留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑人字齿轮啮合的高速动车组动力学性能和车轮磨耗分析

宋烨 祁亚运 战立超

宋烨, 祁亚运, 战立超. 考虑人字齿轮啮合的高速动车组动力学性能和车轮磨耗分析[J]. 交通运输工程学报, 2025, 25(2): 351-360. doi: 10.19818/j.cnki.1671-1637.2025.02.023
引用本文: 宋烨, 祁亚运, 战立超. 考虑人字齿轮啮合的高速动车组动力学性能和车轮磨耗分析[J]. 交通运输工程学报, 2025, 25(2): 351-360. doi: 10.19818/j.cnki.1671-1637.2025.02.023
SONG Ye, QI Ya-yun, ZHAN Li-chao. Analysis of dynamics performance and wheel wear on a high-speed EMUs equipped with herringbone gears[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 351-360. doi: 10.19818/j.cnki.1671-1637.2025.02.023
Citation: SONG Ye, QI Ya-yun, ZHAN Li-chao. Analysis of dynamics performance and wheel wear on a high-speed EMUs equipped with herringbone gears[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 351-360. doi: 10.19818/j.cnki.1671-1637.2025.02.023

考虑人字齿轮啮合的高速动车组动力学性能和车轮磨耗分析

doi: 10.19818/j.cnki.1671-1637.2025.02.023
基金项目: 

国家自然科学基金项目 U2268211

国家自然科学基金项目 52302467

牵引动力国家重点实验室自主课题 2023TPL-T10

牵引动力国家重点实验室开放课题 TPL2309

详细信息
    作者简介:

    宋烨(1987-),男,山西运城人,西南交通大学助理研究员,工学博士,从事轨道车辆结构与设计研究

    通讯作者:

    SONG Ye (1987-), male, research assistant, PhD, songye@swjtu.edu.cn

  • 中图分类号: U270.1

Analysis of dynamics performance and wheel wear on a high-speed EMUs equipped with herringbone gears

Funds: 

National Natural Science Foundation of China U2268211

National Natural Science Foundation of China 52302467

Independent Project of State Key Laboratory of Traction Power 2023TPL-T10

Open Project of State Key Laboratory of Traction Power TPL2309

Article Text (Baidu Translation)
  • 摘要: 建立了考虑完整牵引传动系统的车辆动力学模型,在传动系统建模时分别采用人字齿轮和斜齿轮;对比分析了2种齿轮传动系统对轮轨接触参数、车辆动力学性能的影响;分析了传动系统中人字齿轮啮合对车轮磨耗的影响。分析结果表明:人字齿轮增加了齿轮副啮合刚度,从而使扭矩传递更加平稳;人字齿轮能有效减少车轮与钢轨的横向作用和轮对横向位移,2种模型在牵引过程中的最大横向位移分别为8.9和5.7 mm,人字齿啮合模型减小了35.9%;人字齿轮有效减小了齿轮的轴向力,斜齿和人字齿轮轴向力最大值分别为4.50、2.85 kN;在高速动车组使用人字齿轮传动系统时,新车轮与新钢轨匹配后,车轮的磨耗相对集中,不利于车轮型面的均匀性磨耗;直线工况下,人字齿轮啮合模型的车轮磨耗较斜齿轮啮合模型增大5.96%;牵引力矩对车轮磨耗影响较大,谐波力矩对车轮磨耗有一定影响,增加谐波力矩会增加车轮磨耗,螺旋角对车轮磨耗影响较小。研究为高速动车组人字齿轮啮合传动系统的设计提供了相关依据。

     

  • 图  1  牵引传动系统动力学模型建立

    Figure  1.  Dynamics modelling of traction transmission system

    图  2  模型验证

    Figure  2.  Model validation

    图  3  轮轨接触特性

    Figure  3.  Wheel-rail contact characteristics

    图  4  齿轮轴向力

    Figure  4.  Gear axial forces

    图  5  传动系统的振动特性

    Figure  5.  Vibration characteristics of transmission system

    图  6  车轮磨耗流程

    Figure  6.  Wheel wear process

    图  7  直线段和曲线段车轮磨耗

    Figure  7.  Wheel wear in straight and curved tracks

    图  8  不同参数下的车轮磨耗深度

    Figure  8.  Wheel wear depths of different parameters

  • [1] 金学松, 赵国堂, 梁树林, 等. 高速铁路轮轨磨损特征、机理、影响和对策——车轮踏面横向磨耗[J]. 机械工程学报, 2018, 54(4): 3-13.

    JIN Xue-song, ZHAO Guo-tang, LIANG Shu-lin, et al. Characteristics, mechanisms, influences and counter measures of high speed wheel/rail wear: transverse wear of wheel tread[J]. Journal of Mechanical Engineering, 2018, 54(4): 3-13.
    [2] SHI H L, WANG J B, WU P B, et al. Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains[J]. Vehicle System Dynamics, 2018, 56(8): 1187-1206. doi: 10.1080/00423114.2017.1406963
    [3] ZHAI W M, JIN X S, WEN Z F, et al. Wear problems of high-speed wheel/rail systems: observations, causes, and countermeasures in China[J]. Applied Mechanics Reviews, 2020, 72(6): 1-23.
    [4] HUANG G H, ZHOU N, ZHANG W H. Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(8): 1899-1907. doi: 10.1177/0954409715617787
    [5] WU H, WU P B, GUO J Y, et al. Current signal characteristics analysis of transmission system in high-speed train under abnormal vibration conditions[J]. Vehicle System Dynamics, 2023, 61(4): 1151-1167. doi: 10.1080/00423114.2022.2071745
    [6] CHEN Z G, ZHAI W M, WANG K Y. A locomotive-track coupled vertical dynamics model with gear transmission[J]. Vehicle System Dynamics, 2017, 55(2): 244-267. doi: 10.1080/00423114.2016.1254260
    [7] 孙刚, 任尊松, 辛欣, 等. 高速动车组齿轮传动系统振动特性[J]. 机械工程学报, 2019, 55(18): 104-111.

    SUN Gang, REN Zun-song, XIN Xin, et al. Dynamics of gear transmission system of high-speed vehicle[J]. Journal of Mechanical Engineering, 2019, 55(18): 104-111.
    [8] ZHOU Z W, CHEN Z G, SPIRYAGIN M, et al. Dynamic performance of locomotive electric drive system under excitation from gear transmission and wheel-rail interaction[J]. Vehicle System Dynamics, 2022, 60(5): 1806-1828. doi: 10.1080/00423114.2021.1876887
    [9] WANG Z W, YIN Z H, ALLEN P, et al. Dynamic analysis of enhanced gear transmissions in the vehicle-track coupled dynamic system of a high-speed train[J]. Vehicle System Dynamics, 2022, 60(8): 2716-2738. doi: 10.1080/00423114.2021.1928246
    [10] FERESTAD E I, AHMADIAN M, MOLATEFI H, et al. Integrated sliding mode and direct torque controls for improving transient traction in high-speed trains[J]. Journal of Vibration and Control, 2021, 27(5/6): 629-650.
    [11] JIANG J Z, CHEN Z G, ZHAI W M, et al. Vibration characteristics of railway locomotive induced by gear tooth root crack fault under transient conditions[J]. Engineering Failure Analysis, 2020, 108: 1-17.
    [12] 冯遵委, 胡晗达, 杨震寰, 等. 基于电机架悬的转向架稳定性与控制策略[J]. 交通运输工程学报, 2024, 24(2): 152-165. doi: 10.19818/j.cnki.1671-1637.2024.02.010

    FENG Zun-wei, HU Han-da, YANG Zhen-huan, et al. Bogie stability and control strategy based on motor suspension[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 152-165. doi: 10.19818/j.cnki.1671-1637.2024.02.010
    [13] 黄彩虹, 宋春元, 范军, 等. 电机弹性架悬高速转向架蛇行频率跳变现象分析[J]. 铁道学报, 2021, 43(10): 20-28.

    HUANG Cai-hong, SONG Chun-yuan, FAN Jun, et al. Analysis on hunting frequency jump phenomenon of high-speed bogies with elastic motor suspension[J]. Journal of the China Railway Society, 2021, 43(10): 20-28.
    [14] 祁亚运, 戴焕云, 高浩, 等. 考虑驱动系统的高速列车动力学分析[J]. 振动工程学报, 2019, 32(1): 176-183.

    QI Ya-yun, DAI Huan-yun, GAO Hao, et al. Dynamic analysis of high-speed train with considering drive system[J]. Journal of Vibration Engineering, 2019, 32(1): 176-183.
    [15] 杨阳, 丁军君, 李芾, 等. 机车牵引工况下车轮磨耗研究[J]. 交通运输工程学报, 2017, 17(5): 81-89. https://transport.chd.edu.cn/article/id/201705008

    YANG Yang, DING Jun-jun, LI Fu, et al. Research on wheel wear under locomotive traction condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 81-89. https://transport.chd.edu.cn/article/id/201705008
    [16] 祁亚运, 戴焕云, 干锋, 等. 高速动车组车轮偏磨影响因素与限值研究[J]. 表面技术, 2023, 52(5): 51-60.

    QI Ya-yun, DAI Huan-yun, GAN Feng, et al. Influencing factors and limits of asymmetrical wheel wear of high-speed EMUs[J]. Surface Technology, 2023, 52(5): 51-60.
    [17] SANG H T, ZENG J, QI Y Y, et al. Study on wheel wear mechanism of high-speed train in accelerating conditions[J]. Wear, 2023, 516: 1-13.
    [18] QI Y, DAI H. Influence of motor harmonic torque on wheel wear in high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(1): 32-42. doi: 10.1177/0954409719830808
    [19] 黄彩虹, 罗仁, 曾京, 等. 系统参数对高速列车车轮踏面凹陷磨耗的影响[J]. 交通运输工程学报, 2016, 16(3): 55-62.

    HUANG Cai-hong, LUO Ren, ZENG Jing, et al. Effect of system parameters on tread-hollow wear of high-speed train wheels[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 55-62.
    [20] LI Y Y, REN Z S, ENBLOM R, et al. Wheel wear prediction on a high-speed train in China[J]. Vehicle System Dynamics, 2020, 58(12): 1839-1858. doi: 10.1080/00423114.2019.1650941
    [21] 谢清林, 陶功权, 王鹏, 等. 高寒动车组车轮磨耗演变特性及其影响分析[J]. 工程力学, 2019, 36(10): 229-237.

    XIE Qing-lin, TAO Gong-quan, WANG Peng, et al. Wheel wear evolution characteristics of alpine high-speed EMU and analysis of its influence[J]. Engineering Mechanics, 2019, 36(10): 229-237.
    [22] YE Y G, HUANG C H, ZENG J, et al. Predicting railway wheel wear by calibrating existing wear models: principle and application[J]. Reliability Engineering and System Safety, 2023, 238: 1-15.
    [23] 侯茂锐, 刘丰收, 胡晓依, 等. 我国典型高速铁路轮轨型面变化规律及匹配特性[J]. 中国铁道科学, 2020, 41(4): 99-107.

    HOU Mao-rui, LIU Feng-shou, HU Xiao-yi, et al. Typical wheel rail profile change and matching characteristics of high-speed railway in China[J]. China Railway Science, 2020, 41(4): 99-107.
    [24] 王雪萍, 张军, 马贺. 高速列车车轮踏面磨耗预测方法的研究[J]. 摩擦学学报, 2018, 38(4): 462-467.

    WANG Xue-ping, ZHANG Jun, MA He. Prediction method of wheel wear of high speed train[J]. Tribology, 2018, 38(4): 462-467.
    [25] 祁亚运, 戴焕云, 干锋, 等. 基于车轮磨耗和舒适度的CRH3型动车组型面优化研究[J]. 振动与冲击, 2021, 40(18): 148-155.

    QI Ya-yun, DAI Huan-yun, GAN Feng, et al. Wheel profile optimization of CRH3 type of EMU based on wheel wear and passenger comfort[J]. Journal of Vibration and Shock, 2021, 40(18): 148-155.
    [26] 祁亚运, 戴焕云, 吴昊, 等. 高速动车组转向架蛇行状态下的车轮磨耗分析[J]. 振动与冲击, 2023, 42(7): 38-45, 76.

    QI Ya-yun, DAI Huan-yun, WU Hao, et al. Wheel wear analysis of high-speed EMUs under bogie hunting[J]. Journal of Vibration and Shock, 2023, 42(7): 38-45, 76.
    [27] HERTZ H. On the contact of elastic solids[J]. J. Reine and Angewandte Mathematik, 1882(92): 156-171.
    [28] KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13.
    [29] 祁亚运, 李龙, 石怀龙, 等. 高寒动车组温变特性对运行性能的影响分析[J/OL]. 西南交通大学学报, 2025, DOI: 10.3969/j.issn.0258-2724.20220876.

    QI Ya-yun, LI Long, SHI Huai-long, et al. Analysis of the influence of temperature change characteristics on the operating performance of alpine high-speed EMUs[J/OL]. Journal of Southwest Jiaotong University, 2025, DOI: 10.3969/j.issn.0258-2724.20220876.
    [30] JENDEL T. Prediction of wheel profile wear—comparisons with field measurements[J]. Wear, 2002, 253(1/2): 89-99.
    [31] 祁亚运, 戴焕云, 干锋. 高速列车车轮型面多目标优化研究[J]. 机械工程学报, 2022, 58(24): 188-197.

    QI Ya-yun, DAI Huan-yun, GAN Feng. Optimization of wheel profiles for high-speed trains[J]. Journal of Mechanical Engineering, 2022, 58(24): 188-197.
    [32] 祁亚运, 戴焕云, 桑虎堂, 等. 高速动车组抗蛇行减振器参数优化研究[J]. 振动工程学报, 2023, 36(5): 1326-1334.

    QI Ya-yun, DAI Huan-yun, SANG Hu-tang, et al. Optimization study of anti-yaw damper parameters for high-speed EMUs[J]. Journal of Vibration Engineering, 2023, 36(5): 1326-1334.
  • 加载中
图(8)
计量
  • 文章访问数:  551
  • HTML全文浏览量:  108
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回