Wind tunnel test and numerical simulation for vortex-induced vibration of EMUs using scaled model
Article Text (Baidu Translation)
-
摘要: 针对CR200J动力集中型动车组在单线隧道内列尾持续晃车现象,为了探究其形成机理与气动特征,本文以1∶25缩尺比例的CR200J动车组尾部动力车为研究对象,通过风洞试验对单自由度车体的横向振动进行测试,然后采用大涡模拟方法建立了风洞模型的流固耦合数值仿真平台,并通过风洞试验对仿真结果进行了验证;对比分析了是否考虑流固耦合振动2种工况时的车体尾涡结构及气动响应。研究结果表明:假设车体固定不考虑流固耦合振动时,横向气动力频率(涡激频率)与风速线性相关,横向气动力大小与车体气动外形和风速有关;考虑流固耦合振动时,车体横向振动幅值与风速正相关,由于涡激振动锁频效应,横向气动力频率与车体横向固有振动频率锁定,此时车体出现了涡激共振,其横向振动加剧;相较于非流固耦合仿真工况,车体横向振动导致尾流高涡量区域和边界层分离点后移,更靠近车头鼻尖位置,使得因漩涡脱落产生的横向力的作用力臂增大,进而增大车体受到的摇头力矩,加剧振动。可见,流固耦合会改变气动载荷的大小和频率,进而影响车体动态响应,故尾车晃车的分析需采用车辆动力学与空气动力学相结合的流固耦合振动分析方法。Abstract: In view of the sustained swaying of the train tail of the CR200J power-centralized electric multiple unit (EMU) in a single-track tunnel, a 1∶25 scaled train model for the CR200J EMU was constructed to explore the generation mechanism and aerodynamic characteristics of train tail swaying. The lateral vibration of a single-degree-of-freedom carbody was measured by a wind tunnel test. A fluid-structure coupling numerical simulation platform for a wind tunnel model was established by the large eddy simulation (LES) method, and the simulation results were verified by the wind tunnel test. Under the conditions with and without the fluid-structure coupling vibration, the wake vortex structure and aerodynamic response were analyzed. Research results show that the lateral aerodynamic force frequency (vortex-induced frequency) is linearly related to the wind speed when the carbody is assumed to be fixed and the fluid-structure coupling vibration is not considered. Meanwhile, the size of the lateral aerodynamic force is related to the aerodynamic shape of the carbody and the wind speed. When the fluid-structure coupling vibration is considered, the lateral vibration amplitude is positively correlated with the wind speed. The lateral aerodynamic force frequency is locked to the lateral natural vibration frequency of the carbody due to the frequency locking effect of vortex-induced vibration. In this case, the carbody is subject to the vortex-induced resonance, and the lateral vibration is aggravated. Additionally, in contrast to the conditions of non-fluid-structure coupling simulation, the lateral vibration of the carbody results in a backward displacement of the high vorticity region and the separation point of the boundary layer and causes them to be closer to the nose tip. This causes an increase in the force arm of the lateral force generated by the vortex shedding, which further amplifies the yaw moment of the carbody and aggravates the vibration. The fluid-structure coupling can change the size and frequency of the aerodynamic load and further affect the dynamic response of the carbody. Therefore, the fluid-structure coupling vibration method combining train dynamics and aerodynamics is necessary for the analysis of the train tail swaying.
-
表 1 数值计算工况说明
Table 1. Interpretation of numerical computation conditions
工况类型 说明 工况1 车体横向固定 工况2 摇头单自由度(固有频率为8 Hz) -
[1] SONG Y D, QIN T, YAO Y, et al. Investigation on aerodynamic fluid-structure coupling vibration of 160 km/h EMU tail in single-track tunnels[J]. International Journal of Structural Stability and Dynamics, 2024, 24(18): 2450197. doi: 10.1142/S0219455424501979 [2] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6/7): 277-298. [3] HEMIDA H, BAKER C, GAO G J. The calculation of train slipstreams using large-eddy simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(1): 25-36. doi: 10.1177/0954409712460982 [4] BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127-137. doi: 10.1016/j.jweia.2014.09.007 [5] BELL J R, BURTON D, THOMPSON M C, et al. Dynamics of trailing vortices in the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 65: 238-256. doi: 10.1016/j.jfluidstructs.2016.06.003 [6] BELL J R, BURTON D, THOMPSON M C, et al. Flow topology and unsteady features of the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 61: 168-183. doi: 10.1016/j.jfluidstructs.2015.11.009 [7] BELL J R, BURTON D, THOMPSON M C, et al. The effect of tail geometry on the slipstream and unsteady wake structure of high-speed trains[J]. Experimental Thermal and Fluid Science, 2017, 83: 215-230. doi: 10.1016/j.expthermflusci.2017.01.014 [8] CHIU T W, SQUIRE L C. An experimental study of the flow over a train in a crosswind at large yaw angles up to 90°[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 45(1): 47-74. doi: 10.1016/0167-6105(92)90005-U [9] WEISE M, SCHOBER M, ORELLANO A. Slipstream velocities induced by trains[C]//WSEAS. Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics. Agios Nikolaos: WSEAS, 2006: 26-28. [10] 潘永琛, 姚建伟, 刘涛, 等. 基于涡旋识别方法的高速列车尾涡结构的讨论[J]. 力学学报, 2018, 50(3): 667-676.PAN Yong-chen, YAO Jian-wei, LIU Tao, et al. Discussion on the wake vortex structure of a high speed train by vortex identification methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 667-676. [11] 姚拴宝, 郭迪龙, 杨国伟. 基于径向基函数网格变形的高速列车头型优化[J]. 力学学报, 2013, 45(6): 982-986.YAO Shuan-bao, GUO Di-long, YANG Guo-wei. Aerodynamic optimization of high-speed train based on RBF mesh deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 982-986. [12] 姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34(7): 18-23.YAO Shuan-bao, GUO Di-long, YANG Guo-wei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7): 18-23. [13] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41.TIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Strategic Study of CAE, 2015, 17(4): 30-41. [14] HEMIDA H, KRAJNOVIĆ S. LES study of the influence of the nose shape and yaw angles on flow structures around trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(1): 34-46. doi: 10.1016/j.jweia.2009.08.012 [15] FUJIMOTO H, MIYAMOTO M. Lateral vibration and its decreasing measure of a shinkansen train (decrease of train vibration with yaw damper between cars)[J]. Vehicle System Dynamics, 1996, 25(S1): 188-199. [16] DIEDRICHS B, BERG M, STICHEL S, et al. Vehicle dynamics of a high-speed passenger car due to aerodynamics inside tunnels[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2007, 221(4): 527-545. doi: 10.1243/09544097JRRT125 [17] DIEDRICHS B, KRAJNOVIĆ S, BERG M. On the aerodynamics of car body vibrations of high-speed trains cruising inside tunnels[J]. Engineering Applications of Computational Fluid Mechanics, 2008, 2(1): 51-75. doi: 10.1080/19942060.2008.11015211 [18] HEMIDA H, KRAJNOVIĆ S. Exploring flow structures around a simplified ICE2 train subjected to A 30° side wind using LES[J]. Engineering Applications of Computational Fluid Mechanics, 2009, 3(1): 28-41. doi: 10.1080/19942060.2009.11015252 [19] HEMIDA H. Large-eddy simulation of the flow around simplified high-speed trains under side wind conditions[D]. Goteborg: Chalmers University of Technology, 2006. [20] HEMIDA H, BAKER C. Large-eddy simulation of the flow around a freight wagon subjected to a crosswind[J]. Computers and Fluids, 2010, 39(10): 1944-1956. doi: 10.1016/j.compfluid.2010.06.026 [21] 马静, 张杰, 杨志刚. 横风下高速列车非定常空气动力特性研究[J]. 铁道学报, 2008, 30(6): 109-114.MA Jing, ZHANG Jie, YANG Zhi-gang. Study on the unsteady aerodynamic characteristics of a high-speed train under cross wind[J]. Journal of the China Railway Society, 2008, 30(6): 109-114. [22] 杨志刚, 马静, 陈羽, 等. 横风中不同行驶工况下高速列车非定常空气动力特性[J]. 铁道学报, 2010, 32(2): 18-23.YANG Zhi-gang, MA Jing, CHEN Yu, et al. The unsteady aerodynamic characteristics of a high-speed train in different operating conditions under cross wind[J]. Journal of the China Railway Society, 2010, 32(2): 18-23. [23] 鲍龙. 隧道内高速列车外部绕流大涡模拟初探[D]. 兰州: 兰州交通大学, 2013.BAO Long. A preliminary large eddy simulation research on the external flow of high-speed train inside tunnel[D]. Lanzhou: Lanzhou Jiaotong University, 2013. [24] KHAYRULLINA A, BLOCKEN B, JANSSEN W, et al. CFD simulation of train aerodynamics: train-induced wind conditions at an underground railroad passenger platform[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 139: 100-110. [25] 李田. 高速列车流固耦合计算方法及动力学性能研究[D]. 成都: 西南交通大学, 2012.LI Tian. Approaches and dynamic performances of high-speed train fluid-structure[D]. Chengdu: Southwest Jiaotong University, 2012. [26] 姚远, 许振飞, 宋亚东, 等. 基于涡激振动的动车组隧道内列尾横向晃动机理[J]. 交通运输工程学报, 2021, 21(5): 114-124. doi: 10.19818/j.cnki.1671-1637.2021.05.010 YAO Yuan, XU Zhen-fei, SONG Ya-dong, et al. Mechanism of train tail lateral sway of EMUs in tunnel based on vortex-induced vibration[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 114-124. doi: 10.19818/j.cnki.1671-1637.2021.05.010 [27] 崔涛, 张卫华, 孙帮成. 高速列车流固耦合振动的研究方法及其应用[J]. 铁道学报, 2013, 35(4): 16-22.CUI Tao, ZHANG Wei-hua, SUN Bang-cheng. Research method and application of fluid-solid coupling vibration for high-speed train[J]. Journal of the China Railway Society, 2013, 35(4): 16-22. [28] JI Z L, LIU W, GUO D L, et al. Analysis of the fluid- structure coupling characteristics of a high-speed train passing through a tunnel[J]. International Journal of Structural Stability and Dynamics, 2022, 22(16): 2250185. [29] CHEN G, LI X B, LIU Z, et al. Dynamic analysis of the effect of nose length on train aerodynamic performance[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 198-208. [30] 尹亚星, 王彤, 王承彦, 等. 基于格子Boltzmann的混合过程建模与流致振动特性[J]. 浙江大学学报(工学版), 2023, 57(11): 2217-2226.YIN Ya-xing, WANG Tong, WANG Cheng-yan, et al. Mixing process modeling and flow-induced vibration characteristics based on lattice Boltzmann method[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(11): 2217-2226. [31] KUZNIK F, OBRECHT C, RUSAOUEN G, et al. LBM based flow simulation using GPU computing processor[J]. Computers & Mathematics with Applications, 2010, 59(7): 2380-2392. [32] KERIMO J, GIRIMAJI S S. Boltzmann-BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods[J]. Journal of Turbulence, 2007, 8: N46. [33] SBRAGAGLIA M, BENZI R, BIFERALE L, et al. Generalized lattice Boltzmann method with multirange pseudopotential[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(2): 026702. [34] NAKADE K. Numerical simulation of flow around railway vehicle in turbulent boundary layer over flat terrain[J]. Quarterly Report of Railway Technical Research Institute, 2014, 55(4): 249-254. [35] ÖSTH J, KRAJNOVIĆ S. A study of the aerodynamics of a generic container freight wagon using large-eddy simulation[J]. Journal of Fluids and Structures, 2014, 44: 31-51. [36] YAO S B, SUN Z X, GUO D L, et al. Numerical study on wake characteristics of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29(6): 811-822. [37] SCHULTE-WERNING B, HEINE C, MATSCHKE G. Unsteady wake flow characteristics of high-speed trains[J]. Proceedings in Applied Mathematics and Mechanics, 2003, 2(1): 332-333. -
下载: