Vortex-induced vibration test of twin-box girder with inverted L-shaped plates
-
摘要: 为评估某倒L型导流板分离双箱梁的涡激振动特性,以某斜拉桥的主梁为研究对象,设计并制作了缩尺比为1∶70的主梁节段模型,在风洞实验室中建立了弹簧悬挂的节段模型振动体系,可作竖弯、扭转二自由度运动;改变振动体系的竖弯、扭转等效质量和阻尼比,开展了测振风洞试验,分析了涡振的最大振幅及涡振锁定区间对质量阻尼参数的敏感性;改变倒L型导流板的特征尺寸,进行了同步测压测振风洞试验,测量了模型的表面压力及振幅,分析了表面压力的分布特征及涡振响应规律,计算了涡激气动力,分析了主梁断面局部气动力对整体气动力的相关性和贡献程度,并探讨了气动力在模型展向的分布规律。分析结果表明:质量阻尼参数及气动外形的改变均会改变分离双箱梁的涡振响应;总体上,涡振的最大振幅及锁定区间长度与Sc数呈负相关;涡振锁定现象出现时,局部气动力与整体气动力的相关性系数、贡献系数、脉动压力系数随振幅的变化规律保持一致,表面压力与气动力同步变化;风压的展向相关系数随展向间距增大呈减小趋势,并与振幅密切相关;倒L型导流板改变了气流的分离及再附位置,从而抑制了涡振的发生,其宽高比是抑振效果的关键参数。Abstract: To evaluate the vortex-induced vibration (VIV) characteristics of a twin-box girder with inverted L-shaped plates, a cable-stayed bridge was used as the research object, a main beam sectional model with a scale ratio of 1∶70 was designed and fabricated. A sectional model vibration system with spring suspension was established in the wind tunnel laboratory, which could perform vertical bending and torsional 2-degree-of-freedom (DOF) motion. By changing the equivalent mass and damping ratio of the vertical bending and torsion of the vibration system, wind tunnel tests for determining vibration were conducted to analyze the sensitivity of the maximum amplitude and lock-in region of VIV to these parameters. By changing the characteristic size of the inverted L-shaped plates, wind tunnel tests for synchronous pressure and vibration measurement were conducted. The surface pressure and vibration amplitude of the model were measured. The distribution characteristics of surface pressure and VIV response were analyzed. The vortex-induced aerodynamic force was calculated, and the correlation and contribution of the local aerodynamic force on the main girder section to the overall aerodynamic force were analyzed. The distribution law of aerodynamic force in the span-wise direction of the model was explored. Analysis results show that changes in mass and damping parameters and aerodynamic shape can alter the VIV response of the twin-box girders. Overall, the maximum amplitude of VIV and the length of the lock-in region are negatively correlated with the Sc number. When the lock-in phenomenon occurs, the correlation coefficient, contribution coefficient, and pulsating pressure coefficient of local aerodynamic force and overall aerodynamic force remain consistent with the amplitude variation law, and the surface pressure and aerodynamic force change synchronously. The span-wise correlation coefficient of wind pressure decreases with increasing span-wise spacing and is closely related to amplitude. The inverted L-shaped plate changes the separation and reattachment position of the airflow, thereby suppressing the occurrence of VIV. Its aspect ratio is a key parameter for the vibration suppression effect.
-
Key words:
- bridge engineering /
- twin-box girder /
- wind tunnel test /
- vortex-induced vibration /
- Sc number /
- local correlation
-
表 1 模型主要参数相似比
Table 1. Similarity ratios of main parameters of model
参数 相似比 几何缩尺比 1∶70 竖弯频率 70∶2.7 扭转频率 70∶3.7 单位长度质量 1∶702 单位长度质量惯性矩 1∶704 风速 竖弯1∶2.7,扭转1∶3.7 阻尼比 1∶1 表 2 质量阻尼参数
Table 2. Parameters of mass and damping
组别 工况 mv* mt* fv/Hz ft/Hz ζv/% ζt/% Sv St 1 1 145 266 3.310 10.467 0.125 0.103 2.28 3.44 2 0.393 0.380 7.17 12.70 3 0.366 0.410 6.67 13.70 4 0.620 0.506 11.30 16.90 2 5 136 250 3.418 10.797 0.212 0.119 3.62 3.74 6 388 8.667 0.249 0.077 4.26 3.74 7 284 10.130 0.291 0.081 4.97 2.89 8 326 9.455 0.338 0.084 5.78 3.44 表 3 倒L型导流板特征参数
Table 3. Characteristic parameters of inverted L-shaped plates
气动措施名称 气动措施编号 k/cm g/cm k∶g L-1.5-0.6 L1 1.5 0.6 2.5 L-1.5-1.0 L2 1.5 1.0 1.5 L-2.5-1.0 L3 2.5 1.0 2.5 表 4 风压测点展向无量纲距离
Table 4. Span-wise dimensionless distance of wind pressure measuring points
Δxi, 1/mm 75 150 225 300 450 525 600 675 750 ηi 0.115 0.230 0.345 0.460 0.690 0.805 0.920 1.035 1.150 -
[1] LARSEN A. Aerodynamic aspects of the final design of the 1 624 m suspension bridge across the Great Belt[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2/3): 261-285. [2] 华旭刚, 张建辉, 万田保, 等. 悬索桥多阶竖向涡激振动塔梁阻尼减振系统研究[J]. 桥梁建设, 2023, 53(4): 16-24.HUA Xu-gang, ZHANG Jian-hui, WAN Tian-bao, et al. A tower-girder damping system to control multi-mode vertical vortex-induced vibrations of suspension bridge[J]. Bridge Construction, 2023, 53(4): 16-24. [3] 王骑, 黄林, 高贵, 等. 不同比例尺铁路桥箱梁风洞试验涡振对比[J]. 铁道工程学报, 2025, 42(1): 64-68, 76.WANG Qi, HUANG Lin, GAO Gui, et al. Comparison of vortex-induced vibration in wind tunnel test of railway box girder with different model scales[J]. Journal of Railway Engineering Society, 2025, 42(1): 64-68, 76. [4] 马存明, 王俊鑫, 罗楠, 等. 宽幅分体箱梁涡振性能及其抑振措施[J]. 西南交通大学学报, 2019, 54(4): 724-730.MA Cun-ming, WANG Jun-xin, LUO Nan, et al. Vortex-induced vibration performance and control measures of wide twin-box girder[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 724-730. [5] 梁鹏, 王杨, 贺敏, 等. 基于实测加速度的悬索桥涡振全过程模态参数演变[J]. 中国公路学报, 2023, 36(7): 125-137.LIANG Peng, WANG Yang, HE Min, et al. Modal parameter evolution of a suspension bridge throughout entire process of vortex-induced vibration based on measured acceleration data[J]. China Journal of Highway and Transport, 2023, 36(7): 125-137. [6] 葛耀君, 赵林, 许坤. 大跨桥梁主梁涡激振动研究进展与思考[J]. 中国公路学报, 2019, 32(10): 1-18.GE Yao-jun, ZHAO Lin, XU Kun. Review and reflection on vortex-induced vibration of main girders of long-span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 1-18. [7] 郭健, 钟陈杰, 吴继熠, 等. 西堠门大桥涡激振动特征分析[J]. 工程力学, 2023, 40(增1): 39-45.GUO Jian, ZHONG Chen-jie, WU Ji-yi, et al. Analysis of vortex-induced vibration characteristics of Xihoumen Bridge[J]. Engineering Mechanics, 2023, 40(S1): 39-45. [8] XIANG Y, NOËL É, DRAGOMIRESCU E, et al. The effect of cable corrosion on dynamic response of Stonecutters Cable-Stayed Bridge model[J]. Canadian Journal of Civil Engineering, 2023, 50(4): 282-293. [9] KIM J H, CHOI H S, JAE LEE M, et al. The planning and design of the Gwangyang Suspension Bridge in Korea[C]//IBASE. Proceedings of the 33rd IBASE Symposium. Bangkok: Wiley, 2009: 138-147. [10] 刘尚培, 项海帆, 谢霁明. 风对结构的作用-风工程导论[M]. 上海: 同济大学出版社, 1992.LIU Shang-pei, XIANG Hai-fan, XIE Ji-ming. The Effect of Wind on Structure—Introduction to Wind Engineering[M]. Shanghai: Tongji University Press, 1992. [11] LI J W, YANG S C, HAO J M, et al. Advances and applications of wind engineering in exceptional terrain[J]. Journal of Traffic and Transportation Engineering(English Edition), 2024, 11(6): 1023-1209. [12] 项海帆, 葛耀君. 大跨度桥梁抗风技术挑战与基础研究[J]. 中国工程科学, 2011, 13(9): 8-21.XIANG Hai-fan, GE Yao-jun. Wind resistance challenges and fundamental research on long-span bridges[J]. Strategic Study of CAE, 2011, 13(9): 8-21. [13] 段青松, 马存明. 半开口和分离边箱开口断面主梁竖向涡振性能对比[J]. 交通运输工程学报, 2021, 21(4): 130-138. doi: 10.19818/j.cnki.1671-1637.2021.04.009DUAN Qing-song, MA Cun-ming. Comparison of vertical vortex-induced vibration characteristics between semi-open girder and separated edge-boxes open girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 130-138. doi: 10.19818/j.cnki.1671-1637.2021.04.009 [14] 马腾飞. 质量阻尼参数和紊流对H型吊杆驰振及涡振的影响[D]. 西安: 长安大学, 2019.MA Teng-fei. Influence of mass and damping parameters and turbulence on galloping and vortex-induced vibration of H-shaped hanger[D]. Xi'an: Chang'an University, 2019. [15] 高广中, 韦立博, 马腾飞, 等. Scruton数对小宽高比H型断面典型攻角风致振动的影响[J]. 振动工程学报, 2023, 36(2): 311-318.GAO Guang-zhong, WEI Li-bo, MA Teng-fei, et al. Influence of Scruton number on wind-induced vibration of H-section with a small side ratio under large wind angles of attack[J]. Journal of Vibration Engineering, 2023, 36(2): 311-318. [16] 周帅, 罗桂军, 牛华伟, 等. 桥梁吊杆典型风致振动幅值响应质量阻尼效应研究[J]. 振动与冲击, 2021, 40(18): 63-69, 93.ZHOU Shuai, LUO Gui-jun, NIU Hua-wei, et al. Mass damping effects for typical wind-induced vibration amplitude responses of bridge hangers[J]. Journal of Vibration and Shock, 2021, 40(18): 63-69, 93. [17] 王阳. 双边箱式Ⅱ型断面涡振抑振试验与机理研究[D]. 西安: 长安大学, 2020.WANG Yang. Experiment and mechanism research on vortex vibration suppression of double side box type Ⅱ section[D]. Xi'an: Chang'an University, 2020. [18] 陈海龙. 典型断面涡激振动与涡激力展向相关性研究[D]. 长沙: 湖南大学, 2014.CHEN Hai-long. The vortex-induced vibration and vortex-induced forces spanwise correlation research of typical cross section[D]. Changsha: Hunan University, 2014. [19] LARSEN A, SAVAGE M, LAFRENIÈRE A, et al. Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 934-944. [20] KWOK K C S, QIN X R, FOK C H, et al. Wind-induced pressures around a sectional twin-deck bridge model: effects of gap-width on the aerodynamic forces and vortex shedding mechanisms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110: 50-61. [21] CHEN W L, LI H, HU H. An experimental study on the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with different gap ratios[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 132: 27-36. [22] LAIMA S J, LI H. Effects of gap width on flow motions around twin-box girders and vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 139: 37-49. [23] LEE S, KWON S D, YOON J. Reynolds number sensitivity to aerodynamic forces of twin box bridge girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 127: 59-68. [24] LI H, LAIMA S J, ZHANG Q Q, et al. Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124: 54-67. [25] MA C M, WANG J X, LI Q S, et al. Vortex-induced vibration performance and suppression mechanism for a long suspension bridge with wide twin-box girder[J]. Journal of Structural Engineering, 2018, 144(11): 04018202. [26] 李玲瑶, 张敬怡, 贺诗昌, 等. 不同风攻角下分离式双箱梁涡振气动力演化和局域相关性研究[J]. 中南大学学报(自然科学版), 2023, 54(1): 124-136.LI Ling-yao, ZHANG Jing-yi, HE Shi-chang, et al. Study on the evolution and local correlation of the aerodynamic force for the separated twin-box girder during vortex-induced vibration at different wind attack angles[J]. Journal of Central South University (Science and Technology), 2023, 54(1): 124-136. [27] YANG Y X, ZHOU R, GE Y J, et al. Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios[J]. Journal of Fluids and Structures, 2016, 66: 476-489. [28] CHEN X, MA C M, XIAN R, et al. Effects of gap configuration on vortex-induced vibration of twin-box girder and countermeasure study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 231: 105232. [29] GE Y J, YANG Y X, CAO F C. VIV sectional model testing and field measurement of Xihoumen Suspension Bridge with twin box girder[C]//BERT B, CHRIS G. Proceedings of the 13th International Conference on Wind Engineering. Amsterdam: Elsevier, 2011: 11-15. [30] MARRA A M, MANNINI C, BARTOLI G. Van der Pol-type equation for modeling vortex-induced oscillations of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(6/7): 776-785. [31] HANSEN S O. Vortex-induced vibrations-the Scruton number revisited[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2013, 166(10): 560-571. [32] WILKINSON R H. Fluctuating pressures on an oscillating square prism[J]. Aeronautical Quarterly, 1981, 32: 97-125. -
下载: