Bayesian decision method of inspection and maintenance planning for deteriorating RC bridges
-
摘要: 为了确定退化钢筋混凝土(RC)桥梁的最优检测和维护方案,进而实现结构可靠性水平与全寿命周期成本的最佳平衡,提出了一种基于风险检验(RBI)的贝叶斯决策方法;在氯离子侵蚀环境下的RC桥梁理论劣化模型基础上,发展了锈蚀损伤评估的量化指标体系,建立起基于动态贝叶斯网络的随机劣化过程模型与可靠度更新方法;综合考虑环境参数、损伤检测、维护决策等多源不确定性,引入描述检测行为的决策节点及量化预期损益的效用节点,对贝叶斯网络进行拓展,形成了基于有限记忆影响图(LIMID)的检测-维护决策体系;将上述方法应用于某在役组合梁桥的RC桥面板检测-维护规划问题。分析结果表明:该桥面板的理论锈蚀失效概率随使用年限增加而大幅上升,在服役的第40和60年将达到19.4%与45.5%,亟需采取必要的维护措施;采用本文方法对其进行检测-维护规划,获得的最优检测时间为第18、33、48及61年,其期望相对总成本为260.3,其中,检测成本为0.769,维护成本为187.8,失效成本为71.7,相较于该桥的实际维修方案,成本降幅高达36.3%;定期检查(PI)方法的相对成本为271.1,可靠度阈值(RT)方法则为270.4,证明所提方法可以提供更优的求解结果。Abstract: In order to determine the optimal inspection and maintenance plan for deteriorating reinforced concrete (RC) bridges and achieve the best balance between structural reliability level and life cycle cost, a Bayesian decision method based on risk-based inspection (RBI) was proposed. Based on the theoretical deterioration model of RC bridges in a chloride-ion erosion environment, a quantitative index system for corrosion damage assessment was developed. A stochastic deterioration process model and a reliability updating method based on a dynamic Bayesian network were established. By comprehensively considering the uncertainties of environmental parameters, damage detection, and maintenance decisions, the Bayesian network was expanded by introducing decision nodes describing inspection actions and utility nodes quantifying expected costs and benefits. A inspection and maintenance decision system based on a limited memory influence diagram (LIMID) was formed. The proposed method was applied to the inspection and maintenance planning of the RC bridge deck of an in-service composite girder bridge. Analysis results show that the theoretical corrosion failure probability of the bridge deck increases significantly with the extension of service life, reaching 19.4% and 45.5% in the 40th and 60th years, respectively. Necessary maintenance measures are urgently needed. By using the method in this article for inspection and maintenance planning, the optimal inspection times are obtained as the 18th, 33rd, 48th, and 61st years. The expected relative total cost is 260.3, including an inspection cost of 0.769, a maintenance cost of 187.8, and a failure cost of 71.7. Compared with the actual maintenance plan of the bridge, the cost is reduced by 36.3%. The relative total cost under the periodic inspection (PI) method is 271.1, and that under the reliability threshold (RT) method is 270.4. The proposed method provides an optimal solution.
-
表 1 随机变量的概率分布特性
Table 1. Probability distribution of random variables
变量 分布类型 均值 标准差 ccr/[g·(mm3)-1] 对数正态 0.035 0.003 5 c0/[g·(mm3)-1] 对数正态 0.15 0.015 Dc/(mm2·a-1) 对数正态 110.0 11.0 D/mm 对数正态 50.8 5.08 d0/mm 对数正态 19.05 0.381 fc/MPa 对数正态 28.0 5.04 αp/m 正态 0.04 0.06 表 2 检测-维护规划的参数取值
Table 2. Parameter values for I&M planning
参数 δ0.5 δm αi ri Cr Cf γ 取值 0.01 0.001 0.5 20 100 1 000 0.98 表 3 节点离散区间及条件概率表
Table 3. Discrete interval and CPT of different nodes
变量 节点状态数 离散区间边界 离散区间长度 CPT tp,t 80 [-10, 70] 1 P(tp,t∈aj),aj为tp,t的第j个离散区间 δt 200 [0, 1] 0.005 P(δt∈uj),uj为δt的第j个离散区间 δ′t 200 [0, 1] 0.005 P(δ′t∈vj),vj为δ′t的第j个离散区间 Et 2 Et = 0为失效; Et = 1为可靠 $P\left(E_t\right)= \begin{cases}P\left(d_{\mathrm{p}} \geqslant 4.43 \mathrm{~mm}\right)=P_{\mathrm{f}}(t) & E_t=0 \\ P\left(d_{\mathrm{p}}<4.43 \mathrm{~mm}\right)=1-P_{\mathrm{f}}(t) & E_t=1\end{cases}$ It 2 It = 0为不检测It = 1为检测 Ot 3 Ot = 0为不检测; Ot = 1为检测但未发现损伤; Ot = 2为检测且发现损伤 $P\left(O_t \mid I_t, \delta_t\right)= \begin{cases}1 & I_t=0, O_t=0 \\ 1-P_{\mathrm{D}}\left(\delta_t\right) & I_t=1, O_t=1 \\ P_{\mathrm{D}}\left(\delta_t\right) & I_t=1, O_t=2 \\ 0 & \text { 其他 }\end{cases}$ CⅠ,t 1 $ C_{\mathrm{I}}= \begin{cases}0 & I_t=0 \\ -C_{\mathrm{i}} & I_t=1\end{cases}$ CR,t 1 $ C_{\mathrm{R}}= \begin{cases}0 & O_t=1,2 \\ -C_{\mathrm{r}} & O_t=1,2\end{cases}$ CF,t 1 $ C_{\mathrm{F}}= \begin{cases}0 & E_t=1 \\ -C_{\mathrm{f}} & E_t=0\end{cases}$ 表 4 劣化RC桥面板的检测-维护方法最优解
Table 4. Optimal solution of I&M method for deteriorating RC deck
tI /年 18 33 48 61 Pf 0.017 0 0.008 1 0.007 1 0.005 7 PR 0.999 3 0.999 1 0.999 9 0.999 9 CI 0.284 3 0.210 0 0.155 1 0.119 3 CR 69.46 51.29 37.91 29.16 CF 11.82 4.16 2.69 1.66 表 5 四类检测-维护方法的结果对比
Table 5. Result comparison of four I&M methods
方法 相对成本 成本降幅/ % 检修间隔/ 年 寻优耗时/ s 本文LIMID方法 260.3 38.7 18, 33, 48, 61 19.4 PI方法 271.1 36.2 16, 32, 48, 64 2.3 RT方法 270.4 36.3 15, 29, 44, 59 8.9 实际维护行动 424.7 23, 32, 51 -
[1] ELLINGWOOD B R. Risk-informed condition assessment of civil infrastructure: state of practice and research issues[J]. Structure and Infrastructure Engineering, 2005, 1(1): 7-18. [2] 邵旭东, 彭建新, 晏班夫. 基于结构可靠度的劣化桥梁维护方案成本优化研究[J]. 工程力学, 2008, 25(9): 149-155, 197.SHAO Xu-dong, PENG Jian-xin, YAN Ban-fu. Structural reliability-based life-cycle cost optimization of maintenance interventions for deteriorating bridges[J]. Engineering Mechanics, 2008, 25(9): 149-155, 197. [3] 黄天立, 周浩, 王超, 等. 基于伽马过程的锈蚀钢筋混凝土桥梁检测维护策略优化[J]. 中南大学学报(自然科学版), 2015, 46(5): 1851-1861.HUANG Tian-li, ZHOU Hao, WANG Chao, et al. Optimization inspection and maintenance strategy for corrosive reinforced concrete girder bridges based on Gamma process[J]. Journal of Central South University (Science and Technology), 2015, 46(5): 1851-1861. [4] HAN X, YANG D Y, FRANGOPOL D M. Optimum maintenance of deteriorated steel bridges using corrosion resistant steel based on system reliability and life-cycle cost[J]. Engineering Structures, 2021, 243: 112633. [5] RANGEL-RAMÍREZ J G, SØRENSEN J D. Risk-based inspection planning optimisation of offshore wind turbines[J]. Structure and Infrastructure Engineering, 2012, 8(5): 473-481. [6] YANG D Y, FRANGOPOL D M. Risk-based inspection planning of deteriorating structures[J]. Structure and Infrastructure Engineering, 2021, 18(1): 109-128. [7] MORATO P G, PAPAKONSTANTINOU K G, ANDRIOTIS C P, et al. Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes[J]. Structural Safety, 2022, 94: 102140. [8] LUQUE J, STRAUB D. Risk-based optimal inspection strategies for structural systems using dynamic Bayesian networks[J]. Structural Safety, 2019, 76: 68-80. [9] YANG D Y, FRANGOPOL D M. Probabilistic optimization framework for inspection/repair planning of fatigue-critical details using dynamic Bayesian networks[J]. Computers and Structures, 2018, 198: 40-50. [10] 解兵林. 基于动态贝叶斯网络的桥梁构件性能退化及安全性研究[D]. 广州: 华南理工大学, 2020.XIE Bing-lin. Research on performance degradation and safety of bridge components based on dynamic Bayesian network[D]. Guangzhou: South China University of Technology, 2020. [11] 张建仁, 马亚飞, 王磊. 模型及参数不确定下钢筋锈蚀率动态演进分析[J]. 中南大学学报(自然科学版), 2014, 45(2): 542-549.ZHANG Jian-ren, MA Ya-fei, WANG Lei. Dynamic evolution analysis of reinforcement corrosion loss under model and parameters uncertainty[J]. Journal of Central South U niversity (Science and Technology), 2014, 45(2): 542-549. [12] THOFT-CHRISTENSEN P, JENSEN F M, MIDDLETON C R, et al. Assessment of the reliability of concrete slab bridges[C]//Springer. 7th IFIP WG7.5 Working Conference on Reliability and Optimization of Structural Systems. Berlin: Springer, 1996: 1-8. [13] VU K A T, STEWART M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22(4): 313-333. [14] STEWART M G. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure[J]. Structural Safety, 2004, 26(4): 453-470. [15] VAL D V, MELCHERS R E. Reliability of deteriorating RC slab bridges[J]. Journal of Structural Engineering, 1997, 123(12): 1638-1644. [16] KIM S, FRANGOPOL D M, ZHU B J. Probabilistic optimum inspection/repair planning to extend lifetime of deteriorating structures[J]. Journal of Performance of Constructed Facilities, 2011, 25(6): 534-544. [17] TORRES-ACOSTA A A, MARTÍNEZ-MADRID M. Residual life of corroding reinforced concrete structures in marine environment[J]. Journal of Materials in Civil Engineering, 2003, 15(4): 344-353. [18] 肖秦琨, 高嵩, 高晓光. 动态贝叶斯网络推理学习理论及应用[M]. 北京: 国防工业出版社, 2007.XIAO Qin-kun, GAO Song, GAO Xiao-guang. Theory and application of dynamic Bayesian network reasoning learning[M]. Beijing: National Defense Industry Press, 2007. [19] RACKWITZ R. Reliability analysis: a review and some perspectives[J]. Structural Safety, 2001, 23(4): 365-395. [20] WHITE C C. A survey of solution techniques for the partially observed Markov decision process[J]. Annals of Operations Research, 1991, 32(1): 215-230. [21] LOVEJOY W S. A survey of algorithmic methods for partially observed Markov decision processes[J]. Annals of Operations Research, 1991, 28(1): 47-65. [22] LAURITZEN S L, NILSSON D. Representing and solving decision problems with limited information[J]. Management Science, 2001, 47(9): 1235-1251. [23] 朱彦洁, 王瑜晨, 熊文, 等. 基于桥检领域-任务迁移的检测报告信息提取少样本模型[J]. 交通运输工程学报, 2025, 25(1): 248-262. doi: 10.19818/j.cnki.1671-1637.2025.01.018ZHU Yan-jie, WANG Yu-chen, XIONG Wen, et al. Few-shot model for extracting inspection report information based on bridge inspection domain-task transfer[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 248-262. doi: 10.19818/j.cnki.1671-1637.2025.01.018 [24] BISMUT E, STRAUB D. Optimal adaptive inspection and maintenance planning for deteriorating structural systems[J]. Reliability Engineering & System Safety, 2021, 215: 107891. [25] CONNOR R J, MAHMOUD H N, BOWMAN C A. Results of the fatigue evaluation and field monitoring of the Ⅰ-39 Northbound Bridge over the Wisconsin River[R]. Wisconsin: Wisconsin Department of Transportation, 2005. [26] Wisconsin Department of Transportation. Ⅰ-39/90/94 bridge over Wisconsin River-Columbia County[R]. Wisconsin: Wisconsin Department of Transportation, 2019. [27] BARONE G, FRANGOPOL D M. Hazard-based optimum lifetime inspection and repair planning for deteriorating structures[J]. Journal of Structural Engineering, 2013, 139(12): 04013017. [28] SOHANGHPURWALA A A. Manual on service life of corrosion-damaged reinforced concrete bridge superstructure elements[M]. Washington DC: TRB, 2006. -
下载: