留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倒L型导流板分离双箱梁涡激振动试验

李加武 孟露 赵勃隆 肖天宝 卢斌

李加武, 孟露, 赵勃隆, 肖天宝, 卢斌. 倒L型导流板分离双箱梁涡激振动试验[J]. 交通运输工程学报, 2025, 25(3): 101-113. doi: 10.19818/j.cnki.1671-1637.2025.03.006
引用本文: 李加武, 孟露, 赵勃隆, 肖天宝, 卢斌. 倒L型导流板分离双箱梁涡激振动试验[J]. 交通运输工程学报, 2025, 25(3): 101-113. doi: 10.19818/j.cnki.1671-1637.2025.03.006
LI Jia-wu, MENG Lu, ZHAO Bo-long, XIAO Tian-bao, LU Bin. Vortex-induced vibration test of twin-box girder with inverted L-shaped plates[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 101-113. doi: 10.19818/j.cnki.1671-1637.2025.03.006
Citation: LI Jia-wu, MENG Lu, ZHAO Bo-long, XIAO Tian-bao, LU Bin. Vortex-induced vibration test of twin-box girder with inverted L-shaped plates[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 101-113. doi: 10.19818/j.cnki.1671-1637.2025.03.006

倒L型导流板分离双箱梁涡激振动试验

doi: 10.19818/j.cnki.1671-1637.2025.03.006
基金项目: 

国家自然科学基金项目 51978077

详细信息
    作者简介:

    李加武(1972-),男,安徽舒城人,长安大学教授,工学博士,从事大跨径桥梁结构风致振动及振动控制研究

  • 中图分类号: U441.4

Vortex-induced vibration test of twin-box girder with inverted L-shaped plates

Funds: 

National Natural Science Foundation of China 51978077

More Information
Article Text (Baidu Translation)
  • 摘要: 为评估某倒L型导流板分离双箱梁的涡激振动特性,以某斜拉桥的主梁为研究对象,设计并制作了缩尺比为1∶70的主梁节段模型,在风洞实验室中建立了弹簧悬挂的节段模型振动体系,可作竖弯、扭转二自由度运动;改变振动体系的竖弯、扭转等效质量和阻尼比,开展了测振风洞试验,分析了涡振的最大振幅及涡振锁定区间对质量阻尼参数的敏感性;改变倒L型导流板的特征尺寸,进行了同步测压测振风洞试验,测量了模型的表面压力及振幅,分析了表面压力的分布特征及涡振响应规律,计算了涡激气动力,分析了主梁断面局部气动力对整体气动力的相关性和贡献程度,并探讨了气动力在模型展向的分布规律。分析结果表明:质量阻尼参数及气动外形的改变均会改变分离双箱梁的涡振响应;总体上,涡振的最大振幅及锁定区间长度与Sc数呈负相关;涡振锁定现象出现时,局部气动力与整体气动力的相关性系数、贡献系数、脉动压力系数随振幅的变化规律保持一致,表面压力与气动力同步变化;风压的展向相关系数随展向间距增大呈减小趋势,并与振幅密切相关;倒L型导流板改变了气流的分离及再附位置,从而抑制了涡振的发生,其宽高比是抑振效果的关键参数。

     

  • 图  1  节段模型横断面(单位:mm)

    Figure  1.  Cross section of sectional model (unit: mm)

    图  2  节段模型风洞试验

    Figure  2.  Wind tunnel test of sectional model

    图  3  压力测点展向分布

    Figure  3.  Distribution of pressure measuring points along span-wise direction

    图  4  横断面压力测点布置

    Figure  4.  Layout of pressure measuring points on cross section

    图  5  阻尼比对涡振振幅的影响

    Figure  5.  Influence of damping ratio on amplitude of vortex-induced vibration

    图  6  最大涡振振幅随阻尼比变化曲线

    Figure  6.  Variation curve of maximum vortex-induced vibration amplitude with damping ratio

    图  7  阻尼比对涡振锁定区间的影响

    Figure  7.  Influence of damping ratio on vortex-induced vibration lock-in region

    图  8  Sc数对涡振的影响

    Figure  8.  Influence of Sc number on vortex-induced vibration

    图  9  涡振最大振幅随Sc数变化曲线

    Figure  9.  Variation curves of maximum vortex-induced vibration amplitude with Sc number

    图  10  Sc数对涡振区间的影响

    Figure  10.  Influence of Sc number on vortex-induced vibration region

    图  11  倒L型导流板特征参数对扭转涡振的影响

    Figure  11.  Influence of characteristic parameters of inverted L-shaped deflectors on torsional vortex-induced vibration

    图  12  最大振幅时测点平均压力系数

    Figure  12.  Mean pressure coefficient of measuring points at maximum vibration amplitude

    图  13  最大振幅时测点脉动压力系数

    Figure  13.  Pulsating pressure coefficients of measuring points at maximum vibration amplitude

    图  14  最大振幅时断面主频分布

    Figure  14.  Dominant frequency distribution on section at maximum vibration amplitude

    图  15  最大振幅时断面主频幅值

    Figure  15.  Amplitude of dominant frequency on section at maximum vibration amplitude

    图  16  局部区域相关系数

    Figure  16.  Correlation coefficients of local regions

    图  17  局部区域气动力贡献系数

    Figure  17.  Contribution coefficient of local aerodynamic force

    图  18  表面压力展向相关性系数

    Figure  18.  Span-wise correlation coefficient of wind pressure

    图  19  表面压力频率展向相关性系数

    Figure  19.  Span-wise correlation coefficient of surface pressure frequency

    表  1  模型主要参数相似比

    Table  1.   Similarity ratios of main parameters of model

    参数 相似比
    几何缩尺比 1∶70
    竖弯频率 70∶2.7
    扭转频率 70∶3.7
    单位长度质量 1∶702
    单位长度质量惯性矩 1∶704
    风速 竖弯1∶2.7,扭转1∶3.7
    阻尼比 1∶1
    下载: 导出CSV

    表  2  质量阻尼参数

    Table  2.   Parameters of mass and damping

    组别 工况 mv* mt* fv/Hz ft/Hz ζv/% ζt/% Sv St
    1 1 145 266 3.310 10.467 0.125 0.103 2.28 3.44
    2 0.393 0.380 7.17 12.70
    3 0.366 0.410 6.67 13.70
    4 0.620 0.506 11.30 16.90
    2 5 136 250 3.418 10.797 0.212 0.119 3.62 3.74
    6 388 8.667 0.249 0.077 4.26 3.74
    7 284 10.130 0.291 0.081 4.97 2.89
    8 326 9.455 0.338 0.084 5.78 3.44
    下载: 导出CSV

    表  3  倒L型导流板特征参数

    Table  3.   Characteristic parameters of inverted L-shaped plates

    气动措施名称 气动措施编号 k/cm g/cm k∶g
    L-1.5-0.6 L1 1.5 0.6 2.5
    L-1.5-1.0 L2 1.5 1.0 1.5
    L-2.5-1.0 L3 2.5 1.0 2.5
    下载: 导出CSV

    表  4  风压测点展向无量纲距离

    Table  4.   Span-wise dimensionless distance of wind pressure measuring points

    Δxi, 1/mm 75 150 225 300 450 525 600 675 750
    ηi 0.115 0.230 0.345 0.460 0.690 0.805 0.920 1.035 1.150
    下载: 导出CSV
  • [1] LARSEN A. Aerodynamic aspects of the final design of the 1 624 m suspension bridge across the Great Belt[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2/3): 261-285.
    [2] 华旭刚, 张建辉, 万田保, 等. 悬索桥多阶竖向涡激振动塔梁阻尼减振系统研究[J]. 桥梁建设, 2023, 53(4): 16-24.

    HUA Xu-gang, ZHANG Jian-hui, WAN Tian-bao, et al. A tower-girder damping system to control multi-mode vertical vortex-induced vibrations of suspension bridge[J]. Bridge Construction, 2023, 53(4): 16-24.
    [3] 王骑, 黄林, 高贵, 等. 不同比例尺铁路桥箱梁风洞试验涡振对比[J]. 铁道工程学报, 2025, 42(1): 64-68, 76.

