Study on mechanical behavior of unsupported sections of ballast track based on wheel-rail dynamics model
-
摘要: 为研究有砟线路轨枕暗坑空吊病害激励下的轮轨力学行为和钢轨挠曲变形特征,以中国典型有砟线路结构和服役车辆悬挂系统参数构建轮轨动力学仿真模型,细化空吊区轨枕与道砟接触状态,数值模拟了车辆以200 km·h-1的运行速度通过1~3根轨枕在对称空吊和非对称空吊工况下的轮轨相互作用行为,分析了空吊区域轮轨垂向力及钢轨挠曲位移最大值、轨道动态不平顺和轮重变化率等参数与空吊轨枕数量、深度之间的映射关系。研究结果表明:轨枕空吊改变了左右股钢轨轨下基础支承刚度,进而引起左右侧钢轨挠曲位移、轮轨垂向力的差异较大,形成动态高低、三角坑、水平等轨道动态不平顺和较大轮重变化率,参数最大值与空吊区轨枕个数、空吊深度、轨枕和道砟接触状态有关,受轨道自身刚度的影响,在空吊量大于1.6 mm时上述参数不再随空吊深度发生变化;非对称轨枕空吊工况下,左右侧轨枕空吊差异主要形成动态水平不平顺,其幅值与减载侧轮重变化率呈现负相关,在相同空吊量下时两者随空吊轨枕根数的增加而增大,在3根轨枕单侧空吊最大轮重变化率约为-0.28;对称空吊工况下,左右侧轨道动态高低不平顺的幅值相当,动态水平不平顺幅值较小,3根轨枕对称空吊时最大轮重变化率约为0.03。本文研究成果可为轨枕空吊区轮轨相互作用、动静态轨道不平顺差异分析、初期空吊病害特征辨识和预警技术提供科学参考。Abstract: To study the wheel-rail mechanical behavior and rail deflection deformation characteristics under the excitation of unsupported sleepers of ballast tracks, the wheel-rail dynamics simulation model was constructed based on the typical Chinese ballast track structure and the suspension system parameters of in-service vehicles. The contact state between the sleepers and the ballast in the unsupported area was refined. The wheel-rail interaction behaviors of the vehicle passing through 1-3 sleepers at a running speed of 200 km·h-1 under symmetrical and asymmetrical sleepers were numerically simulated. The mapping relationships of the wheel-rail vertical force, the maximum rail deflection displacement, track dynamic irregularities, the change rate of the wheel load, and other parameters in the unsupported area with the number and depth of unsupported sleepers were demonstrated. Research results show that the unsupported sleepers change the supporting stiffness of the foundation under the left and right rails, thereby causing significant differences in the deflection displacements of the left and right rails and the vertical forces of the wheel-rail and resulting in dynamic irregularities of the track such as dynamic height, triangular pits, and horizontal irregularities, as well as a large rate of change in wheel load. The maximums of the above parameters are related to the depth and the number of unsupported sleepers and the contact state between the unsupported sleepers and ballast. Due to the stiffness of the track itself, the above parameters no longer change when the number of unsupported sleepers is greater than 1.6 mm. Under the cases of asymmetrical unsupported sleepers, the difference in the unsupported sleepers of the left and right rails mainly forms dynamic horizontal irregularities, and its amplitude is negatively correlated with the rate of change of the wheel load on the unloaded side. At the same number of unsupported sleepers, they both increase with the number of the unsupported sleepers, and the maximum change rate of wheel load is about -0.28 under the case of one-side three unsupported sleepers. Under the cases of symmetrical unsupported sleepers, the amplitudes of the dynamic height irregularities of the left and right tracks are comparable, while the amplitudes of the dynamic horizontal irregularities are relatively small. When there are symmetrical unsupported sleepers, the maximum change rate of wheel load is approximately 0.03. The research results of this paper can provide scientific references for the wheel-rail interaction in the unsupported sleeper area, the analysis of the differences in the dynamic and static track irregularities, the identification of the characteristics of initial unsupported sleepers, and early warning technologies.
-
表 1 轮轨动力学模型主要参数
Table 1. Parameters of wheel-rail dynamics model
参数名称 量值 轮轨材料 泊松比 0.3 密度/(mg·mm-3) 7.8 弹性模量/GPa 210 切线模量/GPa 21 屈服强度/MPa 542 混凝土轨枕 泊松比 0.22 密度/(mg·mm-3) 2.6 弹性模量/GPa 35 静载荷/kN 70.3 轮轨间摩擦因数 0.3 车轮滚动圆半径/mm 430 轨枕间距/mm 650 一系悬挂弹簧(垂向) 刚度/(kN·mm-1) 1.03 阻尼/(N·s·mm-1) 20 一系横向悬挂 刚度/(kN·mm-1) 5.5 车体和构架等效的质点块质量/t 23.2 扣件支承弹簧 刚度/(kN·mm-1) 22 阻尼/(N·s·mm-1) 40 道砟等效弹簧 刚度/(kN·mm-1) 75 阻尼/(N·s·mm-1) 80 每米钢轨质量/kg 60.43 轮对空心轴半径/mm 30 同一转向架轴距/m 2.5 表 2 单侧空吊时各物理参数最值(d2=0)
Table 2. Maximum values of physical parameters under one-sided unsupported sleeper cases (d2=0)
d1/mm 钢轨挠曲位移最大值/mm 轮轨垂向力最值/kN 轨道动态不平顺幅值/mm 轮重变化率 左股 右股 左侧 右侧 左高低 右高低 水平 三角坑 左侧 右侧 1根轨枕 0.1 0.71 0.71 69.05 71.84 0.01 0.01 0.00 0.01 -0.02 0.02 0.6 0.78 0.76 64.92 76.71 0.08 0.06 0.02 0.08 -0.08 0.09 1.0 0.81 0.78 62.76 79.87 0.11 0.08 0.03 0.12 -0.11 0.12 2.0 0.82 0.78 62.44 80.07 0.12 0.08 0.04 0.12 -0.13 0.14 2根轨枕 0.1 0.72 0.72 68.30 72.45 0.02 0.02 0.01 0.02 -0.03 0.03 0.6 0.83 0.80 60.45 80.46 0.13 0.10 0.04 0.14 -0.14 0.14 1.0 0.89 0.83 56.18 84.41 0.19 0.13 0.06 0.19 -0.20 0.20 2.0 0.90 0.84 55.81 85.51 0.20 0.14 0.06 0.21 -0.21 0.22 3根轨枕 0.1 0.73 0.72 67.73 73.04 0.03 0.02 0.01 0.03 -0.04 0.04 0.6 0.87 0.82 57.52 83.63 0.17 0.12 0.05 0.17 -0.18 0.19 1.0 0.93 0.86 52.09 88.29 0.23 0.16 0.07 0.24 -0.26 0.26 2.0 0.96 0.88 50.54 89.53 0.26 0.18 0.08 0.26 -0.28 0.27 表 3 非对称空吊工况下各参数最值(d2=1.0 mm)
Table 3. Maximum values of parameters under asymmetrical unsupported sleeper cases (d2=1.0 mm)
d1/mm 钢轨位移/mm 轮轨垂向力/kN 轨道动态不平顺/mm 轮重变化率 左股 右股 左侧 右侧 左高低 右高低 水平 三角坑 左侧 右侧 1根轨枕 0.1 0.80 0.83 78.67 63.72 0.10 0.13 -0.03 0.13 0.12 -0.09 0.6 0.87 0.88 74.31 68.04 0.17 0.18 -0.01 0.18 0.06 -0.03 1.2 0.92 0.92 68.77 73.43 0.22 0.22 0.00 0.23 -0.02 0.04 2.0 0.92 0.91 68.63 73.54 0.22 0.22 0.01 0.23 -0.02 0.05 2根轨枕 0.1 0.86 0.91 83.00 57.84 0.16 0.21 -0.05 0.21 0.18 -0.18 0.6 0.98 1.00 75.79 65.90 0.28 0.30 -0.02 0.31 0.08 -0.06 1.2 1.07 1.07 68.76 73.29 0.37 0.37 0.01 0.38 -0.02 0.04 2.0 1.09 1.08 67.84 74.48 0.39 0.38 0.01 0.40 -0.03 0.06 3根轨枕 0.1 0.89 0.96 86.34 54.11 0.19 0.26 -0.06 0.26 0.23 -0.23 0.6 1.05 1.07 76.99 63.97 0.34 0.37 -0.02 0.38 0.10 -0.09 1.2 1.16 1.15 67.72 73.78 0.46 0.45 0.01 0.48 -0.04 0.05 2.0 1.21 1.19 65.87 75.52 0.51 0.49 0.02 0.52 -0.06 0.07 表 4 对称空吊工况下各参数最值(d1=d2)
Table 4. Maximum values of parameters under symmetrical unsupported sleeper cases (d1=d2)
d1/mm 钢轨位移/mm 轮轨垂向力/kN 轨道动态不平顺/mm 轮重变化率 左股 右股 最小值 最大值 左高低 右高低 水平 三角坑 减载 增载 1根轨枕 0.1 0.72 0.72 69.69 70.69 0.02 0.02 0.00 0.03 -0.01 0.01 1.0 0.91 0.91 69.20 72.38 0.21 0.21 0.00 0.22 -0.02 0.03 2.0 0.93 0.93 67.57 72.77 0.23 0.23 0.00 0.24 -0.04 0.04 2根轨枕 0.1 0.74 0.74 69.68 70.67 0.04 0.04 0.00 0.04 -0.01 0.01 1.0 1.05 1.05 68.66 71.56 0.35 0.35 0.00 0.36 -0.02 0.02 2.0 1.14 1.14 68.26 72.16 0.44 0.44 0.00 0.45 -0.03 0.03 3根轨枕 0.1 0.75 0.75 69.68 70.66 0.05 0.05 0.00 0.05 -0.01 0.01 1.0 1.13 1.13 68.91 71.44 0.43 0.43 0.00 0.45 -0.02 0.02 2.0 1.29 1.29 67.73 71.56 0.59 0.59 0.00 0.61 -0.03 0.02 -
[1] HAMARAT M, PAPAELIAS M, SILVAST M, et al. The effect of unsupported sleepers/bearers on dynamic phenomena of a railway turnout system under impact loads[J]. Applied Sciences, 2020, 10(7): 2320. doi: 10.3390/app10072320 [2] SADEGHI J, ZAKERI J A, TOLOU KIAN A R. Effect of unsupported sleepers on rail track dynamic behaviour[J]. Proceedings of the Institution of Civil Engineers-Transport, 2018, 171(5): 286-298. doi: 10.1680/jtran.16.00161 [3] DAI J, ANG K K, JIANG D Q, et al. Dynamic response of high-speed train-track system due to unsupported sleepers[J]. International Journal of Structural Stability and Dynamics, 2018, 18(10): 1850122. doi: 10.1142/S0219455418501225 [4] AZIZI M, SHAHRAVI M, ALI ZAKERI J. Effect of unsupported sleepers on dynamic behavior of running vehicles and ride comfort index[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(21): 5261-5274. doi: 10.1177/0954406221989371 [5] AZIZI M, SHAHRAVI M, ALI ZAKERI J. Determination of wheel loading reduction in railway track with unsupported sleepers and rail irregularities[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(5): 631-643. doi: 10.1177/0954409720950933 [6] ALI ZAKERI J, FATTAHI M, GHANIMOGHADAM M M. Influence of unsupported and partially supported sleepers on dynamic responses of train-track interaction[J]. Journal of Mechanical Science and Technology, 2015, 29(6): 2289-2295. doi: 10.1007/s12206-015-0521-3 [7] ZAKERI J A, FATTAHI M, NOURI M, et al. Influence of rail pad stiffness and axle loads on dynamic responses of train-track interaction with unsupported sleepers[J]. Periodica Polytechnica Civil Engineering, 2020, 64(2): 524-534. [8] SYSYN M, PRZYBYLOWICZ M, NABOCHENKO O, et al. Mechanism of sleeper-ballast dynamic impact and residual settlements accumulation in zones with unsupported sleepers[J]. Sustainability, 2021, 13(14): 7740. doi: 10.3390/su13147740 [9] SYSYN M, NABOCHENKO O, KOVALCHUK V. Experimental investigation of the dynamic behavior of railway track with sleeper voids[J]. Railway Engineering Science, 2020, 28(3): 290-304. doi: 10.1007/s40534-020-00217-8 [10] DE MELO A L O, KAEWUNRUEN S, PAPAELIAS M. Effect of unsupported sleepers on vertical levelling loss of heavy-haul railway track geometry under cyclic loadings[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2024, 238(10): 1199-1211. doi: 10.1177/09544097241266289 [11] YAMAOKA D, KUSUDA M, TANAKA H, et al. Proposal for unsupported sleeper detection method and utilization in track maintenance[J]. Quarterly Report of RTRI, 2022, 63(1): 25-30. doi: 10.2219/rtriqr.63.1_25 [12] 崔旭浩, 肖宏, 肖慧娟, 等. 轨枕空吊对有砟道床动力特性影响的离散元分析[J]. 振动与冲击, 2020, 39(16): 171-179.CUI Xu-hao, XIAO Hong, XIAO Hui-juan, et al. DEM analysis of effect of unsupported sleepers on dynamic characteristics of ballast beds[J]. Journal of Vibration and Shock, 2020, 39(16): 171-179. [13] 余翠英, 雷红博, 罗文俊, 等. 基于DEM-MFBD方法的有砟轨道路基不均匀沉降影响分析[J]. 土木与环境工程学报(中英文), 2023, 45(4): 10-18.YU Cui-ying, LEI Hong-bo, LUO Wen-jun, et al. Analysis of uneven subgrade settlement of ballasted track based on DEM-MFBD method[J]. Journal of Civil and Environmental Engineering, 2023, 45(4): 10-18. [14] SHI C, ZHAO C F, XIN L F, et al. Dynamic impact of unsupported sleepers on railway infrastructure with a coupled MBD-DEM-FDM model[J]. Transportation Geotechnics, 2024, 45: 101221. doi: 10.1016/j.trgeo.2024.101221 [15] 周和超, 包泽宇, 张树艺. 轨枕空吊动态演变规律[J]. 同济大学学报(自然科学版), 2019, 47(4): 521-527.ZHOU He-chao, BAO Ze-yu, ZHANG Shu-yi. Dynamical evolution process of voided sleeper[J]. Journal of Tongji University (Natural Science), 2019, 47(4): 521-527. [16] RESAPU R R, PERUMAHANTHI L R. Numerical study of bilinear isotropic & kinematic elastic-plastic response under cyclic loading[J]. Materials Today: Proceedings, 2021, 39(4): 1647-1654. [17] MASOUDI M J, BROUMAND P. Seismic performance of welded flange plate (WFP) connections in composite steel structures[J]. Journal of Constructional Steel Research, 2022, 189: 107103. doi: 10.1016/j.jcsr.2021.107103 [18] EL BESHBICHI O, WAN C, BRUNI S, et al. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves[J]. Wear, 2020, 450/451: 203150. doi: 10.1016/j.wear.2019.203150 [19] XAVIER Y L, REZENDE A B, FONSECA S T, et al. Study of the initial cycles number influence on the retentivity of a commercial friction modifier using the twin-disk test[J]. Tribology Transactions, 2024, 67(2): 212-221. doi: 10.1080/10402004.2024.2311719 [20] 刘林芽, 崔巍涛, 秦佳良, 等. 扣件胶垫黏弹性对铁路箱梁振动与结构噪声的影响[J]. 交通运输工程学报, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007 LIU Lin-ya, CUI Wei-tao, QIN Jia-liang, et al. Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007 [21] ZENG Z P, WANG J D, SHEN S W, et al. Experimental study on evolution of mechanical properties of CRTS Ⅲ ballastless slab track under fatigue load[J]. Construction and Building Materials, 2019(210): 639-649. [22] TRAN L H, HOANG T, DUHAMEL D, et al. Influence of non-homogeneous foundations on the dynamic responses of railway sleepers[J]. International Journal of Structural Stability and Dynamics, 2021, 21(1): 2150002. doi: 10.1142/S0219455421500024 [23] 牛留斌. 高速铁路轮轨垂向力与轨道高低不平顺关联特性[J]. 中国铁道科学, 2021, 42(5): 50-60.NIU Liu-bin. Correlation between wheel/rail vertical force and track profile irregularity in high-speed railway[J]. China Railway Science, 2021, 42 (5): 50-60. [24] TOSCANO CORRÊA R, PINTO DA COSTA A, SIMÕES F M F. Finite element modeling of a rail resting on a Winkler-Coulomb foundation and subjected to a moving concentrated load[J]. International Journal of Mechanical Sciences, 2018, 140: 432-445. doi: 10.1016/j.ijmecsci.2018.03.022 [25] KNOTHE K, STICHEL S. Rail Vehicle Dynamics[M]. Berlin: Springer, 2017. [26] SHAN Y, ALBERS B, ZHOU S H, et al. Investigation on the sensitive and insensitive zones of the rail support stiffness for the dynamic response of a vehicle system under low excitation frequencies[J]. Vehicle System Dynamics, 2017, 55 (1): 23-40. doi: 10.1080/00423114.2016.1243719 [27] MILNE D, MASOUDI A, FERRO E, et al. An analysis of railway track behaviour based on distributed optical fibre acoustic sensing[J]. Mechanical Systems and Signal Processing, 2020, 142: 106769. doi: 10.1016/j.ymssp.2020.106769 [28] LAZAREVIĆ L, VUČKOVIĆ D, POPOVIĆ Z. Assessment of sleeper support conditions using micro-tremor analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(8): 1828-1841. doi: 10.1177/0954409715615629 [29] WOODWARD P, KENNEDY J, LAGHROUCHE O, et al. Study of railway track stiffness modification by polyurethane reinforcement of the ballast[J]. Transportation Geotechnics, 2014, 1(4): 214-224. doi: 10.1016/j.trgeo.2014.06.005 -
下载: