Performance and whole life cycle environmental impact assessment of cement-stabilized permeable recycled aggregate subgrade
-
摘要: 为推广建筑固废再生骨料在道路工程中的资源化高值应用,采用全生命周期评价方法,深入分析了再生骨料使用占比和辅助胶凝材料配比等对透水型再生水泥稳定材料(CPRA)在原材料生产、工程建设、道路运营维护和服役结束4个阶段的成本消耗以及环境影响,进而结合室内抗压强度、透水系数、四点弯曲抗折测试、抗冻试验和抗压回弹试验,开展了CPRA与传统水泥稳定材料(TCSA)基层材料的多性能多维度对比分析。研究结果表明:使用再生骨料部分替代天然碎石骨料制作的CPRA,其抗压强度和透水系数满足中国道路使用规范要求,通过改善混合料中胶凝材料的使用配比,可使再生骨料使用占比达到60%;水泥稳定材料在原材料生产阶段的CO2排放量占全生命周期CO2排放总量的87%~91%,其中胶凝材料生产时的CO2排放量占原材料生产阶段的95%;采用辅助胶凝材料替代部分水泥并使用再生骨料可有效降低CO2排放量,再生骨料占比为30%的3组不同配比的CPRA相较于再生骨料占比为0的3组材料可降低8%~20%的总成本以及3%~15%的CO2排放量,再生骨料占比为60%的3组不同配比的CPRA相较于再生骨料占比为0的3组材料可降低24%~34%的总成本以及3%~23%的CO2排放量;采用10%~32%的辅助胶凝材料替代水泥可降低混合料8%~17%的CO2排放量,但会增加14%~81%的SO2和21%~106%的NOx等污染气体的排放;CPRA相较于TCSA其总成本更为低廉,当胶凝剂材料使用比例控制在7%~8%时,CPRA全生命周期碳排放量更具优势。研究结果将为建筑固废再生骨料在全透水型道路基层中的应用以及碳排放数据测算和材料配合比设计提供参考借鉴。Abstract: To promote the widespread application of recycled aggregates derived from building demolition wastes (BDWs) in road engineering, a whole life cycle assessment method was applied. The cost and environmental impacts of the blending proportions of recycled aggregates and auxiliary cementitious materials on cement-stabilized permeable recycled aggregate (CPRA) during the four stages of raw material production, engineering construction, road maintenance, and service completion were further analyzed. In combination with laboratory compressive strength, permeability coefficient, four-point bending test, freezing resistance test, and compression resilience tests, the CPRA was compared with the traditional cement-stabilized aggregate (TCSA) subgrade materials from multi-performance and multi-dimensional perspectives. Research results show that the compressive strength and permeability coefficient can meet the requirements of China's road standards when the CPRA is used with recycled aggregate partially substituted for natural aggregate. The proportion of recycled aggregate reaches 60% by optimizing the ratio of cementitious materials in the mixture. The CO2 emissions of cement-stabilized materials during raw material production account for 87%-91% of the total CO2 emissions throughout the whole life cycle. The CO2 emissions during cementitious material production account for 95% of the total CO2 emissions of raw material production. The CO2 emissions can be effectively reduced by using auxiliary cementitious materials to partially replace cement and employing recycled aggregates. Compared with the three groups of materials with 0 recycled aggregate content, the three groups of CPRA with 30% recycled aggregate content can reduce the total cost by 8%-20% and CO2 emissions by 3%-15%. The three groups of CPRA with 60% recycled aggregate content can reduce the total cost by 24%-34% and CO2 emissions by 3%-23% compared with the three groups of materials with 0 recycled aggregate content. The replacement of cement with auxiliary cementitious materials with a proportion of 10%-32% decreases the CO2 emission of the mixture by 8%-17% but increases SO2 and NOx emissions by 14%-81% and 21%-106%, respectively. The total cost of CPRA is lower than that of TCSA. The research indicates that when the dosage of cementitious materials is controlled within the range of 7%-8%, the CPRA demonstrates superior whole life cycle carbon emission performance. The research findings will provide a reference for the application of recycled aggregates from BDWs in fully permeable subgrade as well as the measurement of carbon emission data and the design of material ratios.
-
Key words:
- subgrade engineering /
- recycled aggregate /
- CPRA /
- whole life cycle /
- environmental impact /
- construction cost
-
表 1 每吨再生骨料和天然碎石骨料生产时资源消耗
Table 1. Resource consumption in production of recycled aggregate and natural crushed stone aggregate per ton
消耗资源 天然碎石骨料 再生骨料 堆放填埋/(m2·a-1) 1.96 0.65 矿石/t 1.05 0.00 建筑固废/t 0.0 1.1 电力/(kW·h) 3.170 0.593 柴油/L 0.113 0.293 汽油/L 0.007 0.009 水/m3 0.108 0.074 运输/km 5 20 表 2 四种胶凝剂材料制造成本与环境影响
Table 2. Manufacturing costs and environmental impacts of four cementitious materials
表 3 各类型设备每小时能源消耗量
Table 3. Hourly energy consumptions of various types of equipment
设备类型 能源类型 每小时消耗量 挖掘机 柴油/L 2.22 滚筒压路机 柴油/L 10.11 运输卡车 柴油/L 21.61 摊铺机 柴油/L 13.48 水泥稳定混合料拌合 电力/(kW·h) 1 369 表 4 本文试验所用骨料的基本物理指标
Table 4. Basic physical indicators of aggregates used in this experiment
骨料类型 粒径/mm 表观密度/(g·cm-3) 表干密度/(g·cm-3) 毛体积相对密度 吸水率/% 压碎值/% 针片状含量/% 天然碎石骨料 [19.00, 26.50) 2.724 2.707 2.698 0.22 21.8 9.4 [9.50, 19.00) 2.711 2.697 2.687 0.29 20.2 12.1 [4.75, 9.50) 2.761 2.742 2.731 0.38 23.7 6.2 再生骨料 [19.00, 26.50) 2.529 2.318 2.176 6.42 26.4 8.9 [9.50, 19.00) 2.610 2.385 2.255 5.87 25.7 9.5 [4.75, 9.50) 2.608 2.341 2.182 7.55 23.9 12.5 表 5 九组CPRA的配比和TSCA的配比
Table 5. Nine groups of CPRA proportions and TCSA proportion
编号 再生骨料/ (kg·m-3) 天然碎石骨料/ (kg·m-3) 水泥/ (kg·m-3) 高炉矿渣粉/ (kg·m-3) 粉煤灰/ (kg·m-3) 硅灰/ (kg·m-3) 压实质量/ (kg·m-3) 水灰比 设计孔隙率/ % 0-1 0 1 890 189 0 0 0 2 079 0.41 22 0-2 0 1 884 153 9 19 8 2 072 0.41 22 0-3 0 1 878 128 18 38 4 2 066 0.41 22 30%-1 553 1 289 162 0 19 4 2 026 0.41 22 30%-2 551 1 286 138 9 38 0 2 021 0.41 22 30%-3 554 1 292 159 18 0 8 2 030 0.41 22 60%-1 1 083 722 137 0 38 8 1 985 0.41 22 60%-2 1 089 726 169 9 0 4 1 996 0.41 22 60%-3 1 085 724 145 18 19 0 1 990 0.41 22 D-1 0 2 174 120 0 0 0 2 380 0.40 0 表 6 天然碎石骨料与再生骨料生产环境影响分析
Table 6. Environmental impact assessment of natural crushed stone aggregate and recycled aggregate production
类型 再生骨料 天然碎石骨料 CO2/(kg·t-1) 6.140 1.412 SO2/(kg·t-1) 0.039 0.003 NOx/(kg·t-1) 0.009 0.001 避免堆放填埋[12] /(kg CO2·t-1) -14.46 0.00 能量/(MJ·t-1) 9.49 16.55 能源成本/(元·t-1) 2.20 3.28 表 7 道路水泥稳定基层建设阶段能源消耗及污染气体排放计算数据
Table 7. Calculated data on energy consumption and pollutant gas emissions during construction phase of cement-stabilized subgrade
类型 CPRA TCSA 电力/(kW·h·m-3) 0.04 0.05 柴油/(L·m-3) 0.73 0.63 汽油/(L·m-3) 0.01 0.02 水/(m3·m-3) 0.42 0.51 能量/(kJ·m-3) 7.17 5.46 成本/(元·m-3) 6.66 6.30 污染气体/ (g·m-3) CO2 2 190.22 1 896.85 SO2 15.51 13.38 NOx 2.02 1.76 表 8 道路水泥稳定基层运维阶段能源消耗及污染气体排放计算数据
Table 8. Calculated data on energy consumption and pollutant gas emissions during maintenance and service phase of cement-stabilized subgrade
类型 CPRA TCSA 电力/(kW·h·m-3) 12.06 12.06 柴油/(L·m-3) 0.63 0.51 汽油/(L·m-3) 0.44 0.48 水/(m3·m-3) 1.13 0.99 成本/(元·m-3) 17.65 16.66 能量消耗/(kJ·m-3) 81.59 78.59 污染气体/(g·m-3) CO2 7 273.17 7 045.15 SO2 21.84 20.08 NOx 5.84 5.82 雨水径流减少碳减排收益/(g·m-3) -2 535.17 0 减少污水处理碳减排收益/(g·m-3) -1 681.93 0 表 9 道路水泥稳定基层服役结束拆除阶段能源消耗及污染气体排放计算数据
Table 9. Calculated data on energy consumption and pollutant gas emissions during service completion and demolition phase of cement-stabilized subgrade
类型 数据 电力/(kW·h·m-3) 0.08 柴油/(L·m-3) 0.90 水/(m3·m-3) 0.20 成本/(元·m-3) 7.14 能量消耗/(kJ·m-3) 33.12 污染气体/(g·m-3) CO2 2 644.31 SO2 18.74 NOx 2.37 表 10 十组配比的水泥稳定材料室内试验结果
Table 10. Laboratory experiment results of ten proportions of cement-stabilized materials
编号 7 d无侧限抗压强度/MPa 28 d无侧限抗压强度/MPa 透水系数/ (mm·s-1) 抗压回弹模量/ MPa 抗弯极限应力/ kN 冻融参照组试样抗压强度/MPa 冻融组试样抗压强度/MPa 0-1 3.87 4.55 4.58 1 801.54 5.63 4.86 4.51 0-2 4.14 4.85 4.67 2 435.52 5.25 5.19 4.84 0-3 3.92 4.95 5.14 2 044.61 5.33 5.38 5.14 30%-1 3.94 4.53 5.13 1 751.15 5.00 4.93 4.52 30%-2 4.16 4.49 4.11 1 942.69 5.05 4.88 4.41 30%-3 4.36 4.57 4.34 1 995.37 5.18 4.98 4.66 60%-1 3.20 3.56 4.05 1 641.33 4.85 4.49 4.02 60%-2 4.13 4.65 3.78 1 863.62 4.31 5.14 4.63 60%-3 3.19 3.65 4.11 2 176.37 4.97 4.32 3.88 D-1 4.10 4.70 0.00 2 740.00 5.07 5.17 4.86 表 11 十组不同配比的水泥稳定材料折算服役寿命
Table 11. Discounted service lifes of ten different proportions of cement-stabilized materials
配比方案 0-1 0-2 0-3 30%-1 30%-2 30%-3 60%-1 60%-2 60%-3 D-1 折算服役寿命/年 23.68 28.26 30.62 21.45 21.90 26.25 15.72 20.57 18.48 30.00 -
[1] LIU Z, DENG Z, HE G, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth and Environment, 2022, 3: 141-155. [2] DANISH A, ALI MOSABERPANAH M. A review on recycled concrete aggregates (RCA) characteristics to promote RCA utilization in developing sustainable recycled aggregate concrete (RAC)[J]. European Journal of Environmental and Civil Engineering, 2021, 26(13): 6505-6539. [3] DIAS A, NEZAMI S, SILVESTRE J, et al. Environmental and economic comparison of natural and recycled aggregates using LCA[J]. Recycling, 2022, 7(4): 43. doi: 10.3390/recycling7040043 [4] 关博文, 吴佳育, 陈华鑫, 等. 再生骨料残余砂浆覆盖率测试及其对混凝土渗透性的影响[J]. 中国公路学报, 2021, 34(10): 155-165.GUAN Bo-wen, WU Jia-yu, CHEN Hua-xin, et al. Test of coverage rate of residual mortar on recycled aggregate and its influence on permeability of concrete[J]. China Journal of Highway and Transport, 2021, 34(10): 155-165. [5] HABIBI A, TAVAKOLI H, ESMAEILI A, et al. Comparative life cycle assessment (LCA) of concrete mixtures: a critical review[J]. European Journal of Environmental and Civil Engineering, 2023, 27(3): 1285-1303. doi: 10.1080/19648189.2022.2078885 [6] JAIN S, SINGHAL S, PANDEY S. Environmental life cycle assessment of construction and demolition waste recycling: a case of urban India[J]. Resources Conservation and Recycling, 2020, 155: 104642. doi: 10.1016/j.resconrec.2019.104642 [7] GHANBARI M, ABBASI A M, RAVANSHADNIA M. Production of natural and recycled aggregates: the environmental impacts of energy consumption and CO2 emissions[J]. Journal of Material Cycles and Waste Management, 2018, 20(2): 810-822. doi: 10.1007/s10163-017-0640-2 [8] TEFA L, BIANCO I, BLENGINI G A, et al. Integrated and comparative Structural-LCA analysis of unbound and cement-stabilized construction and demolition waste aggregate for subbase road pavement layers formation[J]. Journal of Cleaner Production, 2022, 352: 131599. doi: 10.1016/j.jclepro.2022.131599 [9] LIANG X, CUI S H, LI H, et al. Removal effect on stormwater runoff pollution of porous concrete treated with nanometer titanium dioxide[J]. Transportation Research Part D—Transport and Environment, 2019, 73: 34-45. doi: 10.1016/j.trd.2019.06.001 [10] YU T J, LIU D G, ZHANG H T, et al. Influence of pore water phase change on service performance for permeable pavement in Sponge City[J]. Water Science and Technology, 2021, 84(12): 3769-3779. doi: 10.2166/wst.2021.459 [11] LI H, YANG J, YU X Q, et al. Permeability prediction of pervious concrete based on mix proportions and pore characteristics[J]. Construction and Building Materials, 2023, 395: 132247. doi: 10.1016/j.conbuildmat.2023.132247 [12] LI L G, FENG J J, ZHU J, et al. Pervious concrete: effects of porosity on permeability and strength[J]. Magazine of Concrete Research, 2021, 73(2): 69-79. doi: 10.1680/jmacr.19.00194 [13] LI Q F, ZHOU Z M, DONG J B, et al. Comparison of runoff control performance by five permeable pavement systems in Zhenjiang, Yangtze River Delta of China[J]. Journal of Hydrologic Engineering, 2022, 27(10): 05022011. doi: 10.1061/(ASCE)HE.1943-5584.0002202 [14] WANG J J, WEI J J, LIU Z S, et al. Life cycle assessment of building demolition waste based on building information modeling[J]. Resources Conservation and Recycling, 2022, 178: 106095. doi: 10.1016/j.resconrec.2021.106095 [15] QIN Y H, HE Y H, HILLER J E, et al. A new water-retaining paver block for reducing runoff and cooling pavement[J]. Journal of Cleaner Production, 2018, 199: 948-956. doi: 10.1016/j.jclepro.2018.07.250 [16] ALSUBIH M, ARTHUR S, WRIGHT G, et al. Experimental study on the hydrological performance of a permeable pavement[J]. Urban Water Journal, 2017, 14(4): 427-434. doi: 10.1080/1573062X.2016.1176221 [17] ANTUNES L N, GHISI E, SEVERIS R M. Environmental assessment of a permeable pavement system used to harvest stormwater for non-potable water uses in a building[J]. Science of the Total Environment, 2020, 746: 141087. doi: 10.1016/j.scitotenv.2020.141087 [18] JIKE N D, XU C J, YANG R J, et al. Pervious concrete with secondarily recycled low-quality brick-concrete demolition residue: engineering performances, multi-scale/phase structure and sustainability[J]. Journal of Cleaner Production, 2022, 341: 130929. doi: 10.1016/j.jclepro.2022.130929 [19] ZAETANG Y, SATA V, WONGSA A, et al. Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate[J]. Construction and Building Materials, 2016, 111: 15-21. doi: 10.1016/j.conbuildmat.2016.02.060 [20] KAPLAN G, GULCAN A, CAGDAS B, et al. The impact of recycled coarse aggregates obtained from waste concretes on lightweight pervious concrete properties[J]. Environmental Science and Pollution Research International, 2021, 28(14): 17369-17394. doi: 10.1007/s11356-020-11881-y [21] YANG L X, KOU S C, SONG X F, et al. Analysis of properties of pervious concrete prepared with difference paste-coated recycled aggregate[J]. Construction and Building Materials, 2021, 269: 121244. doi: 10.1016/j.conbuildmat.2020.121244 [22] Federal Highway Administration. Pavement life-cycle assessment framework. FHWA-HIF-16-014[R]. Washington DC: U.S. Department of Transportation, 2016. [23] BRE Global. Product Category Rules (PCR) for Type Ⅲ EPD of Construction Products to EN 15804+A2[M]. London: BRE Global, 2023. [24] CHEN X D, WANG H. Life-cycle assessment and multi-criteria performance evaluation of pervious concrete pavement with fly ash[J]. Resources, Conservation and Recycling, 2022, 177: 105969. doi: 10.1016/j.resconrec.2021.105969 [25] WANG H, WU J J, ZHU X, et al. Energy-environment- economy evaluations of commercial scale systems for blast furnace slag treatment: dry slag granulation vs. water quenching[J]. Applied Energy, 2016, 171: 314-324. doi: 10.1016/j.apenergy.2016.03.079 [26] HOU H M, ZHANG S, GUO D F, et al. Synergetic benefits of pollution and carbon reduction from fly ash resource utilization-based on the life cycle perspective[J]. Science of the Total Environment, 2023, 903: 166197. doi: 10.1016/j.scitotenv.2023.166197 [27] HE Z H, HAN X D, ZHANG M Y, et al. A novel development of green UHPC containing waste concrete powder derived from construction and demolition waste[J]. Powder Technology, 2022, 398: 117075. doi: 10.1016/j.powtec.2021.117075 [28] NAYIR S, BAHADIR Ü, TOĞAN V. Investigation of global warming potential of concrete with silica fume and blast furnace slag[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2024, 48(4): 1965-1975. doi: 10.1007/s40996-023-01264-x [29] CHANDRAPPA A K, BILIGIRI K P. Pervious concrete as a sustainable pavement material- research findings and future prospects: a state-of-the-art review[J]. Construction and Building Materials, 2016, 111: 262-274. doi: 10.1016/j.conbuildmat.2016.02.054 [30] GAO S, HUANG K N, CHU W C, et al. Feasibility study of pervious concrete with ceramsite as aggregate considering mechanical properties, permeability, and durability[J]. Materials, 2023, 16(14): 5127. [31] SEIFEDDINE K, AMZIANE S, TOUSSAINT E. State of the art on the hydraulic properties of pervious concrete[J]. Road Materials and Pavement Design, 2023, 24(11): 2561-2596. [32] SHE L, WEI M, YOU X Y. Multi-objective layout optimization for sponge city by annealing algorithm and its environmental benefits analysis[J]. Sustainable Cities and Society, 2021, 66: 102706. -
下载: