 15.74 7.63 100.7 95.43
    SC20-3 22 15.76 7.64 99.8 93.46
    SC20-4 22 15.72 7.62 100.7 92.09
    WWC20-1 22 15.72 7.64 100.3
    WWC20-2 22 15.73 7.63 100.2
    WWC20-3 22 15.70 7.64 100.4
    WWC20-4 22 15.74 7.65 100.4
    下载: 导出CSV

    表  7  腐蚀试件表面防腐涂层厚度

    Table  7.   Anti-corrosion coating thickness on surface of corrosion specimens

    试件 富锌底漆厚度/μm 中间漆厚度/μm 面漆厚度/μm 总厚度/μm
    WC20-1 73.82 70.70 98.76 243.28
    WC20-2 75.63 72.69 106.30 254.62
    WC20-3 68.26 75.97 102.43 246.66
    WC20-4 74.26 74.28 100.20 248.74
    CC20-1 70.58 70.23 103.44 244.25
    CC20-2 65.28 67.48 105.30 238.06
    CC20-3 66.47 76.93 97.35 240.75
    CC20-4 73.99 76.42 94.38 244.79
    SC20-1 67.54 71.70 107.57 246.81
    SC20-2 77.29 72.61 106.39 256.29
    SC20-3 71.50 69.83 104.76 246.09
    SC20-4 72.43 74.84 101.63 248.90
    下载: 导出CSV

    表  8  抗滑移系数校准结果

    Table  8.   Calibration results of anti-slip coefficient

    试件 Pi/kN Nv/kN μi μ1 μ μG/μQ
    W20-1 125 226.04 0.45 0.45 0.44 0.50/0.45
    W20-2 125 234.85 0.47
    W20-3 125 210.75 0.42
    W18-1 100 182.20 0.46 0.43
    W18-2 100 158.45 0.40
    W18-3 100 176.39 0.44
    W16-1 80 135.67 0.42 0.44
    W16-2 80 147.01 0.46
    W16-3 80 139.09 0.43
    C20-1 125 149.97 0.30 0.28 0.27 0.15/0.25
    C20-2 125 138.00 0.28
    C20-3 125 129.71 0.26
    C18-1 100 98.48 0.25 0.26
    C18-2 100 106.65 0.27
    C18-3 100 105.00 0.26
    C16-1 80 97.77 0.31 0.28
    C16-2 80 81.20 0.25
    C16-3 80 91.50 0.29
    S20-1 125 252.15 0.50 0.50 0.50 0.40/0.45
    S20-2 125 247.20 0.49
    S20-3 125 243.45 0.49
    S18-1 100 197.78 0.49 0.51
    S18-2 100 206.75 0.52
    S18-3 100 203.80 0.51
    S16-1 80 151.34 0.47 0.49
    S16-2 80 156.75 0.49
    S16-3 80 158.78 0.50
    注:μi为单独试件的抗滑移系数;μ1为一组3个试件抗滑移系数的平均值;μ是某一种摩擦面处理方式所有试件抗滑移系数的平均值;对于μG的计算,C试件是按聚氨酯富锌底漆表面取值,S试件是按无机富锌漆表面取值。对于μQ的计算,C试件是按防锈底漆的表面取值,S试件是按抗滑型无机富锌漆表面取值。
    下载: 导出CSV

    表  9  Q355B钢的腐蚀试验结果

    Table  9.   Corrosion test results of Q355B steel

    试件 腐蚀后质量/g 质量减少量/g 腐蚀深度/μm 平均腐蚀深度/μm 腐蚀速率/(μm ·d-1) 平均腐蚀速率/(μm ·d-1)
    C1-1 282.06 0.03 9.55 23.88 9.55 23.88
    C1-2 257.52 0.03 9.55 9.55
    C2-1 111.61 0.09 28.66 28.66
    C2-2 119.07 0.06 19.10 19.10
    C3-1 238.46 0.09 28.66 31.85 9.55 10.62
    C3-2 255.67 0.09 28.66 9.55
    C4-1 113.54 0.11 35.03 11.68
    C4-2 116.99 0.11 35.03 11.68
    C5-1 264.52 0.18 57.32 53.34 11.46 10.67
    C5-2 257.40 0.16 50.96 10.19
    C6-1 118.23 0.15 47.77 9.55
    C6-2 112.98 0.18 57.32 11.46
    C7-1 281.68 0.38 121.02 112.26 12.10 11.23
    C7-2 257.16 0.36 114.65 11.47
    C8-1 111.28 0.33 105.10 10.51
    C8-2 118.73 0.34 108.28 10.83
    C9-1 237.93 0.53 168.79 171.97 8.44 8.60
    C9-2 255.13 0.54 171.97 8.60
    C10-1 112.99 0.55 175.16 8.76
    C10-2 116.45 0.54 171.97 8.60
    C11-1 263.53 0.99 315.29 296.98 7.88 7.43
    C11-2 256.48 0.92 292.99 7.32
    C12-1 117.32 0.91 289.81 7.25
    C12-2 112.07 0.91 289.81 7.25
    下载: 导出CSV

    表  10  室内加速腐蚀时间

    Table  10.   Time of indoor accelerated corrosion

    C4城市腐蚀模型 10年试验腐蚀深度/μm 式(4)第20天腐蚀深度/μm 对应室内腐蚀时间/d 设定室内腐蚀时间/d
    青岛(d=51T10.60) 203.04 181.74 23.5 20.0
    江津(d=61T10.43) 164.18 181.74 17.3
    广州(d=46T10.52) 152.32 181.74 15.5
    平均值 173.18 181.74 18.8
    误差/% 4.9 6.4
    注:T1为大气暴露腐蚀时间(年)。
    下载: 导出CSV

    表  11  腐蚀试件抗滑移试验结果

    Table  11.   Results of anti-slip test on corroded specimens

    试件 Pi/kN μ* Nv/kN Nv/kN μi μ1
    WC20-1 125.00 0.44 207.73 203.49 0.42 0.41
    WC20-2 125.00 199.26 0.40
    WC20-3 125.00 184.83 181.26 0.37 0.36
    WC20-4 125.00 177.70 0.35
    CC20-1 125.00 0.27 133.88 130.75 0.27 0.26
    CC20-2 125.00 127.62 0.25
    CC20-3 125.00 130.13 121.07 0.26 0.24
    CC20-4 125.00 112.01 0.22
    SC20-1 125.00 0.50 242.22 235.41 0.48 0.47
    SC20-2 125.00 228.61 0.46
    SC20-3 125.00 225.36 220.38 0.45 0.44
    SC20-4 125.00 215.40 0.43
    WWC20-1 117.59 0.44 191.43 187.39 0.41
    WWC20-2 112.63 183.36
    WWC20-3 111.34 161.45 155.76 0.36
    WWC20-4 103.49 150.08
    注:μ*为前文校准后的抗滑移系数。
    下载: 导出CSV

    表  12  预拉力折减后的腐蚀试件抗滑移试验结果

    Table  12.   Anti-slip test results of corroded specimens after preload reduction

    试件 Pi/kN Nv/kN Nv/kN μi μ1
    WC20-1 117.00 207.73 203.49 0.44 0.43
    WC20-2 117.00 199.26 0.43
    WC20-3 117.00 184.83 181.26 0.39 0.39
    WC20-4 117.00 177.70 0.38
    CC20-1 117.00 133.88 130.75 0.29 0.28
    CC20-2 117.00 127.62 0.27
    CC20-3 117.00 130.13 121.07 0.28 0.26
    CC20-4 117.00 112.01 0.24
    SC20-1 117.00 242.22 235.41 0.52 0.50
    SC20-2 117.00 228.61 0.49
    SC20-3 117.00 225.36 220.38 0.48 0.47
    SC20-4 117.00 215.40 0.46
    WWC20-1 110.06 191.43 187.39 0.43
    WWC20-2 105.42 183.36
    WWC20-3 104.21 161.45 155.76 0.39
    WWC20-4 96.87 150.08
    下载: 导出CSV
  • [1] ZHANG Gang, ZHAO Xiao-cui, LU Ze-lei, et al. Review and discussion on fire behavior of bridge girders[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 422-446. doi: 10.1016/j.jtte.2022.05.002
    [2] 张岗, 贺拴海, 宋超杰, 等. 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34(1): 1-10. doi: 10.3969/j.issn.1001-7372.2021.01.001

    ZHANG Gang, HE Shuan-hai, SONG Chao-jie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-10. doi: 10.3969/j.issn.1001-7372.2021.01.001
    [3] 何晓宇, 夏宏杰, 徐小梅, 等. 海洋大气环境下桥梁钢构件连接螺栓防腐技术研究[J]. 装备环境工程, 2023, 20(1): 76-82.

    HE Xiao-yu, XIA Hong-jie, XU Xiao-mei, et al. Study on anticorrosive technology of connecting bolts of bridge steel members in marine atmospheric environment[J]. Equipment Environmental Engineering, 2023, 20(1): 76-82.
    [4] 陶晓燕, 沈家华, 史志强. 我国钢桥高强度螺栓连接的发展历程及展望[J]. 铁道建筑, 2017, 59(9): 1-4. doi: 10.3969/j.issn.1003-1995.2017.09.01

    TAO Xiao-yan, SHEN Jia-hua, SHI Zhi-qiang. Development history and prospect of high strength bolt connection of steel bridge in China[J]. Railway Engineering, 2017, 59(9): 1-4. doi: 10.3969/j.issn.1003-1995.2017.09.01
    [5] 陈开利, 叶庆旱. 日本钢桥高强度螺栓病害处治与新型螺栓研究[J]. 世界桥梁, 2021, 49(4): 98-105. doi: 10.3969/j.issn.1671-7767.2021.04.015

    CHEN Kai-li, YE Qing-zao. Remedial measures for high-strength bolts deterioration and research on novel-type bolts for steel bridges in Japan[J]. World Bridge, 2021, 49(4): 98-105. doi: 10.3969/j.issn.1671-7767.2021.04.015
    [6] 张萌. 腐蚀钢结构高强螺栓摩擦型连接性能退化试验研究[D]. 西安: 西安建筑科技大学, 2011.

    ZHANG Meng. Corrosion of high strength steel bolt friction type connection test of performance degradation[D]. Xi'an: Xian University of Architecture and Technology, 2011.
    [7] 俞冬. 钢桥钢结构的腐蚀及其对力学性能影响的研究[D]. 南昌: 华东交通大学, 2016.

    YU Dong. Study on corrosion and its influence on mechanical properties of steel bridge structure[D]. Nanchang: East China Jiaotong University, 2016.
    [8] 郭嘉琪. 腐蚀高强螺栓节点力学性能退化分析与实验研究[D]. 大连: 大连理工大学, 2020.

    GUO Jia-qi. Analysis and experimental study on mechanical properties degradation of corroded high strength bolt joints[D]. Dalian: Dalian University of Technology, 2020.
    [9] WANG Hui-li, TANG Fu-jian, QIN Si-feng, et al. Corrosion -induced mechanical degradation of high-strength bolted steel connection[J]. Journal of Materials in Civil Engineering, 2020, 32(8): 04020203. doi: 10.1061/(ASCE)MT.1943-5533.0003275
    [10] 洪绍正. 锈蚀高强螺栓抗剪连接承载性能研究[D]. 马鞍山: 安徽工业大学, 2021.

    HONG Shao-zheng. Research on carrying capacity of corroded high-strength bolt shear connections[D]. Ma'anshan: Anhui University of Technology, 2021.
    [11] KONG Zheng-yi, YANG Fan, JIN Ya, et al. Experimental study on bearing capacity of corroded high-strength bolt connections under shear force[J]. Construction and Building Materials, 2021, 309: 125117. doi: 10.1016/j.conbuildmat.2021.125117
    [12] JIANG C, XIONG W, CAI C S, et al. Experimental study on the shear behavior of friction connections with corrosion damage[J]. Journal of Constructional Steel Research, 2021, 197: 107449.
    [13] AHNJ H, LEE J M, CHEUNG J H, et al. Clamping force loss of high-strength bolts as a result of bolt head corrosion damage: experimental research A[J]. Engineering Failure Analysis, 2016, 59: 509-525. doi: 10.1016/j.engfailanal.2015.08.037
    [14] KIMI T, LEE J M, HUH J, et al. Tensile behaviors of friction bolt connection with bolt head corrosion damage: Experimental research B[J]. Engineering Failure Analysis, 2016, 59: 526-543. doi: 10.1016/j.engfailanal.2015.08.038
    [15] LI Ming, YAO Ling-bo, ZHANG Shuo-shuo, et al. Study on bolt head corrosion influence on the clamping force loss of high strength bolt[J]. Engineering Failure Analysis, 2021, 129: 105660. doi: 10.1016/j.engfailanal.2021.105660
    [16] ISO 12944-2: 2017, Paints and varnishes-corrosion protection of steel structures by protective paint system-Part 2: classification of environments[S].
    [17] 金伟峰. 既有大跨度钢结构空间管桁架锈蚀情况分析[J]. 建筑施工, 2022, 44(6): 1410-1412, 1421.

    JIN Wei-feng. Corrosion analysis of existing large span steel structure space pipe truss[J]. Building Construction, 2022, 44(6): 1410-1412, 1421.
    [18] 游智越, 梁会敏, 朱荣强, 等. 热带海洋环境下海南建筑钢结构锈蚀现状分析[J]. 工程技术研究, 2022, 7(10): 7-9.

    YOU Zhi-yue, LIANG Hui-min, ZHU Rong-qiang, et al. Analysis on the corrosion status of building steel structure in Hainan under tropical marine environment[J]. Engineering and Technology Research, 2022, 7(10): 7-9.
    [19] JGJ 82-2011, 钢结构高强度螺栓连接技术规程[S].

    JGJ 82-2011, Technical specification for high strength bolt connections of steel structures[S].
    [20] JTG D64-2015, 公路钢结构桥梁设计规范[S].

    JTG D64-2015, Specifications for design of highway steel bridge[S].
    [21] GB/T 19292.1-2018, 金属合金的腐蚀大气腐蚀性第1部分: 分类、测定和评估[S].

    GB/T 19292.1-2018, Corrosion of metals and alloys- Corrosivity of atmospheres-Parts 1: classification, determination and estimation[S].
    [22] JGJ/T251-2011, 建筑钢结构防腐蚀技术规程[S].

    JGJ/T251-2011, Technical specification for anti-corrosion of building steel structure[S].
    [23] 陈尧. 腐蚀环境下基于全寿命设计需求与时变可靠度的钢结构性能退化规律研究[D]. 南京: 东南大学, 2021.

    CHEN Yao. Research on the degradation of steel structures for the needs of structural life-cycle design and time-dependent reliability in corrosive environment[D]. Nanjing: Southeast University, 2021.
    [24] CECS 343: 2013, 钢结构防腐蚀涂装技术规程[S].

    CECS 343: 2013, Technical specification for painting and anticorrosion of steel structures[S].
    [25] 陈新华. 高强度螺栓连接摩擦面抗滑移系数试验[J]. 建筑结构, 2010, 40(增1): 209-212.

    CHEN Xin-hua. Anti-slip coefficient test of friction surface of high strength bolted connection[J]. Building Structure, 2010, 40(S1): 209-212.
    [26] GB50017-2017, 钢结构设计标准[S].

    GB50017-2017, Standard for design of steel structures[S].
    [27] GB/T 10125-2021, 人造气氛腐蚀试验盐雾试验[S].

    GB/T 10125-2021, Corrosion tests in artificial atmospheres-salt spray tests[S].
    [28] 梁彩凤, 侯文泰. 碳钢及低合金钢8年大气暴露腐蚀研究[J]. 腐蚀科学与防护技术, 1995, 7(3): 183-186.

    LIANG Cai-feng, HOU Wen-tai. Atmospheric corrosion of carbon steels and low alloy steels[J]. Corrosion Science and Protection Technology, 1995, 7(3): 183-186.
    [29] 梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005, 25(1): 1-6. doi: 10.3969/j.issn.1005-4537.2005.01.001

    LIANG Caif-eng, HOU Wen-tai. Sixteen-year atmospheric corrosion exposure study of steels[J]. Journal of Chinese Society for Corrosion and Protection, 2005, 25(1): 1-6. doi: 10.3969/j.issn.1005-4537.2005.01.001
    [30] Specification for structural joints using ASTM A325 or A490 bolts[S].
    [31] 石永久, 施刚, 王元清, 等. 高强度螺栓应变松弛的长时间试验监测[J]. 施工技术, 2004, 33(11): 11-13. doi: 10.3969/j.issn.1002-8498.2004.11.005

    SHI Yong-jiu, SHI Gang, WANG Yuan-qing, et al. Long-time monitoring on strain relaxation of high strength bolts in end-plate connections[J]. Construction Technology, 2004, 33(11): 11-13. doi: 10.3969/j.issn.1002-8498.2004.11.005
    [32] 余雷, 吴典含, 王辉, 等. 不锈钢高强度螺栓连接预紧力松弛试验研究[J/OL]. 工业建筑, 2023, http://kns.cnki.net/kcms/detail/11.2068.TU.20230413.1510.002.html.

    YU Lei, WU Dian-han, WANG Hui, et al. Test on the preload loss of stainless steel high-strength bolt connection[J/OL]. Industrial Construction, 2023, http://kns.cnki.net/kcms/detail/11.2068.TU.20230413.1510.002.html.
    [33] CHAO J, WEN X, CAI C S, et al. Preload loss of high- strength bolts in friction connections considering corrosion damage and fatigue loading[J]. Engineering Failure Analysis, 2022, 137: 106416. doi: 10.1016/j.engfailanal.2022.106416
    [34] GB/T 228.1-2021, 金属材料拉伸试验第1部分: 室温试验方法[S].

    GB/T 228.1-2021, Metallic materials-tensile testing-Part 1: method of test at room temperature[S].
  • 加载中
图(19) / 表(12)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  134
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-02
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回