    WANG Qi, HUANG Lin, GAO Gui, et al. Comparison of vortex-induced vibration in wind tunnel test of railway box girder with different model scales[J]. Journal of Railway Engineering Society, 2025, 42(1): 64-68, 76.
    [4] 马存明, 王俊鑫, 罗楠, 等. 宽幅分体箱梁涡振性能及其抑振措施[J]. 西南交通大学学报, 2019, 54(4): 724-730.

    MA Cun-ming, WANG Jun-xin, LUO Nan, et al. Vortex-induced vibration performance and control measures of wide twin-box girder[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 724-730.
    [5] 梁鹏, 王杨, 贺敏, 等. 基于实测加速度的悬索桥涡振全过程模态参数演变[J]. 中国公路学报, 2023, 36(7): 125-137.

    LIANG Peng, WANG Yang, HE Min, et al. Modal parameter evolution of a suspension bridge throughout entire process of vortex-induced vibration based on measured acceleration data[J]. China Journal of Highway and Transport, 2023, 36(7): 125-137.
    [6] 葛耀君, 赵林, 许坤. 大跨桥梁主梁涡激振动研究进展与思考[J]. 中国公路学报, 2019, 32(10): 1-18.

    GE Yao-jun, ZHAO Lin, XU Kun. Review and reflection on vortex-induced vibration of main girders of long-span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 1-18.
    [7] 郭健, 钟陈杰, 吴继熠, 等. 西堠门大桥涡激振动特征分析[J]. 工程力学, 2023, 40(增1): 39-45.

    GUO Jian, ZHONG Chen-jie, WU Ji-yi, et al. Analysis of vortex-induced vibration characteristics of Xihoumen Bridge[J]. Engineering Mechanics, 2023, 40(S1): 39-45.
    [8] XIANG Y, NOËL É, DRAGOMIRESCU E, et al. The effect of cable corrosion on dynamic response of Stonecutters Cable-Stayed Bridge model[J]. Canadian Journal of Civil Engineering, 2023, 50(4): 282-293.
    [9] KIM J H, CHOI H S, JAE LEE M, et al. The planning and design of the Gwangyang Suspension Bridge in Korea[C]//IBASE. Proceedings of the 33rd IBASE Symposium. Bangkok: Wiley, 2009: 138-147.
    [10] 刘尚培, 项海帆, 谢霁明. 风对结构的作用-风工程导论[M]. 上海: 同济大学出版社, 1992.

    LIU Shang-pei, XIANG Hai-fan, XIE Ji-ming. The Effect of Wind on Structure—Introduction to Wind Engineering[M]. Shanghai: Tongji University Press, 1992.
    [11] LI J W, YANG S C, HAO J M, et al. Advances and applications of wind engineering in exceptional terrain[J]. Journal of Traffic and Transportation Engineering(English Edition), 2024, 11(6): 1023-1209.
    [12] 项海帆, 葛耀君. 大跨度桥梁抗风技术挑战与基础研究[J]. 中国工程科学, 2011, 13(9): 8-21.

    XIANG Hai-fan, GE Yao-jun. Wind resistance challenges and fundamental research on long-span bridges[J]. Strategic Study of CAE, 2011, 13(9): 8-21.
    [13] 段青松, 马存明. 半开口和分离边箱开口断面主梁竖向涡振性能对比[J]. 交通运输工程学报, 2021, 21(4): 130-138. doi: 10.19818/j.cnki.1671-1637.2021.04.009

    DUAN Qing-song, MA Cun-ming. Comparison of vertical vortex-induced vibration characteristics between semi-open girder and separated edge-boxes open girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 130-138. doi: 10.19818/j.cnki.1671-1637.2021.04.009
    [14] 马腾飞. 质量阻尼参数和紊流对H型吊杆驰振及涡振的影响[D]. 西安: 长安大学, 2019.

    MA Teng-fei. Influence of mass and damping parameters and turbulence on galloping and vortex-induced vibration of H-shaped hanger[D]. Xi'an: Chang'an University, 2019.
    [15] 高广中, 韦立博, 马腾飞, 等. Scruton数对小宽高比H型断面典型攻角风致振动的影响[J]. 振动工程学报, 2023, 36(2): 311-318.

    GAO Guang-zhong, WEI Li-bo, MA Teng-fei, et al. Influence of Scruton number on wind-induced vibration of H-section with a small side ratio under large wind angles of attack[J]. Journal of Vibration Engineering, 2023, 36(2): 311-318.
    [16] 周帅, 罗桂军, 牛华伟, 等. 桥梁吊杆典型风致振动幅值响应质量阻尼效应研究[J]. 振动与冲击, 2021, 40(18): 63-69, 93.

    ZHOU Shuai, LUO Gui-jun, NIU Hua-wei, et al. Mass damping effects for typical wind-induced vibration amplitude responses of bridge hangers[J]. Journal of Vibration and Shock, 2021, 40(18): 63-69, 93.
    [17] 王阳. 双边箱式Ⅱ型断面涡振抑振试验与机理研究[D]. 西安: 长安大学, 2020.

    WANG Yang. Experiment and mechanism research on vortex vibration suppression of double side box type Ⅱ section[D]. Xi'an: Chang'an University, 2020.
    [18] 陈海龙. 典型断面涡激振动与涡激力展向相关性研究[D]. 长沙: 湖南大学, 2014.

    CHEN Hai-long. The vortex-induced vibration and vortex-induced forces spanwise correlation research of typical cross section[D]. Changsha: Hunan University, 2014.
    [19] LARSEN A, SAVAGE M, LAFRENIÈRE A, et al. Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 934-944.
    [20] KWOK K C S, QIN X R, FOK C H, et al. Wind-induced pressures around a sectional twin-deck bridge model: effects of gap-width on the aerodynamic forces and vortex shedding mechanisms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110: 50-61.
    [21] CHEN W L, LI H, HU H. An experimental study on the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with different gap ratios[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 132: 27-36.
    [22] LAIMA S J, LI H. Effects of gap width on flow motions around twin-box girders and vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 139: 37-49.
    [23] LEE S, KWON S D, YOON J. Reynolds number sensitivity to aerodynamic forces of twin box bridge girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 127: 59-68.
    [24] LI H, LAIMA S J, ZHANG Q Q, et al. Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124: 54-67.
    [25] MA C M, WANG J X, LI Q S, et al. Vortex-induced vibration performance and suppression mechanism for a long suspension bridge with wide twin-box girder[J]. Journal of Structural Engineering, 2018, 144(11): 04018202.
    [26] 李玲瑶, 张敬怡, 贺诗昌, 等. 不同风攻角下分离式双箱梁涡振气动力演化和局域相关性研究[J]. 中南大学学报(自然科学版), 2023, 54(1): 124-136.

    LI Ling-yao, ZHANG Jing-yi, HE Shi-chang, et al. Study on the evolution and local correlation of the aerodynamic force for the separated twin-box girder during vortex-induced vibration at different wind attack angles[J]. Journal of Central South University (Science and Technology), 2023, 54(1): 124-136.
    [27] YANG Y X, ZHOU R, GE Y J, et al. Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios[J]. Journal of Fluids and Structures, 2016, 66: 476-489.
    [28] CHEN X, MA C M, XIAN R, et al. Effects of gap configuration on vortex-induced vibration of twin-box girder and countermeasure study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 231: 105232.
    [29] GE Y J, YANG Y X, CAO F C. VIV sectional model testing and field measurement of Xihoumen Suspension Bridge with twin box girder[C]//BERT B, CHRIS G. Proceedings of the 13th International Conference on Wind Engineering. Amsterdam: Elsevier, 2011: 11-15.
    [30] MARRA A M, MANNINI C, BARTOLI G. Van der Pol-type equation for modeling vortex-induced oscillations of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(6/7): 776-785.
    [31] HANSEN S O. Vortex-induced vibrations-the Scruton number revisited[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2013, 166(10): 560-571.
    [32] WILKINSON R H. Fluctuating pressures on an oscillating square prism[J]. Aeronautical Quarterly, 1981, 32: 97-125.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  53
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08
  • 录用日期:  2024-10-21
  • 修回日期:  2024-08-19
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回