留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动车组涡激振动比例模型风洞试验与数值仿真研究

秦汀 姚远 宋亚东 范晨光

秦汀, 姚远, 宋亚东, 范晨光. 动车组涡激振动比例模型风洞试验与数值仿真研究[J]. 交通运输工程学报, 2025, 25(2): 340-350. doi: 10.19818/j.cnki.1671-1637.2025.02.022
引用本文: 秦汀, 姚远, 宋亚东, 范晨光. 动车组涡激振动比例模型风洞试验与数值仿真研究[J]. 交通运输工程学报, 2025, 25(2): 340-350. doi: 10.19818/j.cnki.1671-1637.2025.02.022
QIN Ting, YAO Yuan, SONG Ya-dong, FAN Chen-guang. Wind tunnel test and numerical simulation for vortex-induced vibration of EMUs using scaled model[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 340-350. doi: 10.19818/j.cnki.1671-1637.2025.02.022
Citation: QIN Ting, YAO Yuan, SONG Ya-dong, FAN Chen-guang. Wind tunnel test and numerical simulation for vortex-induced vibration of EMUs using scaled model[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 340-350. doi: 10.19818/j.cnki.1671-1637.2025.02.022

动车组涡激振动比例模型风洞试验与数值仿真研究

doi: 10.19818/j.cnki.1671-1637.2025.02.022
基金项目: 

国家自然科学基金项目 52372403

国家自然科学基金项目 U2268211

四川省自然科学基金项目 2022NSFSC0034

中国国家铁路集团有限公司科技研究开发计划 N2023J071

详细信息
    作者简介:

    秦汀(2000-),男,四川成都人,西南交通大学工学博士研究生,从事列车空气动力学和车辆系统动力学研究

    姚远(1983-),男,安徽宿松人,西南交通大学研究员,工学博士

  • 中图分类号: U266.2

Wind tunnel test and numerical simulation for vortex-induced vibration of EMUs using scaled model

Funds: 

National Natural Science Foundation of China 52372403

National Natural Science Foundation of China U2268211

Natural Science Foundation of Sichuan Province 2022NSFSC0034

Science and Technology Research and Development Program of China Railway Group Co., Ltd. N2023J071

More Information
    Corresponding author: YAO Yuan (1983-), male, research fellow, PhD, yyuan8848@163.com
Article Text (Baidu Translation)
  • 摘要: 针对CR200J动力集中型动车组在单线隧道内列尾持续晃车现象,为了探究其形成机理与气动特征,本文以1∶25缩尺比例的CR200J动车组尾部动力车为研究对象,通过风洞试验对单自由度车体的横向振动进行测试,然后采用大涡模拟方法建立了风洞模型的流固耦合数值仿真平台,并通过风洞试验对仿真结果进行了验证;对比分析了是否考虑流固耦合振动2种工况时的车体尾涡结构及气动响应。研究结果表明:假设车体固定不考虑流固耦合振动时,横向气动力频率(涡激频率)与风速线性相关,横向气动力大小与车体气动外形和风速有关;考虑流固耦合振动时,车体横向振动幅值与风速正相关,由于涡激振动锁频效应,横向气动力频率与车体横向固有振动频率锁定,此时车体出现了涡激共振,其横向振动加剧;相较于非流固耦合仿真工况,车体横向振动导致尾流高涡量区域和边界层分离点后移,更靠近车头鼻尖位置,使得因漩涡脱落产生的横向力的作用力臂增大,进而增大车体受到的摇头力矩,加剧振动。可见,流固耦合会改变气动载荷的大小和频率,进而影响车体动态响应,故尾车晃车的分析需采用车辆动力学与空气动力学相结合的流固耦合振动分析方法。

     

  • 图  1  CR200J动力集中型动车组风洞试验简化模型

    Figure  1.  Simplified model for wind tunnel test of CR200J power-centralized EMU

    图  2  列车比例模型风洞试验台

    Figure  2.  Wind tunnel test bench for scaled train model

    图  3  列车模型受力分析

    Figure  3.  Force analysis of train model

    图  4  车体尾部动态响应测量

    Figure  4.  Dynamic response measurement of carbody tail

    图  5  车体测点横向加速度

    Figure  5.  Lateral acceleration of carbody measurement point

    图  6  CR200J动力集中型动车组数值计算简化模型

    Figure  6.  Simplified numerical calculation model for CR200J power-centralized EMU

    图  7  计算域与边界条件

    Figure  7.  Computational domain and boundary conditions

    图  8  数值计算粒子

    Figure  8.  Numerical computation particle

    图  9  联合仿真流程

    Figure  9.  Co-simulation process

    图  10  工况1下车体气动特征

    Figure  10.  Aerodynamic characteristics of carbody under condition 1

    图  11  工况2下车体气动响应

    Figure  11.  Aerodynamic responses of carbody under condition 2

    图  12  尾流场与车体表面涡量

    Figure  12.  Vorticities of wake field and carbody surface

    图  13  尾流场涡量流向

    Figure  13.  Vorticity flow directions of wake field

    表  1  数值计算工况说明

    Table  1.   Interpretation of numerical computation conditions

    工况类型 说明
    工况1 车体横向固定
    工况2 摇头单自由度(固有频率为8 Hz)
    下载: 导出CSV
  • [1] SONG Y D, QIN T, YAO Y, et al. Investigation on aerodynamic fluid-structure coupling vibration of 160 km/h EMU tail in single-track tunnels[J]. International Journal of Structural Stability and Dynamics, 2024, 24(18): 2450197. doi: 10.1142/S0219455424501979
    [2] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6/7): 277-298.
    [3] HEMIDA H, BAKER C, GAO G J. The calculation of train slipstreams using large-eddy simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(1): 25-36. doi: 10.1177/0954409712460982
    [4] BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127-137. doi: 10.1016/j.jweia.2014.09.007
    [5] BELL J R, BURTON D, THOMPSON M C, et al. Dynamics of trailing vortices in the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 65: 238-256. doi: 10.1016/j.jfluidstructs.2016.06.003
    [6] BELL J R, BURTON D, THOMPSON M C, et al. Flow topology and unsteady features of the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 61: 168-183. doi: 10.1016/j.jfluidstructs.2015.11.009
    [7] BELL J R, BURTON D, THOMPSON M C, et al. The effect of tail geometry on the slipstream and unsteady wake structure of high-speed trains[J]. Experimental Thermal and Fluid Science, 2017, 83: 215-230. doi: 10.1016/j.expthermflusci.2017.01.014
    [8] CHIU T W, SQUIRE L C. An experimental study of the flow over a train in a crosswind at large yaw angles up to 90°[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 45(1): 47-74. doi: 10.1016/0167-6105(92)90005-U
    [9] WEISE M, SCHOBER M, ORELLANO A. Slipstream velocities induced by trains[C]//WSEAS. Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics. Agios Nikolaos: WSEAS, 2006: 26-28.
    [10] 潘永琛, 姚建伟, 刘涛, 等. 基于涡旋识别方法的高速列车尾涡结构的讨论[J]. 力学学报, 2018, 50(3): 667-676.

    PAN Yong-chen, YAO Jian-wei, LIU Tao, et al. Discussion on the wake vortex structure of a high speed train by vortex identification methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 667-676.
    [11] 姚拴宝, 郭迪龙, 杨国伟. 基于径向基函数网格变形的高速列车头型优化[J]. 力学学报, 2013, 45(6): 982-986.

    YAO Shuan-bao, GUO Di-long, YANG Guo-wei. Aerodynamic optimization of high-speed train based on RBF mesh deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 982-986.
    [12] 姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34(7): 18-23.

    YAO Shuan-bao, GUO Di-long, YANG Guo-wei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7): 18-23.
    [13] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41.

    TIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Strategic Study of CAE, 2015, 17(4): 30-41.
    [14] HEMIDA H, KRAJNOVIĆ S. LES study of the influence of the nose shape and yaw angles on flow structures around trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(1): 34-46. doi: 10.1016/j.jweia.2009.08.012
    [15] FUJIMOTO H, MIYAMOTO M. Lateral vibration and its decreasing measure of a shinkansen train (decrease of train vibration with yaw damper between cars)[J]. Vehicle System Dynamics, 1996, 25(S1): 188-199.
    [16] DIEDRICHS B, BERG M, STICHEL S, et al. Vehicle dynamics of a high-speed passenger car due to aerodynamics inside tunnels[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2007, 221(4): 527-545. doi: 10.1243/09544097JRRT125
    [17] DIEDRICHS B, KRAJNOVIĆ S, BERG M. On the aerodynamics of car body vibrations of high-speed trains cruising inside tunnels[J]. Engineering Applications of Computational Fluid Mechanics, 2008, 2(1): 51-75. doi: 10.1080/19942060.2008.11015211
    [18] HEMIDA H, KRAJNOVIĆ S. Exploring flow structures around a simplified ICE2 train subjected to A 30° side wind using LES[J]. Engineering Applications of Computational Fluid Mechanics, 2009, 3(1): 28-41. doi: 10.1080/19942060.2009.11015252
    [19] HEMIDA H. Large-eddy simulation of the flow around simplified high-speed trains under side wind conditions[D]. Goteborg: Chalmers University of Technology, 2006.
    [20] HEMIDA H, BAKER C. Large-eddy simulation of the flow around a freight wagon subjected to a crosswind[J]. Computers and Fluids, 2010, 39(10): 1944-1956. doi: 10.1016/j.compfluid.2010.06.026
    [21] 马静, 张杰, 杨志刚. 横风下高速列车非定常空气动力特性研究[J]. 铁道学报, 2008, 30(6): 109-114.

    MA Jing, ZHANG Jie, YANG Zhi-gang. Study on the unsteady aerodynamic characteristics of a high-speed train under cross wind[J]. Journal of the China Railway Society, 2008, 30(6): 109-114.
    [22] 杨志刚, 马静, 陈羽, 等. 横风中不同行驶工况下高速列车非定常空气动力特性[J]. 铁道学报, 2010, 32(2): 18-23.

    YANG Zhi-gang, MA Jing, CHEN Yu, et al. The unsteady aerodynamic characteristics of a high-speed train in different operating conditions under cross wind[J]. Journal of the China Railway Society, 2010, 32(2): 18-23.
    [23] 鲍龙. 隧道内高速列车外部绕流大涡模拟初探[D]. 兰州: 兰州交通大学, 2013.

    BAO Long. A preliminary large eddy simulation research on the external flow of high-speed train inside tunnel[D]. Lanzhou: Lanzhou Jiaotong University, 2013.
    [24] KHAYRULLINA A, BLOCKEN B, JANSSEN W, et al. CFD simulation of train aerodynamics: train-induced wind conditions at an underground railroad passenger platform[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 139: 100-110.
    [25] 李田. 高速列车流固耦合计算方法及动力学性能研究[D]. 成都: 西南交通大学, 2012.

    LI Tian. Approaches and dynamic performances of high-speed train fluid-structure[D]. Chengdu: Southwest Jiaotong University, 2012.
    [26] 姚远, 许振飞, 宋亚东, 等. 基于涡激振动的动车组隧道内列尾横向晃动机理[J]. 交通运输工程学报, 2021, 21(5): 114-124. doi: 10.19818/j.cnki.1671-1637.2021.05.010

    YAO Yuan, XU Zhen-fei, SONG Ya-dong, et al. Mechanism of train tail lateral sway of EMUs in tunnel based on vortex-induced vibration[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 114-124. doi: 10.19818/j.cnki.1671-1637.2021.05.010
    [27] 崔涛, 张卫华, 孙帮成. 高速列车流固耦合振动的研究方法及其应用[J]. 铁道学报, 2013, 35(4): 16-22.

    CUI Tao, ZHANG Wei-hua, SUN Bang-cheng. Research method and application of fluid-solid coupling vibration for high-speed train[J]. Journal of the China Railway Society, 2013, 35(4): 16-22.
    [28] JI Z L, LIU W, GUO D L, et al. Analysis of the fluid- structure coupling characteristics of a high-speed train passing through a tunnel[J]. International Journal of Structural Stability and Dynamics, 2022, 22(16): 2250185.
    [29] CHEN G, LI X B, LIU Z, et al. Dynamic analysis of the effect of nose length on train aerodynamic performance[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 198-208.
    [30] 尹亚星, 王彤, 王承彦, 等. 基于格子Boltzmann的混合过程建模与流致振动特性[J]. 浙江大学学报(工学版), 2023, 57(11): 2217-2226.

    YIN Ya-xing, WANG Tong, WANG Cheng-yan, et al. Mixing process modeling and flow-induced vibration characteristics based on lattice Boltzmann method[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(11): 2217-2226.
    [31] KUZNIK F, OBRECHT C, RUSAOUEN G, et al. LBM based flow simulation using GPU computing processor[J]. Computers & Mathematics with Applications, 2010, 59(7): 2380-2392.
    [32] KERIMO J, GIRIMAJI S S. Boltzmann-BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods[J]. Journal of Turbulence, 2007, 8: N46.
    [33] SBRAGAGLIA M, BENZI R, BIFERALE L, et al. Generalized lattice Boltzmann method with multirange pseudopotential[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(2): 026702.
    [34] NAKADE K. Numerical simulation of flow around railway vehicle in turbulent boundary layer over flat terrain[J]. Quarterly Report of Railway Technical Research Institute, 2014, 55(4): 249-254.
    [35] ÖSTH J, KRAJNOVIĆ S. A study of the aerodynamics of a generic container freight wagon using large-eddy simulation[J]. Journal of Fluids and Structures, 2014, 44: 31-51.
    [36] YAO S B, SUN Z X, GUO D L, et al. Numerical study on wake characteristics of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29(6): 811-822.
    [37] SCHULTE-WERNING B, HEINE C, MATSCHKE G. Unsteady wake flow characteristics of high-speed trains[J]. Proceedings in Applied Mathematics and Mechanics, 2003, 2(1): 332-333.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  85
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回