留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透水型再生水泥稳定材料基层性能与全生命周期环境影响评价

杨涛 肖源杰 王小明 陈宇亮 孟凡威 何庆宇 杨建雄

杨涛, 肖源杰, 王小明, 陈宇亮, 孟凡威, 何庆宇, 杨建雄. 透水型再生水泥稳定材料基层性能与全生命周期环境影响评价[J]. 交通运输工程学报, 2025, 25(2): 322-339. doi: 10.19818/j.cnki.1671-1637.2025.02.021
引用本文: 杨涛, 肖源杰, 王小明, 陈宇亮, 孟凡威, 何庆宇, 杨建雄. 透水型再生水泥稳定材料基层性能与全生命周期环境影响评价[J]. 交通运输工程学报, 2025, 25(2): 322-339. doi: 10.19818/j.cnki.1671-1637.2025.02.021
YANG Tao, XIAO Yuan-jie, WANG Xiao-ming, CHEN Yu-liang, MENG Fan-wei, HE Qing-yu, YANG Jian-xiong. Performance and whole life cycle environmental impact assessment of cement-stabilized permeable recycled aggregate subgrade[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 322-339. doi: 10.19818/j.cnki.1671-1637.2025.02.021
Citation: YANG Tao, XIAO Yuan-jie, WANG Xiao-ming, CHEN Yu-liang, MENG Fan-wei, HE Qing-yu, YANG Jian-xiong. Performance and whole life cycle environmental impact assessment of cement-stabilized permeable recycled aggregate subgrade[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 322-339. doi: 10.19818/j.cnki.1671-1637.2025.02.021

透水型再生水泥稳定材料基层性能与全生命周期环境影响评价

doi: 10.19818/j.cnki.1671-1637.2025.02.021
基金项目: 

国家自然科学基金项目 52178443

国家重点研发计划 2023YFC3807205

湖南省自然科学基金杰出青年基金项目 2024JJ2073

湖南省重点研发计划 2024AQ2010

中央高校基本科研业务费专项资金项目 2024ZZTS0109

详细信息
    作者简介:

    杨涛(1993-),男,重庆永川人,中南大学工学博士研究生,从事公路路基路面研究

    肖源杰(1984-),男,湖南衡阳人,中南大学教授,工学博士

  • 中图分类号: U414

Performance and whole life cycle environmental impact assessment of cement-stabilized permeable recycled aggregate subgrade

Funds: 

National Natural Science Foundation of China 52178443

National Key R&D Program of China 2023YFC3807205

Hunan Provincial Natural Science Fund for Distinguished Young Scholars 2024JJ2073

Key Research and Development Program of Hunan Province 2024AQ2010

Fundamental Research Funds for the Central Universities 2024ZZTS0109

More Information
    Corresponding author: XIAO Yuan-jie (1984-), male, professor, PhD, yjxiao@csu.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为推广建筑固废再生骨料在道路工程中的资源化高值应用,采用全生命周期评价方法,深入分析了再生骨料使用占比和辅助胶凝材料配比等对透水型再生水泥稳定材料(CPRA)在原材料生产、工程建设、道路运营维护和服役结束4个阶段的成本消耗以及环境影响,进而结合室内抗压强度、透水系数、四点弯曲抗折测试、抗冻试验和抗压回弹试验,开展了CPRA与传统水泥稳定材料(TCSA)基层材料的多性能多维度对比分析。研究结果表明:使用再生骨料部分替代天然碎石骨料制作的CPRA,其抗压强度和透水系数满足中国道路使用规范要求,通过改善混合料中胶凝材料的使用配比,可使再生骨料使用占比达到60%;水泥稳定材料在原材料生产阶段的CO2排放量占全生命周期CO2排放总量的87%~91%,其中胶凝材料生产时的CO2排放量占原材料生产阶段的95%;采用辅助胶凝材料替代部分水泥并使用再生骨料可有效降低CO2排放量,再生骨料占比为30%的3组不同配比的CPRA相较于再生骨料占比为0的3组材料可降低8%~20%的总成本以及3%~15%的CO2排放量,再生骨料占比为60%的3组不同配比的CPRA相较于再生骨料占比为0的3组材料可降低24%~34%的总成本以及3%~23%的CO2排放量;采用10%~32%的辅助胶凝材料替代水泥可降低混合料8%~17%的CO2排放量,但会增加14%~81%的SO2和21%~106%的NOx等污染气体的排放;CPRA相较于TCSA其总成本更为低廉,当胶凝剂材料使用比例控制在7%~8%时,CPRA全生命周期碳排放量更具优势。研究结果将为建筑固废再生骨料在全透水型道路基层中的应用以及碳排放数据测算和材料配合比设计提供参考借鉴。

     

  • 图  1  道路水泥稳定基层材料全生命周期分析

    Figure  1.  Whole life cycle assessment of subgrade cement-stabilized materials

    图  2  四种水泥稳定材料的骨料级配曲线

    Figure  2.  Aggregate gradation curves for four cement- stabilized aggregates

    图  3  丽攀高速与平益高速地址及道路结构形式

    Figure  3.  Addresses and road structure forms of Lijiang-Panzhihua Expressway and Pingyi Expressway

    图  4  室内试验照片

    Figure  4.  Photos for laboratory experiments

    图  5  十组配比水泥稳定材料原材料阶段环境影响

    Figure  5.  Environmental impacts of ten proportions of cement- stabilized materials at raw materials stage

    图  6  十组配比水泥稳定材料成本与能量消耗

    Figure  6.  Costs and energy consumptions of ten proportions of cement-stabilized materials

    图  7  十组配比水泥稳定材料全生命周期CO2排放总量

    Figure  7.  Total CO2 emissions at whole life cycle phase of ten proportions of cement-stabilized materials

    图  8  十组配比水泥稳定材料全生命周期不同阶段的CO2排放量占比

    Figure  8.  Percentages of CO2 emissions at different stages of whole life cycle phases of ten proportions of cement-stabilized materials

    图  9  透水型再生水泥稳定材料碳减排收益

    Figure  9.  Carbon emission reduction benefits of CPRA

    图  10  十组配比水泥稳定材料污染气体排放

    Figure  10.  Pollutant gas emission of ten proportions of cement-stabilized materials

    图  11  透水型再生水泥稳定材料多标准特性评价

    Figure  11.  Multi-criteria properties assessment of CPRA

    图  12  不同胶凝材料占比的透水型再生水泥稳定材料环境影响评价

    Figure  12.  Environmental impact assessments of CPRA with different proportions of cementitious materials

    图  13  十组不同配比的水泥稳定材料综合性能评价

    Figure  13.  Comprehensive performance assessment of ten different proportions of cement-stabilized materials

    图  14  十组不同配比的水泥稳定材料服役周期内年均环境影响分析结果

    Figure  14.  Analysis results of average annual environmental impact within service life of ten different proportions of cement-stabilized materials

    表  1  每吨再生骨料和天然碎石骨料生产时资源消耗

    Table  1.   Resource consumption in production of recycled aggregate and natural crushed stone aggregate per ton

    消耗资源 天然碎石骨料 再生骨料
    堆放填埋/(m2·a-1) 1.96 0.65
    矿石/t 1.05 0.00
    建筑固废/t 0.0 1.1
    电力/(kW·h) 3.170 0.593
    柴油/L 0.113 0.293
    汽油/L 0.007 0.009
    水/m3 0.108 0.074
    运输/km 5 20
    下载: 导出CSV

    表  2  四种胶凝剂材料制造成本与环境影响

    Table  2.   Manufacturing costs and environmental impacts of four cementitious materials

    材料 能量/(MJ·t-1) CO2/(kg·t-1) SO2/(kg·t-1) NOx/(kg·t-1) 成本/(元·t-1) 数据来源
    水泥 6 461 605 0.25 0.29 660 文献[24]
    高炉矿渣粉 2 991 436 2.00 2.85 160 文献[25]
    粉煤灰 3 921 362 1.33 1.47 120 文献[24]、[26]
    硅灰 160 24 0.03 0.03 680 文献[27]、[28]
    下载: 导出CSV

    表  3  各类型设备每小时能源消耗量

    Table  3.   Hourly energy consumptions of various types of equipment

    设备类型 能源类型 每小时消耗量
    挖掘机 柴油/L 2.22
    滚筒压路机 柴油/L 10.11
    运输卡车 柴油/L 21.61
    摊铺机 柴油/L 13.48
    水泥稳定混合料拌合 电力/(kW·h) 1 369
    下载: 导出CSV

    表  4  本文试验所用骨料的基本物理指标

    Table  4.   Basic physical indicators of aggregates used in this experiment

    骨料类型 粒径/mm 表观密度/(g·cm-3) 表干密度/(g·cm-3) 毛体积相对密度 吸水率/% 压碎值/% 针片状含量/%
    天然碎石骨料 [19.00, 26.50) 2.724 2.707 2.698 0.22 21.8 9.4
    [9.50, 19.00) 2.711 2.697 2.687 0.29 20.2 12.1
    [4.75, 9.50) 2.761 2.742 2.731 0.38 23.7 6.2
    再生骨料 [19.00, 26.50) 2.529 2.318 2.176 6.42 26.4 8.9
    [9.50, 19.00) 2.610 2.385 2.255 5.87 25.7 9.5
    [4.75, 9.50) 2.608 2.341 2.182 7.55 23.9 12.5
    下载: 导出CSV

    表  5  九组CPRA的配比和TSCA的配比

    Table  5.   Nine groups of CPRA proportions and TCSA proportion

    编号 再生骨料/ (kg·m-3) 天然碎石骨料/ (kg·m-3) 水泥/ (kg·m-3) 高炉矿渣粉/ (kg·m-3) 粉煤灰/ (kg·m-3) 硅灰/ (kg·m-3) 压实质量/ (kg·m-3) 水灰比 设计孔隙率/ %
    0-1 0 1 890 189 0 0 0 2 079 0.41 22
    0-2 0 1 884 153 9 19 8 2 072 0.41 22
    0-3 0 1 878 128 18 38 4 2 066 0.41 22
    30%-1 553 1 289 162 0 19 4 2 026 0.41 22
    30%-2 551 1 286 138 9 38 0 2 021 0.41 22
    30%-3 554 1 292 159 18 0 8 2 030 0.41 22
    60%-1 1 083 722 137 0 38 8 1 985 0.41 22
    60%-2 1 089 726 169 9 0 4 1 996 0.41 22
    60%-3 1 085 724 145 18 19 0 1 990 0.41 22
    D-1 0 2 174 120 0 0 0 2 380 0.40 0
    下载: 导出CSV

    表  6  天然碎石骨料与再生骨料生产环境影响分析

    Table  6.   Environmental impact assessment of natural crushed stone aggregate and recycled aggregate production

    类型 再生骨料 天然碎石骨料
    CO2/(kg·t-1) 6.140 1.412
    SO2/(kg·t-1) 0.039 0.003
    NOx/(kg·t-1) 0.009 0.001
    避免堆放填埋[12] /(kg CO2·t-1) -14.46 0.00
    能量/(MJ·t-1) 9.49 16.55
    能源成本/(元·t-1) 2.20 3.28
    下载: 导出CSV

    表  7  道路水泥稳定基层建设阶段能源消耗及污染气体排放计算数据

    Table  7.   Calculated data on energy consumption and pollutant gas emissions during construction phase of cement-stabilized subgrade

    类型 CPRA TCSA
    电力/(kW·h·m-3) 0.04 0.05
    柴油/(L·m-3) 0.73 0.63
    汽油/(L·m-3) 0.01 0.02
    水/(m3·m-3) 0.42 0.51
    能量/(kJ·m-3) 7.17 5.46
    成本/(元·m-3) 6.66 6.30
    污染气体/ (g·m-3) CO2 2 190.22 1 896.85
    SO2 15.51 13.38
    NOx 2.02 1.76
    下载: 导出CSV

    表  8  道路水泥稳定基层运维阶段能源消耗及污染气体排放计算数据

    Table  8.   Calculated data on energy consumption and pollutant gas emissions during maintenance and service phase of cement-stabilized subgrade

    类型 CPRA TCSA
    电力/(kW·h·m-3) 12.06 12.06
    柴油/(L·m-3) 0.63 0.51
    汽油/(L·m-3) 0.44 0.48
    水/(m3·m-3) 1.13 0.99
    成本/(元·m-3) 17.65 16.66
    能量消耗/(kJ·m-3) 81.59 78.59
    污染气体/(g·m-3) CO2 7 273.17 7 045.15
    SO2 21.84 20.08
    NOx 5.84 5.82
    雨水径流减少碳减排收益/(g·m-3) -2 535.17 0
    减少污水处理碳减排收益/(g·m-3) -1 681.93 0
    下载: 导出CSV

    表  9  道路水泥稳定基层服役结束拆除阶段能源消耗及污染气体排放计算数据

    Table  9.   Calculated data on energy consumption and pollutant gas emissions during service completion and demolition phase of cement-stabilized subgrade

    类型 数据
    电力/(kW·h·m-3) 0.08
    柴油/(L·m-3) 0.90
    水/(m3·m-3) 0.20
    成本/(元·m-3) 7.14
    能量消耗/(kJ·m-3) 33.12
    污染气体/(g·m-3) CO2 2 644.31
    SO2 18.74
    NOx 2.37
    下载: 导出CSV

    表  10  十组配比的水泥稳定材料室内试验结果

    Table  10.   Laboratory experiment results of ten proportions of cement-stabilized materials

    编号 7 d无侧限抗压强度/MPa 28 d无侧限抗压强度/MPa 透水系数/ (mm·s-1) 抗压回弹模量/ MPa 抗弯极限应力/ kN 冻融参照组试样抗压强度/MPa 冻融组试样抗压强度/MPa
    0-1 3.87 4.55 4.58 1 801.54 5.63 4.86 4.51
    0-2 4.14 4.85 4.67 2 435.52 5.25 5.19 4.84
    0-3 3.92 4.95 5.14 2 044.61 5.33 5.38 5.14
    30%-1 3.94 4.53 5.13 1 751.15 5.00 4.93 4.52
    30%-2 4.16 4.49 4.11 1 942.69 5.05 4.88 4.41
    30%-3 4.36 4.57 4.34 1 995.37 5.18 4.98 4.66
    60%-1 3.20 3.56 4.05 1 641.33 4.85 4.49 4.02
    60%-2 4.13 4.65 3.78 1 863.62 4.31 5.14 4.63
    60%-3 3.19 3.65 4.11 2 176.37 4.97 4.32 3.88
    D-1 4.10 4.70 0.00 2 740.00 5.07 5.17 4.86
    下载: 导出CSV

    表  11  十组不同配比的水泥稳定材料折算服役寿命

    Table  11.   Discounted service lifes of ten different proportions of cement-stabilized materials

    配比方案 0-1 0-2 0-3 30%-1 30%-2 30%-3 60%-1 60%-2 60%-3 D-1
    折算服役寿命/年 23.68 28.26 30.62 21.45 21.90 26.25 15.72 20.57 18.48 30.00
    下载: 导出CSV
  • [1] LIU Z, DENG Z, HE G, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth and Environment, 2022, 3: 141-155.
    [2] DANISH A, ALI MOSABERPANAH M. A review on recycled concrete aggregates (RCA) characteristics to promote RCA utilization in developing sustainable recycled aggregate concrete (RAC)[J]. European Journal of Environmental and Civil Engineering, 2021, 26(13): 6505-6539.
    [3] DIAS A, NEZAMI S, SILVESTRE J, et al. Environmental and economic comparison of natural and recycled aggregates using LCA[J]. Recycling, 2022, 7(4): 43. doi: 10.3390/recycling7040043
    [4] 关博文, 吴佳育, 陈华鑫, 等. 再生骨料残余砂浆覆盖率测试及其对混凝土渗透性的影响[J]. 中国公路学报, 2021, 34(10): 155-165.

    GUAN Bo-wen, WU Jia-yu, CHEN Hua-xin, et al. Test of coverage rate of residual mortar on recycled aggregate and its influence on permeability of concrete[J]. China Journal of Highway and Transport, 2021, 34(10): 155-165.
    [5] HABIBI A, TAVAKOLI H, ESMAEILI A, et al. Comparative life cycle assessment (LCA) of concrete mixtures: a critical review[J]. European Journal of Environmental and Civil Engineering, 2023, 27(3): 1285-1303. doi: 10.1080/19648189.2022.2078885
    [6] JAIN S, SINGHAL S, PANDEY S. Environmental life cycle assessment of construction and demolition waste recycling: a case of urban India[J]. Resources Conservation and Recycling, 2020, 155: 104642. doi: 10.1016/j.resconrec.2019.104642
    [7] GHANBARI M, ABBASI A M, RAVANSHADNIA M. Production of natural and recycled aggregates: the environmental impacts of energy consumption and CO2 emissions[J]. Journal of Material Cycles and Waste Management, 2018, 20(2): 810-822. doi: 10.1007/s10163-017-0640-2
    [8] TEFA L, BIANCO I, BLENGINI G A, et al. Integrated and comparative Structural-LCA analysis of unbound and cement-stabilized construction and demolition waste aggregate for subbase road pavement layers formation[J]. Journal of Cleaner Production, 2022, 352: 131599. doi: 10.1016/j.jclepro.2022.131599
    [9] LIANG X, CUI S H, LI H, et al. Removal effect on stormwater runoff pollution of porous concrete treated with nanometer titanium dioxide[J]. Transportation Research Part D—Transport and Environment, 2019, 73: 34-45. doi: 10.1016/j.trd.2019.06.001
    [10] YU T J, LIU D G, ZHANG H T, et al. Influence of pore water phase change on service performance for permeable pavement in Sponge City[J]. Water Science and Technology, 2021, 84(12): 3769-3779. doi: 10.2166/wst.2021.459
    [11] LI H, YANG J, YU X Q, et al. Permeability prediction of pervious concrete based on mix proportions and pore characteristics[J]. Construction and Building Materials, 2023, 395: 132247. doi: 10.1016/j.conbuildmat.2023.132247
    [12] LI L G, FENG J J, ZHU J, et al. Pervious concrete: effects of porosity on permeability and strength[J]. Magazine of Concrete Research, 2021, 73(2): 69-79. doi: 10.1680/jmacr.19.00194
    [13] LI Q F, ZHOU Z M, DONG J B, et al. Comparison of runoff control performance by five permeable pavement systems in Zhenjiang, Yangtze River Delta of China[J]. Journal of Hydrologic Engineering, 2022, 27(10): 05022011. doi: 10.1061/(ASCE)HE.1943-5584.0002202
    [14] WANG J J, WEI J J, LIU Z S, et al. Life cycle assessment of building demolition waste based on building information modeling[J]. Resources Conservation and Recycling, 2022, 178: 106095. doi: 10.1016/j.resconrec.2021.106095
    [15] QIN Y H, HE Y H, HILLER J E, et al. A new water-retaining paver block for reducing runoff and cooling pavement[J]. Journal of Cleaner Production, 2018, 199: 948-956. doi: 10.1016/j.jclepro.2018.07.250
    [16] ALSUBIH M, ARTHUR S, WRIGHT G, et al. Experimental study on the hydrological performance of a permeable pavement[J]. Urban Water Journal, 2017, 14(4): 427-434. doi: 10.1080/1573062X.2016.1176221
    [17] ANTUNES L N, GHISI E, SEVERIS R M. Environmental assessment of a permeable pavement system used to harvest stormwater for non-potable water uses in a building[J]. Science of the Total Environment, 2020, 746: 141087. doi: 10.1016/j.scitotenv.2020.141087
    [18] JIKE N D, XU C J, YANG R J, et al. Pervious concrete with secondarily recycled low-quality brick-concrete demolition residue: engineering performances, multi-scale/phase structure and sustainability[J]. Journal of Cleaner Production, 2022, 341: 130929. doi: 10.1016/j.jclepro.2022.130929
    [19] ZAETANG Y, SATA V, WONGSA A, et al. Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate[J]. Construction and Building Materials, 2016, 111: 15-21. doi: 10.1016/j.conbuildmat.2016.02.060
    [20] KAPLAN G, GULCAN A, CAGDAS B, et al. The impact of recycled coarse aggregates obtained from waste concretes on lightweight pervious concrete properties[J]. Environmental Science and Pollution Research International, 2021, 28(14): 17369-17394. doi: 10.1007/s11356-020-11881-y
    [21] YANG L X, KOU S C, SONG X F, et al. Analysis of properties of pervious concrete prepared with difference paste-coated recycled aggregate[J]. Construction and Building Materials, 2021, 269: 121244. doi: 10.1016/j.conbuildmat.2020.121244
    [22] Federal Highway Administration. Pavement life-cycle assessment framework. FHWA-HIF-16-014[R]. Washington DC: U.S. Department of Transportation, 2016.
    [23] BRE Global. Product Category Rules (PCR) for Type Ⅲ EPD of Construction Products to EN 15804+A2[M]. London: BRE Global, 2023.
    [24] CHEN X D, WANG H. Life-cycle assessment and multi-criteria performance evaluation of pervious concrete pavement with fly ash[J]. Resources, Conservation and Recycling, 2022, 177: 105969. doi: 10.1016/j.resconrec.2021.105969
    [25] WANG H, WU J J, ZHU X, et al. Energy-environment- economy evaluations of commercial scale systems for blast furnace slag treatment: dry slag granulation vs. water quenching[J]. Applied Energy, 2016, 171: 314-324. doi: 10.1016/j.apenergy.2016.03.079
    [26] HOU H M, ZHANG S, GUO D F, et al. Synergetic benefits of pollution and carbon reduction from fly ash resource utilization-based on the life cycle perspective[J]. Science of the Total Environment, 2023, 903: 166197. doi: 10.1016/j.scitotenv.2023.166197
    [27] HE Z H, HAN X D, ZHANG M Y, et al. A novel development of green UHPC containing waste concrete powder derived from construction and demolition waste[J]. Powder Technology, 2022, 398: 117075. doi: 10.1016/j.powtec.2021.117075
    [28] NAYIR S, BAHADIR Ü, TOĞAN V. Investigation of global warming potential of concrete with silica fume and blast furnace slag[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2024, 48(4): 1965-1975. doi: 10.1007/s40996-023-01264-x
    [29] CHANDRAPPA A K, BILIGIRI K P. Pervious concrete as a sustainable pavement material- research findings and future prospects: a state-of-the-art review[J]. Construction and Building Materials, 2016, 111: 262-274. doi: 10.1016/j.conbuildmat.2016.02.054
    [30] GAO S, HUANG K N, CHU W C, et al. Feasibility study of pervious concrete with ceramsite as aggregate considering mechanical properties, permeability, and durability[J]. Materials, 2023, 16(14): 5127.
    [31] SEIFEDDINE K, AMZIANE S, TOUSSAINT E. State of the art on the hydraulic properties of pervious concrete[J]. Road Materials and Pavement Design, 2023, 24(11): 2561-2596.
    [32] SHE L, WEI M, YOU X Y. Multi-objective layout optimization for sponge city by annealing algorithm and its environmental benefits analysis[J]. Sustainable Cities and Society, 2021, 66: 102706.
  • 加载中
图(14) / 表(11)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  89
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-28
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回