Multi-objective optimization algorithm for upper stiffened double-deck steel truss girder bridge based on response surface
-
摘要: 为优化上加劲双层钢桁梁桥设计参数,在确保结构安全性的同时降低上部结构工程量,提出了一种基于响应面的适用于多目标优化的改进AdaDelta算法。以一座公轨两用桥为依托工程,建立了关于桥梁初始设计参数的多尺度混合单元模型,进行了计算精度验证;基于桥型结构及受力特点,选取上下弦杆高度、桁架高度、加劲竖杆最大长度和桥面板厚度作为待优化结构参数,选定结构跨中活载挠度、加劲弦最大拉应力、桥面板最大弯曲应力、墩顶截面下弦杆最大压应力、腹杆最大稳定压应力和上部结构工程量为目标函数,建立了反映待优化参数与目标函数非线性关系的响应面拟合方程组;采用改进AdaDelta算法对上加劲双层钢桁梁桥的设计参数进行优化,并与PSO及NSGA-Ⅲ的优化结果进行了对比。研究结果表明:响应面法可准确拟合待优化参数与目标响应函数间的数值关系,采用轻量化方程拟合精度达97%以上、变异系数小于1%,在保证计算精度的同时大幅提升了计算效率;提出的改进AdaDelta算法保留了传统AdaDelta算法收敛速度快、优化过程抖动小的特点,引入的满意度与重要性双权重控制准则使优化结果针对性更强、工程适用性更广,多目标优化满意度结果可平均提升6%;设计参数优化后发生了结构内力重分布,结构跨中活载挠度、加劲弦最大拉应力和桥面板最大弯曲应力分别增加了10.37%、4.65%和4.99%,墩顶截面下弦杆最大压应力和腹杆最大稳定压应力分别降低了0.86%和4.34%,上部结构的工程量降低了4.11%,在保证结构安全的前提下大幅降低了工程造价。提出的算法高效且易于操作,可根据具体优化需求灵活调控权重以达成不同目标导向的设计决策,适合推广至其他体系桥梁的优化设计实践中。Abstract: To optimize the design parameters of the upper stiffened double-deck steel truss girder bridge to ensure structural safety and reduce the engineering workload of the superstructure, an improved AdaDelta algorithm based on the response surface method suitable for multi-objective optimization was proposed. Based on a bridge serving both highways and railways, a multi-scale hybrid element model was established for the initial design parameters, and its calculation accuracy was validated. Based on the structural and mechanical characteristics of the bridge, the height of the upper and lower chords, the height of the truss, the maximum length of the stiffened vertical rods, and the thickness of the bridge deck were selected as the structural parameters to be optimized. In addition, the mid-span live load deflection, the maximum tensile stress of stiffened chords, the maximum bending stress of the bridge deck, the maximum compressive stress of lower chords at the top section of piers, the maximum stabilizing compressive stress of web rods, and the engineering workload of the superstructure were selected as the objective functions. A set of response surface fitting equations reflecting the nonlinear relationships between the parameters to be optimized and the objective functions was established. The improved AdaDelta algorithm was applied to optimize the design parameters of the upper stiffened double-deck steel truss girder bridge and compared with the optimization results of PSO and NSGA-Ⅲ. Analysis results show that the response surface method can accurately fit the numerical relationship between the parameters to be optimized and the target response function. The lightweight equation can achieve a fitting accuracy exceeding 97% and a variation coefficient below 1%. This approach significantly enhances computational efficiency while maintaining accuracy. The improved AdaDelta algorithm retains the fast convergence speed and low fluctuation characteristic of the traditional AdaDelta algorithm. By introducing a dual-weight control criterion based on satisfaction and importance, the optimization results become more targeted and applicable for engineering projects. The multi-objective optimization satisfaction results can be improved by an average of 6%. After the optimization of design parameters, the structural internal forces are redistributed. The mid-span live load deflection, the maximum tensile stress of stiffened chords, and the maximum bending stress of the bridge deck increase by 10.37%, 4.65%, and 4.99%, respectively. The maximum compressive stress of the lower chord at the top section of piers and the maximum stabilizing compressive stress of web rods decrease by 0.86% and 4.34%, respectively, and the engineering workload of the superstructure decreases by 4.11%. The project cost is greatly reduced under the premise of ensuring structural safety. The proposed algorithm is efficient and user-friendly. The weights can be flexibly adjusted according to specific optimization requirements to achieve design decisions oriented toward different goals. It is suitable for application in the optimization design practice of bridges in other systems.
-
Key words:
- bridge engineering /
- steel truss girder /
- optimization algorithm /
- response surface /
- light weight /
- hybrid modeling
-
表 1 杆件编号与位置对应关系
Table 1. Corresponding relationship between number and position of rods
杆件类型 杆件位置 W1墩顶 第1跨跨中 W2墩顶 第2跨跨中 W3墩顶 第3跨跨中 W4墩顶 第4跨跨中 W5墩顶 中跨1/4截面 中跨跨中 上弦杆 A00A01 A05A06 A10A11 A15A16
A16A17A21A22 A26A27
A27A28A32A33 A39A40 A46A47 A53A54 A58A59 下弦杆 E00E01 E04E05
E05E06E09E10
E10E11E15E16 E20E21
E21E22E26E27 E31E32
E32E33E38E39
E39E40E45E46
E46E47E52E53
E53E54E58E59 斜杆 A01E00 A05E05
A06E05A10E10
A11E10A16E15
A16E16A21E21
A22E21A27E26
A27E27A32E32
A33E32A39E39
A40E39A46E46
A47E46A53E53
A54E53A59E58 上加劲弦杆 A35S38~S55A58 加劲竖杆 S38A38~S55A55 表 2 待优化参数设置
Table 2. Parameters to be optimized
编号 待优化参数 优化范围/% 水平 低水平 初始值 高水平 A 上下弦杆高度/mm ±20 1 280 1 600 1 920 B 桁架高度/mm ±10 10 800 12 000 13 200 C 加劲竖杆最大长度/mm ±10 28 800 32 000 35 200 D 桥面板厚度/mm ±10 14.4 16.0 17.6 表 3 目标函数设置
Table 3. Objective functions
编号 目标函数 R1 跨中活载挠度/mm R2 加劲弦最大拉应力/MPa R3 桥面板最大弯曲应力/MPa R4 墩顶截面下弦杆最大压应力/MPa R5 腹杆最大稳定压应力/MPa R6 上部结构工程量/t 表 4 设计试验工况
Table 4. Test conditions of design
工况号 待优化参数取值比例/% 工况号 待优化参数取值比例/% A B C D A B C D 1 100 100 100 80 16 120 90 90 90 2 100 100 100 100 17 80 110 110 90 3 120 110 110 90 18 80 90 110 90 4 120 90 110 90 19 80 90 90 110 5 80 110 90 110 20 100 100 100 100 6 100 100 100 120 21 100 100 100 100 7 120 90 90 110 22 60 100 100 100 8 100 100 120 100 23 100 80 100 100 9 80 110 110 110 24 100 120 100 100 10 100 100 100 100 25 120 90 110 110 11 100 100 100 100 26 100 100 100 100 12 100 100 80 100 27 120 110 90 90 13 80 110 90 90 28 120 110 90 110 14 140 100 100 100 29 80 90 90 90 15 80 90 110 110 30 120 110 110 110 表 5 计算概率评估
Table 5. Evaluation of probability calculation
试验设计项 标准差 方差膨胀因子 设计评估计算概率/% 0.5标准差 1.0标准差 2.0标准差 A 0.20 1.00 20.9 63.0 99.5 B 0.20 1.00 20.9 63.0 99.5 C 0.20 1.00 20.9 63.0 99.5 D 0.20 1.00 20.9 63.0 99.5 AB 0.25 1.00 15.5 46.5 96.2 AC 0.25 1.00 15.5 46.5 96.2 AD 0.25 1.00 15.5 46.5 96.2 BC 0.25 1.00 15.5 46.5 96.2 BD 0.25 1.00 15.5 46.5 96.2 CD 0.25 1.00 15.5 46.5 96.2 A2 0.19 1.05 68.7 99.8 99.9 B2 0.19 1.05 68.7 99.8 99.9 C2 0.19 1.05 68.7 99.8 99.9 D2 0.19 1.05 68.7 99.8 99.9 表 6 目标函数限值
Table 6. Optimization target limit
编号 目标函数 限值Rilim R1 跨中活载挠度/mm 272.7 R2 加劲弦最大拉应力/MPa 312 R3 桥面板最大弯曲应力/MPa 220 R4 墩顶截面下弦杆最大压应力/MPa 370.5 R5 腹杆最大稳定压应力/MPa 247.1 表 7 优化程度控制
Table 7. Optimization degree control
编号 目标函数 满意度权重hi 重要性权重wi R1 跨中活载挠度 0.2 1 R2 加劲弦最大拉应力 0.2 3 R3 桥面板最大弯曲应力 0.5 1 R4 墩顶截面下弦杆最大压应力 0.5 3 R5 腹杆最大稳定压应力 0.5 3 R6 上部结构工程量 5.0 5 表 8 目标函数优化结果
Table 8. Objective function optimization results
算法 优化方案 参数优化值 优化系数/% 满意度函数值 A/mm B/mm C/mm D/mm R1 R2 R3 R4 R5 R6 改进AdaDelta 1 1 280.0 11 805.6 29 017.6 14.4 11.55 4.96 4.99 -0.80 -4.46 -4.13 0.698 2 1 280.0 11 768.4 29 382.4 14.4 11.08 4.87 5.04 -0.81 -4.40 -4.12 0.698 3 1 280.0 11 773.2 29 436.8 14.4 10.94 4.79 4.98 -0.84 -4.40 -4.12 0.698 4 1 280.0 11 828.4 28 812.8 14.4 11.80 5.00 4.96 -0.81 -4.49 -4.13 0.698 5 1 280.0 11 737.2 29 849.6 14.4 10.37 4.65 4.99 -0.86 -4.34 -4.11 0.698 PSO 6 1 280.0 11 041.3 33 241.2 14.4 8.98 5.87 8.39 0.41 -3.44 -4.42 0.662 7 1 280.0 11 127.5 33 271.5 14.4 8.23 5.28 7.72 0.08 -3.52 -4.34 0.673 8 1 280.0 11 227.1 30 479.2 14.4 13.22 7.34 8.37 0.61 -3.61 -4.54 0.667 9 1 280.0 11 021.7 33 574.6 14.4 8.47 5.66 8.39 0.37 -3.42 -4.41 0.662 10 1 280.0 11 036.6 32 258.8 14.4 11.04 6.87 8.89 0.75 -3.43 -4.53 0.648 NSGA-Ⅲ 11 1 282.8 11 061.8 33 966.3 14.5 7.21 5.01 7.85 0.10 -3.36 -4.17 0.652 12 1 282.8 11 892.1 30 989.3 14.5 6.67 2.64 3.23 -1.84 -4.12 -3.68 0.670 13 1 282.8 12 174.9 30 989.3 14.5 4.59 1.00 1.32 -2.70 -4.38 -3.41 0.658 14 1 282.8 12 447.1 29 616.5 14.5 5.24 0.58 0.25 -3.09 -4.63 -3.28 0.653 15 1 282.8 12 365.9 29 437.8 14.5 6.18 1.17 0.88 -2.81 -4.56 -3.38 0.658 -
[1] 郑凯锋, 冯霄暘, 衡俊霖, 等. 钢桥2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(增1): 53-69.ZHENG Kai-feng, FENG Xiao-yang, HENG Jun-lin, et al. State-of-the-art review of steel bridges in 2020[J]. Journal of Civil and Environmental Engineering (Chinese and English), 2021, 43(S1): 53-69. [2] CHENG Jin, XU Ming-sai, XU Hang. Mechanical performance analysis and parametric study of double-deck plate-truss composite steel girders of a three-tower four-span suspension bridge[J]. Engineering Structures, 2019, 199: 109648. doi: 10.1016/j.engstruct.2019.109648 [3] DING H S, FANG J, ZHANG L S, et al. A construction technique of incremental launching for a continuous steel truss girder bridge with suspension cable stiffening chords[J]. Structural Engineering International, 2021, 31 (1): 93-98. doi: 10.1080/10168664.2019.1705224 [4] 王佐才, 丁雅杰, 戈壁, 等. 桥梁结构非线性模型修正研究综述[J]. 交通运输工程学报, 2022, 22(2): 59-75. doi: 10.19818/j.cnki.1671-1637.2022.02.004 WANG Zuo-cai, DING Ya-jie, GE Bi, et al. Review on nonlinear model updating for bridge structures[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 59-75. doi: 10.19818/j.cnki.1671-1637.2022.02.004 [5] YE Dan, XU Zhe, LIU Yang-qing. Solution to the problem of bridge structure damage identification by a response surface method and an imperialist competitive algorithm[J]. Scientific Reports, 2022, 12: 16495. doi: 10.1038/s41598-022-17457-9 [6] FANG Shu-jun. Damage detection of long-span bridge structures based on response surface model[J]. Thermal Science, 2020, 24(3): 1497-1504. [7] LI Fei, LIU Yi-kang, YANG Jian. Durability assessment method of hollow thin-walled bridge piers under rockfall impact based on damage response surface[J]. Sustainability, 2022, 14: 1-24. [8] MIAO C Q, ZHUANG M L, DONG B. Stress corrosion of bridge cable wire by the response surface method[J]. Strength of Materials, 2019, 51(4): 646-652. doi: 10.1007/s11223-019-00111-7 [9] HU Si-cong, CHEN Bao-kui, SONG Gu-quan, et al. Resilience- based seismic design optimization of highway RC bridges by response surface method and improved non-dominated sorting genetic algorithm[J]. Bulletin of Earthquake Engineering, 2022, 20(1): 449-476. doi: 10.1007/s10518-021-01232-8 [10] LI Hui-hui, LI Li-feng, WU Wen-peng, et al. Seismic fragility assessment framework for highway bridges based on an improved uniform design-response surface model methodology[J]. Bulletin of Earthquake Engineering, 2020, 18(5): 2329-2353. doi: 10.1007/s10518-019-00783-1 [11] 李立峰, 李名华, 胡睿. 基于易损性的大跨度斜拉桥黏滞阻尼器参数优化[J]. 振动与冲击, 2023, 42(23): 87-94, 102, 208-218.LI Li-feng, LI Ming-hua, HU Rui. Parametric optimization of viscous damper for large-span cable-stayed bridge based on vulnerability[J]. Journal of Vibration and Shock, 2023, 42(23): 87-94, 102, 208-218. [12] 勾红叶, 彭烨, 李梁, 等. 地震作用下铁路双层结合钢桁混合刚构桥行车安全性[J]. 交通运输工程学报, 2022, 22(6): 193-206. doi: 10.19818/j.cnki.1671-1637.2022.06.013 GOU Hong-ye, PENG Ye, LI Liang, et al. Running safety of hybrid rigid frame railway bridge with double-deck combined steel truss during earthquakes[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 193-206. doi: 10.19818/j.cnki.1671-1637.2022.06.013 [13] 马印平, 刘永健, 刘江. 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32(11): 51-61.MA Yin-ping, LIU Yong-jian, LIU Jiang. Multi-scale finite element model updating of CFST composite truss bridge based on response surface method[J]. China Journal of Highway and Transport, 2019, 32(11): 51-61. [14] JI Wei, SHAO Tian-yan. Finite element model updating for improved box girder bridges with corrugated steel webs using the response surface method and fmincon algorithm[J]. KSCE Journal of Civil Engineering, 2021, 25(2): 586-602. doi: 10.1007/s12205-020-0591-3 [15] 李延强, 刘晓慧, 陈泽林, 等. 基于索力响应面法的斜拉桥模型修正[J]. 铁道学报, 2021, 43(2): 168-174.LI Yan-qiang, LIU Xiao-hui, CHEN Ze-lin, et al. Updating of cable-stayed bridge model based on cable force response surface method[J]. Journal of the China Railway Society, 2021, 43(2): 168-174. [16] 孙赟. 基于响应面法的钢-砼叠合梁自锚式悬索桥计算模型修正研究[D]. 长沙: 中南林业科技大学, 2020.SUN Yun. Research on updation of suspension bridge model of steel-concrete composite based on response surface[D]. Changsha: Central South University of Forestry and Technology, 2020. [17] 许世展, 李杨, 冯冠杰, 等. 基于响应面法的桥梁节段参数模型修正[J]. 铁道科学与工程学报, 2022, 19(6): 1658-1665.XU Shi-zhan, LI Yang, FENG Guan-jie, et al. Model updating of bridge segment parameter based on response surface method[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1658-1665. [18] 张立业, 汪波, 王兵见, 等. 基于响应面法的斜拉桥动力模型修正方法[J]. 公路交通科技, 2022, 39(8): 46-52, 61.ZHANG Li-ye, WANG Bo, WANG Bing-jian, et al. A method for modifying dynamic model of cable-stayed bridge based on response surface method[J]. Journal of Highway and Transportation Research and Development, 2022, 39(8): 46-52, 61. [19] MA Shan-liang, ZHANG Zeng-qi, LIU Xiao-ming, et al. Reuse of red mud in magnesium potassium phosphate cement: reaction mechanism and performance optimization[J]. Journal of Building Engineering, 2022, 61: 105290. doi: 10.1016/j.jobe.2022.105290 [20] 段力, 李元松, 龚国锋, 等. 基于响应面法的斜拉桥参数误差识别施工控制分析[J]. 市政技术, 2019, 37(3): 81-84, 88.DUAN Li, LI Yuan-song, GONG Guo-feng, et al. Parameter error identification of cable-stayed bridge based on the response surface method[J]. Journal of Municipal Technology, 2019, 37(3): 81-84, 88. [21] 占玉林, 黄媛媛, 范梓浩, 等. 基于响应面法的非对称钢桁斜拉桥参数敏感性分析[J]. 铁道建筑, 2023, 63(10): 62-68.ZHAN Yu-lin, HUANG Yuan-yuan, FAN Zi-hao, et al. Sensitivity analysis of asymmetric steel truss cable-stayed bridge based on response surface method[J]. Railway Engineering, 2023, 63(10): 62-68. [22] 占玉林, 侯之瑶, 邵俊虎, 等. 基于响应面法及粒子群算法的异形斜拉桥索力优化[J]. 桥梁建设, 2022, 52(3): 16-23.ZHAN Yu-lin, HOU Zhi-yao, SHAO Jun-hu, et al. Cable force optimization of irregular cable-stayed bridge based on response surface method and particle swarm optimization algorithm[J]. Bridge Construction, 2022, 52(3): 16-23. [23] 王达, 周旺, 李茂侬. 基于响应面法的大跨径砼斜拉桥主梁重量不对称线形修正研究[J]. 公路与汽运, 2022(2): 94-96.WANG Da, ZHOU Wang, LI Mao-nong. Research on weight asymmetry alignment correction of long-span concrete cable-stayed bridge girder based on response surface method[J]. Highways & Automotive Applications, 2022(2): 94-96. [24] WANG Ling-bo, XI Rong-jie, GUO Xin-jun, et al. The structural design and optimization of top-stiffened double-layer steel truss bridges based on the response surface method and particle swarm optimization[J]. Applied Sciences, 2023, 13: 11033. [25] 唐忠国, 李倍安, 刘湘, 等. 基于改进粒子群优化算法的UHPC简支梁桥优化设计[J]. 广西大学学报(自然科学版), 2023, 48(3): 558-570.TANG Zhong-guo, LI Bei-an, LIU Xiang, et al. Optimization design of simply supported UHPC beam bridges based on improved particle swarm optimization algorithm[J]. Journal of Guangxi University (Natural Science Edition), 2023, 48(3): 558-570. [26] LI Qi-yang, ZHOU Li-ming. Multistrategy cooperation particle swarm optimization for fem model update of the continuous warren truss steel railway bridge[J]. Advances in Civil Engineering, 2023, 2023: 9806200. [27] 涂兵, 刘来辉, 邓年春, 等. 基于遗传算法的大跨钢管混凝土桁式拱肋多目标优化[J]. 公路交通科技, 2021, 38(12): 56-63, 72.TU Bing, LIU Lai-hui, DENG Nian-chun, et al. Multi-objective optimization of long-span CFST trussed arch rib based on genetic algorithm[J]. Journal of Highway and Transportation Research and Development, 2021, 38(12): 56-63, 72. [28] 李立峰, 侯坤, 邹德强, 等. 中等跨径钢板组合梁截面布置优化[J]. 浙江大学学报(工学版), 2024, 58(3): 510-517.LI Li-feng, HOU Kun, ZOU De-qiang, et al. Optimization of section layout of steel plate composite beam with medium span[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(3): 510-517. [29] KORUS K, SALAMAK M, JASINSKI M. Optimization of geometric parameters of arch bridges using visual programming fem components and genetic algorithm[J]. Engineering Structures, 2021, 241: 112465. [30] 李红亚, 彭昱忠, 邓楚燕, 等. GA与PSO的混合研究综述[J]. 计算机工程与应用, 2018, 54(2): 20-28, 39.LI Hong-ya, PENG Yu-zhong, DENG Chu-yan, et al. Review of hybrids of GA and PSO[J]. Computer Engineering and Applications, 2018, 54(2): 20-28, 39. [31] 曹通, 白艳萍. 基于梯度下降优化的LSTM对空气质量预测研究[J]. 陕西科技大学学报, 2020, 38(6): 159-164.CAO Tong, BAI Yan-ping. Study on the prediction of air quality based on LSTM with gradient descent optimization[J]. Journal of Shaanxi University of Science and Technology, 2020, 38(6): 159-164. [32] 常永虎, 李虎阳. 基于梯度的优化算法研究[J]. 现代计算机, 2019(17): 3-8, 15.CHANG Yong-hu, LI Hu-yang. Comparison of gradient based optimization algorithms[J]. Modern Computer, 2019(17): 3-8, 15. [33] 刘琴, 杨钻, 王雷. 牛田洋大桥主桥钢桁梁设计[J]. 桥梁建设, 2023, 53(2): 98-104.LIU Qin, YANG Zuan, WANG Lei. Design of steel truss girder of main bridge of Niutianyang Bridge[J]. Bridge Construction, 2023, 53(2): 98-104. [34] 郑亚鹏. 道庆洲大桥标准段钢桁结合梁关键技术研究[J]. 铁道标准设计, 2022, 66(6): 68-73.ZHENG Ya-peng. Research on key technology of steel truss composite beam in standard section of Daoqingzhou Bridge[J]. Railway Standard Design, 2022, 66(6): 68-73. [35] 冯亚成, 张小坤, 陈应陶, 等. 济滨铁路公铁两用黄河特大桥总体设计[J]. 铁道工程学报, 2022, 39(12): 60-65.FENG Ya-cheng, ZHANG Xiao-kun, CHEN Ying-tao, et al. Overall design of Yellow River highway-railway combined super large bridge of Ji'nan-Binzhou Railway[J]. Journal of Railway Engineering Society, 2022, 39(12): 60-65. [36] 彭振华. 三桁刚性悬索加劲钢桁梁关键技术研究[D]. 上海: 同济大学, 2007.PENG Zhen-hua. Study on crucial technique of three main trusses steel bridge with rigid cable[D]. Shanghai: Tongji University, 2007. [37] 苏剑南, 王丰华. 重庆市曾家岩嘉陵江大桥设计简介[J]. 公路交通技术, 2016, 32(6): 38-42.SU Jian-nan, WANG Feng-hua. Brief introduction to design of Zengjiayan Jialing River Bridge of Chongqing[J]. Technology of Highway and Transport, 2016, 32(6): 38-42. [38] 谢兰博, 康晋, 刘汉顺. 杭州市彭埠大桥主桥钢梁设计[J]. 桥梁建设, 2023, 53(4): 116-122.XIE Lan-bo, KANG Jin, LIU Han-shun. Design of steel girders for main bridge of Pengbu Bridge in Hangzhou[J]. Bridge Construction, 2023, 53(4): 116-122. [39] 冯沛, 李凤芹. 济南黄河公铁两用桥主桥结构型式研究[J]. 铁道工程学报, 2010, 27(8): 67-72.FENG Pei, LI Feng-qin. Study on structure type of main span of Jinan Yellow River Highway-Railway Combined Bridge[J]. Journal of Railway Engineering Society, 2010, 27(8): 67-72. [40] 于俊杰, 周成. 公轨合建上加劲连续钢桁梁桥抗震设计研究[J]. 世界桥梁, 2023, 51(增1): 117-124.YU Jun-jie, ZHOU Cheng. Research on seismic design of multipurpose continuous steel truss girder bridge stiffened with rigid cables[J]. World Bridges, 2023, 51(S1): 117-124. [41] 宋法宝, 朱勇骏, 康晋, 等. 钱塘江公轨两用大桥总体设计[J]. 桥梁建设, 2020, 50(3): 92-97.SONG Fa-bao, ZHU Yong-jun, KANG Jin, et al. Overall design of Qiantang River Rail-cum-Road Bridge[J]. Bridge Construction, 2020, 50(3): 92-97. [42] 刘源. 尺寸参数及截面形式对正交异性钢桥面板应力的影响性研究[D]. 兰州: 兰州交通大学, 2018.LIU Yuan. Research on the influence of size parameter and section form on the stress of orthotropic steel deck slab[D]. Lanzhou: Lanzhou Jiaotong University, 2018. -
下载: