留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轮轨动力学模型的有砟线路空吊区段力学行为研究

牛留斌 赵延锋 刘万里 周威 蒋曙光

牛留斌, 赵延锋, 刘万里, 周威, 蒋曙光. 基于轮轨动力学模型的有砟线路空吊区段力学行为研究[J]. 交通运输工程学报, 2025, 25(2): 296-310. doi: 10.19818/j.cnki.1671-1637.2025.02.019
引用本文: 牛留斌, 赵延锋, 刘万里, 周威, 蒋曙光. 基于轮轨动力学模型的有砟线路空吊区段力学行为研究[J]. 交通运输工程学报, 2025, 25(2): 296-310. doi: 10.19818/j.cnki.1671-1637.2025.02.019
NIU Liu-bin, ZHAO Yan-feng, LIU Wan-li, ZHOU Wei, JIANG Shu-guang. Study on mechanical behavior of unsupported sections of ballast track based on wheel-rail dynamics model[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 296-310. doi: 10.19818/j.cnki.1671-1637.2025.02.019
Citation: NIU Liu-bin, ZHAO Yan-feng, LIU Wan-li, ZHOU Wei, JIANG Shu-guang. Study on mechanical behavior of unsupported sections of ballast track based on wheel-rail dynamics model[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 296-310. doi: 10.19818/j.cnki.1671-1637.2025.02.019

基于轮轨动力学模型的有砟线路空吊区段力学行为研究

doi: 10.19818/j.cnki.1671-1637.2025.02.019
基金项目: 

国家重点研发计划 2022YFB2602900

中国铁道科学研究院集团有限公司科研项目 2023YJ038

中国铁道科学研究院集团有限公司科研项目 2023YJ299

详细信息
    作者简介:

    牛留斌(1980-),男,河南鄢陵人,中国铁道科学研究院集团有限公司高级工程师,从事轨道管理及轮轨动力学研究

  • 中图分类号: U213.2

Study on mechanical behavior of unsupported sections of ballast track based on wheel-rail dynamics model

Funds: 

National Key R&D Program of China 2022YFB2602900

Research Project of China Academy of Railway Sciences Co., Ltd. 2023YJ038

Research Project of China Academy of Railway Sciences Co., Ltd. 2023YJ299

More Information
    Corresponding author: NIU Liu-bin (1980-), male, senior engineer, nlb@rails.cn
Article Text (Baidu Translation)
  • 摘要: 为研究有砟线路轨枕暗坑空吊病害激励下的轮轨力学行为和钢轨挠曲变形特征,以中国典型有砟线路结构和服役车辆悬挂系统参数构建轮轨动力学仿真模型,细化空吊区轨枕与道砟接触状态,数值模拟了车辆以200 km·h-1的运行速度通过1~3根轨枕在对称空吊和非对称空吊工况下的轮轨相互作用行为,分析了空吊区域轮轨垂向力及钢轨挠曲位移最大值、轨道动态不平顺和轮重变化率等参数与空吊轨枕数量、深度之间的映射关系。研究结果表明:轨枕空吊改变了左右股钢轨轨下基础支承刚度,进而引起左右侧钢轨挠曲位移、轮轨垂向力的差异较大,形成动态高低、三角坑、水平等轨道动态不平顺和较大轮重变化率,参数最大值与空吊区轨枕个数、空吊深度、轨枕和道砟接触状态有关,受轨道自身刚度的影响,在空吊量大于1.6 mm时上述参数不再随空吊深度发生变化;非对称轨枕空吊工况下,左右侧轨枕空吊差异主要形成动态水平不平顺,其幅值与减载侧轮重变化率呈现负相关,在相同空吊量下时两者随空吊轨枕根数的增加而增大,在3根轨枕单侧空吊最大轮重变化率约为-0.28;对称空吊工况下,左右侧轨道动态高低不平顺的幅值相当,动态水平不平顺幅值较小,3根轨枕对称空吊时最大轮重变化率约为0.03。本文研究成果可为轨枕空吊区轮轨相互作用、动静态轨道不平顺差异分析、初期空吊病害特征辨识和预警技术提供科学参考。

     

  • 图  1  轮轨动力学模型与空吊轨枕示意

    Figure  1.  Wheel-rail dynamics model and schematic of unsupported sleeper

    图  2  轮轨动力学模型

    Figure  2.  Wheel-rail dynamics model

    图  3  等效弹簧单元

    Figure  3.  Equivalent spring units

    图  4  道砟与轨枕中部支承状态演化过程

    Figure  4.  Evolution process of support state between ballast and middle of sleeper

    图  5  道砟与轨枕间支承作用的力学特性

    Figure  5.  Mechanical characteristics of support between ballast and sleeper

    图  6  轮轨动力学有限元模型

    Figure  6.  Finite element model of wheel-rail dynamics

    图  7  钢轨挠曲位移仿真计算结果与解析解对比曲线

    Figure  7.  Comparisons curves between simulation calculation results and analytical solutions of rail deflection displacement

    图  8  轮轨垂向力及钢轨最大挠曲位移波形

    Figure  8.  Waveforms of wheel-rail vertical force and maximum rail deflection displacement

    图  9  200 km·h-1时不同空吊状态下轮轨垂向力及最大挠曲位移曲线

    Figure  9.  Wheel-rail vertical forces and maximum deflection displacements under unsupported sleeper cases at 200 km·h-1

    图  10  200 km·h-1时不同空吊工况下轮重变化率及动态高低不平顺曲线

    Figure  10.  Change rates of wheel load and dynamical height irregularity under unsupported sleeper cases at 200 km·h-1

    图  11  单侧空吊时轮轨垂向力和钢轨挠曲位移波形(d1=1.0 mm)

    Figure  11.  Waveforms of wheel-rail vertical forces and rail deflection displacements under one-sided unsupported sleeper cases (d1=1.0 mm)

    图  12  单侧空吊时轨道动态不平顺及轮重变化率波形(d1=1.0 mm)

    Figure  12.  Waveforms of track dynamic irregularity and change rate of wheel load under one-sided unsupported sleeper cases (d1=1.0 mm)

    图  13  单侧空吊时各参数随空吊量变化曲线

    Figure  13.  Curves of variation of parameters with depth of unsupported sleepers under one-sided unsupported sleeper cases

    图  14  不同空吊量下道砟等效支承弹簧应力波形

    Figure  14.  Spring stress waveforms of equivalent support of ballast under different depth of unsupported sleepers

    图  15  非对称空吊下钢轨挠曲位移及轮轨垂向力(d2=1.0 mm)

    Figure  15.  Rail deflection displacement and wheel-rail vertical force under asymmetrical unsupported sleeper cases (d2=1.0 mm)

    图  16  非对称空吊时各参数随空吊量变化曲线

    Figure  16.  Variation curves of parameters with depth of unsupported sleepers under asymmetrical unsupported sleeper cases

    图  17  轨枕对称空吊时各参数随空吊量变化曲线

    Figure  17.  Variation curves of parameters with depth of unsupported sleepers under symmetrical unsupported sleeper cases

    图  18  某有砟线路轨枕空吊区轮轨垂向力及轮重变化率

    Figure  18.  Wheel-rail vertical forces and change rates of wheel load in unsupported sleeper area on a ballast track

    图  19  轨枕空吊病害复核及整治过程

    Figure  19.  Review and maintenance process of unsupported sleepers

    表  1  轮轨动力学模型主要参数

    Table  1.   Parameters of wheel-rail dynamics model

    参数名称 量值
    轮轨材料 泊松比 0.3
    密度/(mg·mm-3) 7.8
    弹性模量/GPa 210
    切线模量/GPa 21
    屈服强度/MPa 542
    混凝土轨枕 泊松比 0.22
    密度/(mg·mm-3) 2.6
    弹性模量/GPa 35
    静载荷/kN 70.3
    轮轨间摩擦因数 0.3
    车轮滚动圆半径/mm 430
    轨枕间距/mm 650
    一系悬挂弹簧(垂向) 刚度/(kN·mm-1) 1.03
    阻尼/(N·s·mm-1) 20
    一系横向悬挂 刚度/(kN·mm-1) 5.5
    车体和构架等效的质点块质量/t 23.2
    扣件支承弹簧 刚度/(kN·mm-1) 22
    阻尼/(N·s·mm-1) 40
    道砟等效弹簧 刚度/(kN·mm-1) 75
    阻尼/(N·s·mm-1) 80
    每米钢轨质量/kg 60.43
    轮对空心轴半径/mm 30
    同一转向架轴距/m 2.5
    下载: 导出CSV

    表  2  单侧空吊时各物理参数最值(d2=0)

    Table  2.   Maximum values of physical parameters under one-sided unsupported sleeper cases (d2=0)

    d1/mm 钢轨挠曲位移最大值/mm 轮轨垂向力最值/kN 轨道动态不平顺幅值/mm 轮重变化率
    左股 右股 左侧 右侧 左高低 右高低 水平 三角坑 左侧 右侧
    1根轨枕 0.1 0.71 0.71 69.05 71.84 0.01 0.01 0.00 0.01 -0.02 0.02
    0.6 0.78 0.76 64.92 76.71 0.08 0.06 0.02 0.08 -0.08 0.09
    1.0 0.81 0.78 62.76 79.87 0.11 0.08 0.03 0.12 -0.11 0.12
    2.0 0.82 0.78 62.44 80.07 0.12 0.08 0.04 0.12 -0.13 0.14
    2根轨枕 0.1 0.72 0.72 68.30 72.45 0.02 0.02 0.01 0.02 -0.03 0.03
    0.6 0.83 0.80 60.45 80.46 0.13 0.10 0.04 0.14 -0.14 0.14
    1.0 0.89 0.83 56.18 84.41 0.19 0.13 0.06 0.19 -0.20 0.20
    2.0 0.90 0.84 55.81 85.51 0.20 0.14 0.06 0.21 -0.21 0.22
    3根轨枕 0.1 0.73 0.72 67.73 73.04 0.03 0.02 0.01 0.03 -0.04 0.04
    0.6 0.87 0.82 57.52 83.63 0.17 0.12 0.05 0.17 -0.18 0.19
    1.0 0.93 0.86 52.09 88.29 0.23 0.16 0.07 0.24 -0.26 0.26
    2.0 0.96 0.88 50.54 89.53 0.26 0.18 0.08 0.26 -0.28 0.27
    下载: 导出CSV

    表  3  非对称空吊工况下各参数最值(d2=1.0 mm)

    Table  3.   Maximum values of parameters under asymmetrical unsupported sleeper cases (d2=1.0 mm)

    d1/mm 钢轨位移/mm 轮轨垂向力/kN 轨道动态不平顺/mm 轮重变化率
    左股 右股 左侧 右侧 左高低 右高低 水平 三角坑 左侧 右侧
    1根轨枕 0.1 0.80 0.83 78.67 63.72 0.10 0.13 -0.03 0.13 0.12 -0.09
    0.6 0.87 0.88 74.31 68.04 0.17 0.18 -0.01 0.18 0.06 -0.03
    1.2 0.92 0.92 68.77 73.43 0.22 0.22 0.00 0.23 -0.02 0.04
    2.0 0.92 0.91 68.63 73.54 0.22 0.22 0.01 0.23 -0.02 0.05
    2根轨枕 0.1 0.86 0.91 83.00 57.84 0.16 0.21 -0.05 0.21 0.18 -0.18
    0.6 0.98 1.00 75.79 65.90 0.28 0.30 -0.02 0.31 0.08 -0.06
    1.2 1.07 1.07 68.76 73.29 0.37 0.37 0.01 0.38 -0.02 0.04
    2.0 1.09 1.08 67.84 74.48 0.39 0.38 0.01 0.40 -0.03 0.06
    3根轨枕 0.1 0.89 0.96 86.34 54.11 0.19 0.26 -0.06 0.26 0.23 -0.23
    0.6 1.05 1.07 76.99 63.97 0.34 0.37 -0.02 0.38 0.10 -0.09
    1.2 1.16 1.15 67.72 73.78 0.46 0.45 0.01 0.48 -0.04 0.05
    2.0 1.21 1.19 65.87 75.52 0.51 0.49 0.02 0.52 -0.06 0.07
    下载: 导出CSV

    表  4  对称空吊工况下各参数最值(d1=d2)

    Table  4.   Maximum values of parameters under symmetrical unsupported sleeper cases (d1=d2)

    d1/mm 钢轨位移/mm 轮轨垂向力/kN 轨道动态不平顺/mm 轮重变化率
    左股 右股 最小值 最大值 左高低 右高低 水平 三角坑 减载 增载
    1根轨枕 0.1 0.72 0.72 69.69 70.69 0.02 0.02 0.00 0.03 -0.01 0.01
    1.0 0.91 0.91 69.20 72.38 0.21 0.21 0.00 0.22 -0.02 0.03
    2.0 0.93 0.93 67.57 72.77 0.23 0.23 0.00 0.24 -0.04 0.04
    2根轨枕 0.1 0.74 0.74 69.68 70.67 0.04 0.04 0.00 0.04 -0.01 0.01
    1.0 1.05 1.05 68.66 71.56 0.35 0.35 0.00 0.36 -0.02 0.02
    2.0 1.14 1.14 68.26 72.16 0.44 0.44 0.00 0.45 -0.03 0.03
    3根轨枕 0.1 0.75 0.75 69.68 70.66 0.05 0.05 0.00 0.05 -0.01 0.01
    1.0 1.13 1.13 68.91 71.44 0.43 0.43 0.00 0.45 -0.02 0.02
    2.0 1.29 1.29 67.73 71.56 0.59 0.59 0.00 0.61 -0.03 0.02
    下载: 导出CSV
  • [1] HAMARAT M, PAPAELIAS M, SILVAST M, et al. The effect of unsupported sleepers/bearers on dynamic phenomena of a railway turnout system under impact loads[J]. Applied Sciences, 2020, 10(7): 2320. doi: 10.3390/app10072320
    [2] SADEGHI J, ZAKERI J A, TOLOU KIAN A R. Effect of unsupported sleepers on rail track dynamic behaviour[J]. Proceedings of the Institution of Civil Engineers-Transport, 2018, 171(5): 286-298. doi: 10.1680/jtran.16.00161
    [3] DAI J, ANG K K, JIANG D Q, et al. Dynamic response of high-speed train-track system due to unsupported sleepers[J]. International Journal of Structural Stability and Dynamics, 2018, 18(10): 1850122. doi: 10.1142/S0219455418501225
    [4] AZIZI M, SHAHRAVI M, ALI ZAKERI J. Effect of unsupported sleepers on dynamic behavior of running vehicles and ride comfort index[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(21): 5261-5274. doi: 10.1177/0954406221989371
    [5] AZIZI M, SHAHRAVI M, ALI ZAKERI J. Determination of wheel loading reduction in railway track with unsupported sleepers and rail irregularities[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(5): 631-643. doi: 10.1177/0954409720950933
    [6] ALI ZAKERI J, FATTAHI M, GHANIMOGHADAM M M. Influence of unsupported and partially supported sleepers on dynamic responses of train-track interaction[J]. Journal of Mechanical Science and Technology, 2015, 29(6): 2289-2295. doi: 10.1007/s12206-015-0521-3
    [7] ZAKERI J A, FATTAHI M, NOURI M, et al. Influence of rail pad stiffness and axle loads on dynamic responses of train-track interaction with unsupported sleepers[J]. Periodica Polytechnica Civil Engineering, 2020, 64(2): 524-534.
    [8] SYSYN M, PRZYBYLOWICZ M, NABOCHENKO O, et al. Mechanism of sleeper-ballast dynamic impact and residual settlements accumulation in zones with unsupported sleepers[J]. Sustainability, 2021, 13(14): 7740. doi: 10.3390/su13147740
    [9] SYSYN M, NABOCHENKO O, KOVALCHUK V. Experimental investigation of the dynamic behavior of railway track with sleeper voids[J]. Railway Engineering Science, 2020, 28(3): 290-304. doi: 10.1007/s40534-020-00217-8
    [10] DE MELO A L O, KAEWUNRUEN S, PAPAELIAS M. Effect of unsupported sleepers on vertical levelling loss of heavy-haul railway track geometry under cyclic loadings[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2024, 238(10): 1199-1211. doi: 10.1177/09544097241266289
    [11] YAMAOKA D, KUSUDA M, TANAKA H, et al. Proposal for unsupported sleeper detection method and utilization in track maintenance[J]. Quarterly Report of RTRI, 2022, 63(1): 25-30. doi: 10.2219/rtriqr.63.1_25
    [12] 崔旭浩, 肖宏, 肖慧娟, 等. 轨枕空吊对有砟道床动力特性影响的离散元分析[J]. 振动与冲击, 2020, 39(16): 171-179.

    CUI Xu-hao, XIAO Hong, XIAO Hui-juan, et al. DEM analysis of effect of unsupported sleepers on dynamic characteristics of ballast beds[J]. Journal of Vibration and Shock, 2020, 39(16): 171-179.
    [13] 余翠英, 雷红博, 罗文俊, 等. 基于DEM-MFBD方法的有砟轨道路基不均匀沉降影响分析[J]. 土木与环境工程学报(中英文), 2023, 45(4): 10-18.

    YU Cui-ying, LEI Hong-bo, LUO Wen-jun, et al. Analysis of uneven subgrade settlement of ballasted track based on DEM-MFBD method[J]. Journal of Civil and Environmental Engineering, 2023, 45(4): 10-18.
    [14] SHI C, ZHAO C F, XIN L F, et al. Dynamic impact of unsupported sleepers on railway infrastructure with a coupled MBD-DEM-FDM model[J]. Transportation Geotechnics, 2024, 45: 101221. doi: 10.1016/j.trgeo.2024.101221
    [15] 周和超, 包泽宇, 张树艺. 轨枕空吊动态演变规律[J]. 同济大学学报(自然科学版), 2019, 47(4): 521-527.

    ZHOU He-chao, BAO Ze-yu, ZHANG Shu-yi. Dynamical evolution process of voided sleeper[J]. Journal of Tongji University (Natural Science), 2019, 47(4): 521-527.
    [16] RESAPU R R, PERUMAHANTHI L R. Numerical study of bilinear isotropic & kinematic elastic-plastic response under cyclic loading[J]. Materials Today: Proceedings, 2021, 39(4): 1647-1654.
    [17] MASOUDI M J, BROUMAND P. Seismic performance of welded flange plate (WFP) connections in composite steel structures[J]. Journal of Constructional Steel Research, 2022, 189: 107103. doi: 10.1016/j.jcsr.2021.107103
    [18] EL BESHBICHI O, WAN C, BRUNI S, et al. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves[J]. Wear, 2020, 450/451: 203150. doi: 10.1016/j.wear.2019.203150
    [19] XAVIER Y L, REZENDE A B, FONSECA S T, et al. Study of the initial cycles number influence on the retentivity of a commercial friction modifier using the twin-disk test[J]. Tribology Transactions, 2024, 67(2): 212-221. doi: 10.1080/10402004.2024.2311719
    [20] 刘林芽, 崔巍涛, 秦佳良, 等. 扣件胶垫黏弹性对铁路箱梁振动与结构噪声的影响[J]. 交通运输工程学报, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007

    LIU Lin-ya, CUI Wei-tao, QIN Jia-liang, et al. Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007
    [21] ZENG Z P, WANG J D, SHEN S W, et al. Experimental study on evolution of mechanical properties of CRTS Ⅲ ballastless slab track under fatigue load[J]. Construction and Building Materials, 2019(210): 639-649.
    [22] TRAN L H, HOANG T, DUHAMEL D, et al. Influence of non-homogeneous foundations on the dynamic responses of railway sleepers[J]. International Journal of Structural Stability and Dynamics, 2021, 21(1): 2150002. doi: 10.1142/S0219455421500024
    [23] 牛留斌. 高速铁路轮轨垂向力与轨道高低不平顺关联特性[J]. 中国铁道科学, 2021, 42(5): 50-60.

    NIU Liu-bin. Correlation between wheel/rail vertical force and track profile irregularity in high-speed railway[J]. China Railway Science, 2021, 42 (5): 50-60.
    [24] TOSCANO CORRÊA R, PINTO DA COSTA A, SIMÕES F M F. Finite element modeling of a rail resting on a Winkler-Coulomb foundation and subjected to a moving concentrated load[J]. International Journal of Mechanical Sciences, 2018, 140: 432-445. doi: 10.1016/j.ijmecsci.2018.03.022
    [25] KNOTHE K, STICHEL S. Rail Vehicle Dynamics[M]. Berlin: Springer, 2017.
    [26] SHAN Y, ALBERS B, ZHOU S H, et al. Investigation on the sensitive and insensitive zones of the rail support stiffness for the dynamic response of a vehicle system under low excitation frequencies[J]. Vehicle System Dynamics, 2017, 55 (1): 23-40. doi: 10.1080/00423114.2016.1243719
    [27] MILNE D, MASOUDI A, FERRO E, et al. An analysis of railway track behaviour based on distributed optical fibre acoustic sensing[J]. Mechanical Systems and Signal Processing, 2020, 142: 106769. doi: 10.1016/j.ymssp.2020.106769
    [28] LAZAREVIĆ L, VUČKOVIĆ D, POPOVIĆ Z. Assessment of sleeper support conditions using micro-tremor analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(8): 1828-1841. doi: 10.1177/0954409715615629
    [29] WOODWARD P, KENNEDY J, LAGHROUCHE O, et al. Study of railway track stiffness modification by polyurethane reinforcement of the ballast[J]. Transportation Geotechnics, 2014, 1(4): 214-224. doi: 10.1016/j.trgeo.2014.06.005
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  103
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-05
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回