留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑行波效应的桥上Ⅲ型板式无砟轨道系统震致响应

张鹏飞 徐朗 唐强强 王承隆 闫斌

张鹏飞, 徐朗, 唐强强, 王承隆, 闫斌. 考虑行波效应的桥上Ⅲ型板式无砟轨道系统震致响应[J]. 交通运输工程学报, 2025, 25(2): 283-295. doi: 10.19818/j.cnki.1671-1637.2025.02.018
引用本文: 张鹏飞, 徐朗, 唐强强, 王承隆, 闫斌. 考虑行波效应的桥上Ⅲ型板式无砟轨道系统震致响应[J]. 交通运输工程学报, 2025, 25(2): 283-295. doi: 10.19818/j.cnki.1671-1637.2025.02.018
ZHANG Peng-fei, XU Lang, TANG Qiang-qiang, WANG Cheng-long, YAN Bin. Seismic response of ballastless track system with Ⅲ-type slab on bridge considering traveling wave effect[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 283-295. doi: 10.19818/j.cnki.1671-1637.2025.02.018
Citation: ZHANG Peng-fei, XU Lang, TANG Qiang-qiang, WANG Cheng-long, YAN Bin. Seismic response of ballastless track system with Ⅲ-type slab on bridge considering traveling wave effect[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 283-295. doi: 10.19818/j.cnki.1671-1637.2025.02.018

考虑行波效应的桥上Ⅲ型板式无砟轨道系统震致响应

doi: 10.19818/j.cnki.1671-1637.2025.02.018
基金项目: 

国家自然科学基金项目 52368063

国家自然科学基金项目 52178425

详细信息
    作者简介:

    张鹏飞(1975-),男,内蒙古赤峰人,华东交通大学教授,工学博士,从事桥上无缝线路设计理论与关键技术研究

  • 中图分类号: U213.9

Seismic response of ballastless track system with Ⅲ-type slab on bridge considering traveling wave effect

Funds: 

National Natural Science Foundation of China 52368063

National Natural Science Foundation of China 52178425

More Information
Article Text (Baidu Translation)
  • 摘要: 为分析考虑行波效应的El-Centro地震波对轨道桥梁结构动力响应的影响,探究行波效应下扣件纵向阻力、固定支座墩/台顶纵向刚度变化时桥梁构件的受力和变形规律,以简支梁桥为研究对象,基于有限元法和梁-板-轨相互作用原理,在ABAQUS平台建立了11~32 m简支梁桥Ⅲ型板式无砟轨道模型,采用直接加速度法模拟行波效应,根据动力响应分析结果,给出了相应影响因素的建议值。研究结果表明:考虑地震行波效应时,不同工况下的桥梁结构沿纵桥向的受力和变形规律基本一致,但考虑行波效应的地震激励使轨道桥梁结构沿行波传播方向发生位移;随着视波速的增大,各构件纵向最大应力/力变化规律不一致,需要结合视波速进行分析;构件纵向最大位移随着视波速的减小而增加,其中墩/台顶纵向位移变化最显著,增幅达49.8%;采用15.0 kN·组-1或10.0 kN·组-1扣件时,构件的受力与变形基本相同,其中构件最大位移差均小于5.0%;使用4.1 kN·组-1小阻力扣件时,增加了除钢轨外其余构件31.6%以上的拉应力,增加了236.0%的构件位移和948.0%的轨板相对位移,因此,建议选择纵向阻力高于10.0 kN·组-1的扣件;固定支座墩/台顶纵向刚度与构件最大受力/变形呈正相关关系,其中轨道板纵向位移增幅最大,为87.2%,因此,桥上采用小于1.0倍系数值的支座纵向刚度。研究成果可为震区桥上Ⅲ型板式无砟轨道结构的抗震设计提供理论参考。

     

  • 图  1  桥上Ⅲ型板式无砟轨道模型

    Figure  1.  Model of ballastless track with Ⅲ-type slab on bridge

    图  2  钢轨应力包络图

    Figure  2.  Rail stress envelope diagram

    图  3  行波效应地震激励示意

    Figure  3.  Schematic of traveling wave effect seismic excitation

    图  4  不同视波速下构件纵向受力包络图

    Figure  4.  Longitudinal stress/force envelope diagram of components under different apparent wave velocities

    图  5  不同视波速下构件纵向位移包络图

    Figure  5.  Longitudinal displacement envelope diagram of components under different apparent wave velocities

    图  6  不同扣件纵向阻力下构件纵向受力包络图

    Figure  6.  Longitudinal stress/force envelope diagram of components under different longitudinal resistance of fasteners

    图  7  不同扣件纵向阻力下构件纵向位移包络图

    Figure  7.  Longitudinal displacement envelope diagram of components under different longitudinal resistance of fasteners

    图  8  不同支座纵向刚度下构件纵向受力包络图

    Figure  8.  Longitudinal stress/force envelope diagram of components under different longitudinal stiffness of support

    图  9  不同支座纵向刚度下构件纵向位移包络图

    Figure  9.  Longitudinal displacement envelope diagram of components under different longitudinal stiffness of support

    表  1  各结构材料参数

    Table  1.   Individual structural material parameters

    结构名称 钢轨 轨道板 自密实混凝土层 凸台 弹性垫层 底座板 梁体
    混凝土强度 C60 C40 C40 C40 C50
    弹性模量/Pa 2.10×1011 3.65×1010 3.40×1010 3.40×1010 2.50×107 3.40×1010 3.55×1010
    密度/(kg·m-3) 7 830 2 500 2 500 2 500 1 900 2 500 2 500
    泊松比 0.3 0.2 0.2 0.2 0.2 0.2 0.2
    下载: 导出CSV

    表  2  不同视波速下构件纵向受力最值

    Table  2.   Minimum/maximum longitudinal stress/force of components under different apparent wave velocities

    视波速/(m·s-1) 钢轨应力/MPa 轨道板应力/MPa 自密实混凝土层应力/MPa 底座板应力/MPa 墩/台顶力/MN
    540 -166.066/124.607 -0.164/0.067 -0.102/0.077 -0.705/0.239 3.089
    800 -131.099/109.477 -0.128/0.104 -0.086/0.085 -0.533/0.420 1.867
    1 600 -125.506/112.762 -0.122/0.113 -0.091/0.089 -0.501/0.460 1.417
    3 200 -124.064/113.713 -0.125/0.115 -0.094/0.090 -0.518/0.471 1.353
    +∞ -122.915/114.828 -0.127/0.117 -0.089/0.090 -0.526/0.479 1.291
    下载: 导出CSV

    表  3  不同视波速下构件纵向位移绝对值最大值

    Table  3.   Maximum absolute values of longitudinal displacement of components under different apparent wave velocities

    视波速/(m·s-1) 钢轨位移/mm 轨道板位移/mm 自密实混凝土层位移/mm 底座板位移/mm 墩/台顶位移/mm 轨板相对位移/mm
    540 71.426 72.179 72.165 72.172 72.782 21.988
    800 52.031 52.469 52.460 52.467 52.783 16.328
    1 600 49.241 49.718 49.710 49.716 49.980 15.401
    3 200 48.449 48.931 48.923 48.929 49.180 15.152
    +∞ 47.866 48.350 48.342 48.348 48.586 14.957
    下载: 导出CSV

    表  4  不同扣件纵向阻力下构件纵向受力最值

    Table  4.   Minimum/maximum longitudinal stress/force of components under different longitudinal resistance of fasteners

    扣件纵向阻力/(kN·组-1) 15.0 10.0 4.1
    扣件力/kN -15.0/15.0 -10.0/10.0 -4.1/4.1
    钢轨应力/MPa -166.066/124.607 -150.304/120.079 -82.721/80.686
    轨道板应力/MPa -0.164/0.067 -0.148/0.057 -0.120/0.075
    自密实混凝土层应力/MPa -0.102/0.077 -0.084/0.050 -0.061/0.370
    底座板应力/MPa -0.705/0.239 -0.654/0.222 -0.550/0.360
    下载: 导出CSV

    表  5  不同扣件纵向阻力下构件纵向位移绝对值最大值

    Table  5.   Maximum absolute values of longitudinal displacement of components under different longitudinal resistance of fasteners

    扣件纵向阻力/(kN·组-1) 15.0 10.0 4.1
    钢轨位移/mm 71.426 72.791 46.260
    轨道板位移/mm 72.179 73.918 242.300
    自密实混凝土层位移/mm 72.165 73.905 242.284
    底座板位移/mm 72.172 73.911 242.310
    轨板相对位移/mm 21.988 20.916 230.380
    下载: 导出CSV

    表  6  不同支座纵向刚度构件纵向受力最值

    Table  6.   Minimum/maximum longitudinal stress/force of components under different longitudinal stiffness of support

    支座纵向刚度 0.5k0 1.0k0 2.0k0
    扣件力/kN -15/15 -15/15 -15/15
    钢轨应力/MPa -118.970/ 78.824 -166.066/ 124.607 -227.466/ 182.005
    轨道板应力/MPa -0.150/ 0.056 -0.164/ 0.067 -0.253/ 0.095
    自密实混凝土层应力/MPa -0.096/ 0.070 -0.102/ 0.077 -0.141/ 0.080
    底座板应力/MPa -0.635/ 0.136 -0.704/ 0.238 -1.127/ 0.430
    墩/台顶力/MN 2.729 3.089 3.603
    下载: 导出CSV

    表  7  不同支座纵向刚度下构件纵向位移绝对值最大值

    Table  7.   Maximum absolute values of longitudinal displacement of components under different longitudinal stiffness of support

    支座纵向刚度 0.5k0 1.0k0 2.0k0
    钢轨位移/mm 42.241 71.427 109.040
    轨道板位移/mm 42.740 72.179 110.146
    自密实混凝土层位移/mm 42.729 72.165 110.125
    底座板位移/mm 42.735 72.172 110.137
    墩/台顶位移/mm 43.152 72.782 110.833
    轨板相对位移/mm 14.282 21.988 31.746
    下载: 导出CSV
  • [1] LIN Jia-hao, ZHANG Ya-hui, LI Qiu-sheng, et al. Seismic spatial effects for long-span bridges using the pseudo excitation method[J]. Engineering Structures, 2004, 26(9): 1207-1216. doi: 10.1016/j.engstruct.2004.03.019
    [2] 管仲国, 李建中. 大跨度桥梁抗震体系研究[J]. 中国科学: 技术科学, 2021, 51(5): 493-504.

    GUAN Zhong-guo, LI Jian-zhong. Advances in earthquake resisting systems for long-span bridges[J]. Science China Technological Sciences, 2021, 51(5): 493-504.
    [3] 夏修身, 戴胜勇, 陈兴冲, 等. 川藏铁路大跨度桥梁抗震设防标准研究[J]. 铁道学报, 2016, 38(10): 85-89.

    XIA Xiu-shen, DAI Sheng-yong, CHEN xing-chong, et al. Seismic design criterion for long-span bridges of Sichuan-Tibet Railway[J]. Journal of the China Railway Society, 2016, 38(10): 85-89.
    [4] RAMADAN O M O, MEHANNY S S F, KOTB A A M. Assessment of seismic vulnerability of continuous bridges considering soil-structure interaction and wave passage effects[J]. Engineering Structures, 2020, 206: 110161. doi: 10.1016/j.engstruct.2019.110161
    [5] DU Xiao-ting, XU You-lin, XIA He. Dynamic interaction of bridge-train system under non-uniform seismic ground motion[J]. Earthquake Engineering and Structural Dynamics, 2012, 41 (1): 139-157. doi: 10.1002/eqe.1122
    [6] 范立础, 王君杰, 陈玮. 非一致地震激励下大跨度斜拉桥的响应特征[J]. 计算力学学报, 2001(3): 358-363.

    FAN Li-chu, WANG Jun-jie, CHEN Wei. Response characteristics of long-span cable-stayed bridges under non-uniform seismic action[J]. Chinese Journal of Computational Mechanics, 2001(3): 358-363.
    [7] 张鹏飞, 蔡科, 王承隆, 等. 多维地震作用下桥上CRTSⅢ型板式无砟轨道系统动力响应[J]. 中国科学: 技术科学, 2024, 54(5): 924-939.

    ZHANG Peng-fei, CAI Ke, WANG Cheng-long, et al. Dynamic response of the China Railway Track System Ⅲ slab track system on a bridge under multidimensional seismic actions[J]. Science China Technological Sciences, 2024, 54(5): 924-939.
    [8] 闫斌, 戴公连, 徐庆元. 行波效应下铁路简支梁桥梁轨系统地震响应[J]. 振动工程学报, 2013, 26(3): 357-362.

    YAN Bin, DAI Gong-lian, XU Qing-yuan. Seismic responses of railway track-bridge system under travelling wave effect[J]. Journal of Vibration Engineering, 2013, 26(3): 357-362.
    [9] SHEN Yu, TAN Hua-shun, WANG Xian-zhi, et al. Application of the endurance time method to seismic-induced pounding analysis for long-span extradosed cablestayed bridges considering wave passage effects[J]. Engineering Mechanics, 2020, 37(3): 131-141, 148.
    [10] 杨海洋. 非一致激励下的大跨度铁路悬索桥地震响应研究[D]. 北京: 北京交通大学, 2015.

    YANG Hai-yang. Study on seismic responses of long-span railway suspension bridge under non-uniform excitation[D]. Beijing: Beijing Jiaotong University, 2015.
    [11] 高忠虎, 吴忠铁, 狄生奎, 等. 考虑行波效应下钢管混凝土系杆拱桥隔震研究[J]. 中外公路, 2023, 43(5): 84-90.

    GAO Zhong-hu, WU Zhong-tie, DI Sheng-kui, et al. Study on seismic isolation of concrete filled steel tube tied arch bridge considering traveling wave effect[J]. Journal of China and Foreign Highway, 2023, 43(5): 84-90.
    [12] 郑海. 行波效应下多跨连续刚构桥的地震反应分析[D]. 北京: 北京交通大学, 2011.

    ZHENG Hai. Seismic response analysis of multi-span continuous rigid frame bridges under traveling wave effect[D]. Beijing: Beijing Jiaotong University, 2011.
    [13] GU Yin, CAI Liang. Study on non-consistent seismic response analysis method of soil-curve bridge based on separated near field foundation model[J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(2): 53-64.
    [14] ZHAO Han, WEI Biao, GUO Pei-dong, et al. Random analysis of train-bridge coupled system under non-uniform ground motion[J]. Advances in Structural Engineering, 2023, 26(10): 1847-1865.
    [15] XIAO Yu-yan, SHAN Shan-cao, ZHUO Zhao. Shaking tables test on seismic responses of a long-span rigid-framed bridge considering traveling wave effect and soil-structure interaction[J]. Buildings, 2024, 14(5): 1432.
    [16] 刘小璐, 苏成, 李保木, 等. 非一致地震激励下大跨度桥梁随机振动时域显式法[J]. 土木工程学报, 2019, 52(3): 50-60, 99.

    LIU Xiao-lu, SU Cheng, LI Bao-mu, et al. Random vibration analysis of long-span bridges under non-uniform seismic excitations by explicit time-domain method[J]. China Civil Engineering Journal, 2019, 52(3): 50-60, 99.
    [17] WANG Zheng, JIANG Li-zhong, JIANG Li-qiang, et al. Seismic response of high-speed railway simple-supported girder track-bridge system considering spatial effect at near-fault region[J]. Soil Dynamics and Earthquake Engineering, 2022, 158: 107283.
    [18] 刘聪聪. 考虑行波效应的铁路大跨有推力钢桁拱桥地震易损性分析[D]. 兰州: 兰州交通大学, 2022.

    LIU Cong-cong. Seismic vulnerability analysis of railway long-span steel truss arch bridge with thrust considering traveling wave effect[D]. Lanzhou: Lanzhou Jiaotong University, 2022.
    [19] LI Chao, LI Hong-nan, ZHANG Hao, et al. Seismic performance evaluation of large-span offshore cable-stayed bridges under non-uniform earthquake excitations including strain rate effect[J]. Science China Technological Sciences, 2020, 63(7): 1177-1187.
    [20] HUANG Ming, ZHANG Zhi-qiang, WEI Pei-zi, et al. Study of seismic-responses and semi-active control of Taizhou Bridge under multi-support excitation[J]. International Journal of Structural Integrity, 2021, 12(5): 773-798.
    [21] 刘正楠, 陈兴冲, 张永亮, 等. 考虑行波效应的无砟轨道铁路桥梁纵桥向地震响应[J]. 振动与冲击, 2020, 39(4): 142-149.

    LIU Zheng-nan, CHEN Xing-chong, ZHANG Yong-liang, et al. Longitudinal seismic response of ballastless railway bridges considering traveling wave effect[J]. Journal of Vibration and Shock, 2020, 39(4): 142-149.
    [22] 亓兴军, 李小军, 王京卫. 行波效应对大跨斜拉桥减震控制的影响[J]. 交通运输工程学报, 2008, 8(6): 70-76. https://transport.chd.edu.cn/article/id/200806014

    QI Xing-jun, LI Xiao-jun, WANG Jing-wei. Influence of traveling wave effect on seismic mitigation control for long-span cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2008, 8(6): 70-76. https://transport.chd.edu.cn/article/id/200806014
    [23] 陈士通, 张文学, 许宏伟. 行波效应对连续梁桥锁死销体系减震性能影响研究[J]. 应用基础与工程科学学报, 2020, 28(1): 174-186.

    CHEN Shi-tong, ZHANG Wen-xue, XU Hong-wei. Traveling wave effects influence on damping effect of continuous bridges locking dowel system[J]. Journal of Basic Science and Engineering, 2020, 28(1): 174-186.
    [24] HU Shang-tao, HU Ren-kang, YANG Meng-gang, et al. Seismic behavior of the combined viscous-steel damping system for a long-span suspension bridge considering wave- passage effect[J]. Journal of Bridge Engineering, 2023, 28(7): 04023034.
    [25] XIA Chao-yi, ZHONG Tie-yi. Numerical analysis of the Nanjing Dashengguan Yangtze River Bridge subjected to non-uniform seismic excitations[J]. Journal of Mechanical Science & Technology, 2011, 25(5): 1297-1306.
    [26] 桂昊. 桥上CRTSⅢ型板式无砟轨道无缝线路纵向力研究[D]. 南昌: 华东交通大学, 2019.

    GUI Hao. Study on longitudinal force of CRTSⅢ slab track CWR on bridge[D]. Nanchang: East China Jiaotong University, 2019.
    [27] 谢铠泽, 陈嵘, 崔逸鹏, 等. 现代有轨电车小半径曲线桥上梁轨相互作用分析[J]. 桥梁建设, 2021, 51(5): 81-88.

    XIE Kai-ze, CHEN Rong, CUI Yi-peng, et al. Analysis of bridge-rail interaction on sharply curved viaduct accommodating modern tram[J]. Bridge Construction, 2021, 51(5): 81-88.
    [28] 何卫平, 刘旺, 宋俊杰, 等. 复杂波场效应对胶凝砂砾石坝地震响应影响研究[J/OL]. 振动工程学报, 2024, https://link.cnki.net/urlid/32.1349.TB.20240929.1714.003.

    HE Wei-ping, LIU Wang, SONG Jun-jie, et al. Influence of complex wavefield effect on seismic response of hardfill dam[J/OL]. Journal of Vibration Engineering, 2024, https://link.cnki.net/urlid/32.1349.TB.20240929.1714.003.
    [29] 闫斌, 刘施, 戴公连, 等. 多维地震作用下桥梁-无砟轨道非线性相互作用[J]. 铁道学报, 2016, 38(5): 74-80.

    YAN Bin, LIU Shi, DAI Gong-lian, et al. Nonlinear interaction between CRTSⅡ ballastless track and bridges due to multi-dimensional earthquake[J]. Journal of the China Railway Society, 2016, 38(5): 74-80.
    [30] 赵立财. 行波激励下多跨单索面矮塔斜拉桥主墩索塔地震响应研究[J]. 地震工程学报, 2025, 47(2): 263-269.

    ZHAO Li-cai. Seismic response of the main pier pylon of a multispan extradosed cable-stayed bridge with a single cable plane under traveling wave excitation[J]. China Earthquake Engineering Journal, 2025, 47(2): 263-269.
    [31] 陈婧雯. 大跨铁路钢桁梁柔性拱桥抗震性能分析和减震阻尼器参数优化研究[D]. 成都: 西南交通大学, 2022.

    Chen Jing-wen. A seismic performance analysis and damper parameters optimization research of long span railway steel truss and flexible arch bridge[D]. Chengdu: Southwest Jiaotong University, 2022.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  74
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-22
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回