留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退化RC桥梁检测-维护规划的贝叶斯决策方法

王晓明 汪帆 翟岸 赵建领

王晓明, 汪帆, 翟岸, 赵建领. 退化RC桥梁检测-维护规划的贝叶斯决策方法[J]. 交通运输工程学报, 2025, 25(3): 130-143. doi: 10.19818/j.cnki.1671-1637.2025.03.008
引用本文: 王晓明, 汪帆, 翟岸, 赵建领. 退化RC桥梁检测-维护规划的贝叶斯决策方法[J]. 交通运输工程学报, 2025, 25(3): 130-143. doi: 10.19818/j.cnki.1671-1637.2025.03.008
WANG Xiao-ming, WANG Fan, ZHAI An, ZHAO Jian-ling. Bayesian decision method of inspection and maintenance planning for deteriorating RC bridges[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 130-143. doi: 10.19818/j.cnki.1671-1637.2025.03.008
Citation: WANG Xiao-ming, WANG Fan, ZHAI An, ZHAO Jian-ling. Bayesian decision method of inspection and maintenance planning for deteriorating RC bridges[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 130-143. doi: 10.19818/j.cnki.1671-1637.2025.03.008

退化RC桥梁检测-维护规划的贝叶斯决策方法

doi: 10.19818/j.cnki.1671-1637.2025.03.008
基金项目: 

国家自然科学基金项目 52178104

中央高校基本科研业务费专项资金项目 300102214901

详细信息
    作者简介:

    王晓明(1983-),男,山西朔州人,长安大学教授,工学博士,从事长寿命桥梁建养即时决策研究

    通讯作者:

    WANG Xiao-ming (1983-), male, professor, PhD, wxm512061228@ gmail.com

  • 中图分类号: U445.7

Bayesian decision method of inspection and maintenance planning for deteriorating RC bridges

Funds: 

National Natural Science Foundation of China 52178104

Fundamental Research Funds for the Central Universities 300102214901

Article Text (Baidu Translation)
  • 摘要: 为了确定退化钢筋混凝土(RC)桥梁的最优检测和维护方案,进而实现结构可靠性水平与全寿命周期成本的最佳平衡,提出了一种基于风险检验(RBI)的贝叶斯决策方法;在氯离子侵蚀环境下的RC桥梁理论劣化模型基础上,发展了锈蚀损伤评估的量化指标体系,建立起基于动态贝叶斯网络的随机劣化过程模型与可靠度更新方法;综合考虑环境参数、损伤检测、维护决策等多源不确定性,引入描述检测行为的决策节点及量化预期损益的效用节点,对贝叶斯网络进行拓展,形成了基于有限记忆影响图(LIMID)的检测-维护决策体系;将上述方法应用于某在役组合梁桥的RC桥面板检测-维护规划问题。分析结果表明:该桥面板的理论锈蚀失效概率随使用年限增加而大幅上升,在服役的第40和60年将达到19.4%与45.5%,亟需采取必要的维护措施;采用本文方法对其进行检测-维护规划,获得的最优检测时间为第18、33、48及61年,其期望相对总成本为260.3,其中,检测成本为0.769,维护成本为187.8,失效成本为71.7,相较于该桥的实际维修方案,成本降幅高达36.3%;定期检查(PI)方法的相对成本为271.1,可靠度阈值(RT)方法则为270.4,证明所提方法可以提供更优的求解结果。

     

  • 图  1  劣化RC结构的I&M规划问题

    Figure  1.  I&M planning problem of deteriorating RC structures

    图  2  I&M规划的贝叶斯决策框架

    Figure  2.  Bayesian decision framework for I&M planning

    图  3  氯离子侵蚀引起的钢筋点蚀

    Figure  3.  Chloride-induced pitting corrosion of steel bars

    图  4  劣化RC结构DBN的拓扑结构

    Figure  4.  Topology of DBN for deteriorating RC structures

    图  5  劣化RC结构的LIMID拓扑

    Figure  5.  Topology of LIMID for deteriorating RC structures

    图  6  威斯康星河大桥的位置与实景

    Figure  6.  Location and image of Wisconsin River Bridge

    图  7  桥梁构造

    Figure  7.  Structure of bridge

    图  8  锈蚀起始时间的PDF

    Figure  8.  PDF of corrosion initiation time

    图  9  锈蚀深度的时变情况

    Figure  9.  Time-varying state of corrosion depth

    图  10  基于LIMID的决策网络预测误差

    Figure  10.  Prediction error of LIMID-based decision network

    图  11  最优策略的时变可靠度

    Figure  11.  Time-varying reliability of optimal strategy

    图  12  PI方法的最优解

    Figure  12.  Optimal solution of PI method

    图  13  RT方法的最优解

    Figure  13.  Optimal solution of RT method

    图  14  威斯康星河大桥的维修历史

    Figure  14.  Maintenance history of Wisconsin River Bridge

    表  1  随机变量的概率分布特性

    Table  1.   Probability distribution of random variables

    变量 分布类型 均值 标准差
    ccr/[g·(mm3)-1] 对数正态 0.035 0.003 5
    c0/[g·(mm3)-1] 对数正态 0.15 0.015
    Dc/(mm2·a-1) 对数正态 110.0 11.0
    D/mm 对数正态 50.8 5.08
    d0/mm 对数正态 19.05 0.381
    fc/MPa 对数正态 28.0 5.04
    αp/m 正态 0.04 0.06
    下载: 导出CSV

    表  2  检测-维护规划的参数取值

    Table  2.   Parameter values for I&M planning

    参数 δ0.5 δm αi ri Cr Cf γ
    取值 0.01 0.001 0.5 20 100 1 000 0.98
    下载: 导出CSV

    表  3  节点离散区间及条件概率表

    Table  3.   Discrete interval and CPT of different nodes

    变量 节点状态数 离散区间边界 离散区间长度 CPT
    tp,t 80 [-10, 70] 1 P(tp,taj),ajtp,t的第j个离散区间
    δt 200 [0, 1] 0.005 P(δtuj),ujδt的第j个离散区间
    δt 200 [0, 1] 0.005 P(δtvj),vjδt的第j个离散区间
    Et 2 Et = 0为失效; Et = 1为可靠 $P\left(E_t\right)= \begin{cases}P\left(d_{\mathrm{p}} \geqslant 4.43 \mathrm{~mm}\right)=P_{\mathrm{f}}(t) & E_t=0 \\ P\left(d_{\mathrm{p}}<4.43 \mathrm{~mm}\right)=1-P_{\mathrm{f}}(t) & E_t=1\end{cases}$
    It 2 It = 0为不检测It = 1为检测
    Ot 3 Ot = 0为不检测; Ot = 1为检测但未发现损伤; Ot = 2为检测且发现损伤 $P\left(O_t \mid I_t, \delta_t\right)= \begin{cases}1 & I_t=0, O_t=0 \\ 1-P_{\mathrm{D}}\left(\delta_t\right) & I_t=1, O_t=1 \\ P_{\mathrm{D}}\left(\delta_t\right) & I_t=1, O_t=2 \\ 0 & \text { 其他 }\end{cases}$
    CⅠ,t 1 $ C_{\mathrm{I}}= \begin{cases}0 & I_t=0 \\ -C_{\mathrm{i}} & I_t=1\end{cases}$
    CR,t 1 $ C_{\mathrm{R}}= \begin{cases}0 & O_t=1,2 \\ -C_{\mathrm{r}} & O_t=1,2\end{cases}$
    CF,t 1 $ C_{\mathrm{F}}= \begin{cases}0 & E_t=1 \\ -C_{\mathrm{f}} & E_t=0\end{cases}$
    下载: 导出CSV

    表  4  劣化RC桥面板的检测-维护方法最优解

    Table  4.   Optimal solution of I&M method for deteriorating RC deck

    tI /年 18 33 48 61
    Pf 0.017 0 0.008 1 0.007 1 0.005 7
    PR 0.999 3 0.999 1 0.999 9 0.999 9
    CI 0.284 3 0.210 0 0.155 1 0.119 3
    CR 69.46 51.29 37.91 29.16
    CF 11.82 4.16 2.69 1.66
    下载: 导出CSV

    表  5  四类检测-维护方法的结果对比

    Table  5.   Result comparison of four I&M methods

    方法 相对成本 成本降幅/ % 检修间隔/ 年 寻优耗时/ s
    本文LIMID方法 260.3 38.7 18, 33, 48, 61 19.4
    PI方法 271.1 36.2 16, 32, 48, 64 2.3
    RT方法 270.4 36.3 15, 29, 44, 59 8.9
    实际维护行动 424.7 23, 32, 51
    下载: 导出CSV
  • [1] ELLINGWOOD B R. Risk-informed condition assessment of civil infrastructure: state of practice and research issues[J]. Structure and Infrastructure Engineering, 2005, 1(1): 7-18.
    [2] 邵旭东, 彭建新, 晏班夫. 基于结构可靠度的劣化桥梁维护方案成本优化研究[J]. 工程力学, 2008, 25(9): 149-155, 197.

    SHAO Xu-dong, PENG Jian-xin, YAN Ban-fu. Structural reliability-based life-cycle cost optimization of maintenance interventions for deteriorating bridges[J]. Engineering Mechanics, 2008, 25(9): 149-155, 197.
    [3] 黄天立, 周浩, 王超, 等. 基于伽马过程的锈蚀钢筋混凝土桥梁检测维护策略优化[J]. 中南大学学报(自然科学版), 2015, 46(5): 1851-1861.

    HUANG Tian-li, ZHOU Hao, WANG Chao, et al. Optimization inspection and maintenance strategy for corrosive reinforced concrete girder bridges based on Gamma process[J]. Journal of Central South University (Science and Technology), 2015, 46(5): 1851-1861.
    [4] HAN X, YANG D Y, FRANGOPOL D M. Optimum maintenance of deteriorated steel bridges using corrosion resistant steel based on system reliability and life-cycle cost[J]. Engineering Structures, 2021, 243: 112633.
    [5] RANGEL-RAMÍREZ J G, SØRENSEN J D. Risk-based inspection planning optimisation of offshore wind turbines[J]. Structure and Infrastructure Engineering, 2012, 8(5): 473-481.
    [6] YANG D Y, FRANGOPOL D M. Risk-based inspection planning of deteriorating structures[J]. Structure and Infrastructure Engineering, 2021, 18(1): 109-128.
    [7] MORATO P G, PAPAKONSTANTINOU K G, ANDRIOTIS C P, et al. Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes[J]. Structural Safety, 2022, 94: 102140.
    [8] LUQUE J, STRAUB D. Risk-based optimal inspection strategies for structural systems using dynamic Bayesian networks[J]. Structural Safety, 2019, 76: 68-80.
    [9] YANG D Y, FRANGOPOL D M. Probabilistic optimization framework for inspection/repair planning of fatigue-critical details using dynamic Bayesian networks[J]. Computers and Structures, 2018, 198: 40-50.
    [10] 解兵林. 基于动态贝叶斯网络的桥梁构件性能退化及安全性研究[D]. 广州: 华南理工大学, 2020.

    XIE Bing-lin. Research on performance degradation and safety of bridge components based on dynamic Bayesian network[D]. Guangzhou: South China University of Technology, 2020.
    [11] 张建仁, 马亚飞, 王磊. 模型及参数不确定下钢筋锈蚀率动态演进分析[J]. 中南大学学报(自然科学版), 2014, 45(2): 542-549.

    ZHANG Jian-ren, MA Ya-fei, WANG Lei. Dynamic evolution analysis of reinforcement corrosion loss under model and parameters uncertainty[J]. Journal of Central South U niversity (Science and Technology), 2014, 45(2): 542-549.
    [12] THOFT-CHRISTENSEN P, JENSEN F M, MIDDLETON C R, et al. Assessment of the reliability of concrete slab bridges[C]//Springer. 7th IFIP WG7.5 Working Conference on Reliability and Optimization of Structural Systems. Berlin: Springer, 1996: 1-8.
    [13] VU K A T, STEWART M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22(4): 313-333.
    [14] STEWART M G. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure[J]. Structural Safety, 2004, 26(4): 453-470.
    [15] VAL D V, MELCHERS R E. Reliability of deteriorating RC slab bridges[J]. Journal of Structural Engineering, 1997, 123(12): 1638-1644.
    [16] KIM S, FRANGOPOL D M, ZHU B J. Probabilistic optimum inspection/repair planning to extend lifetime of deteriorating structures[J]. Journal of Performance of Constructed Facilities, 2011, 25(6): 534-544.
    [17] TORRES-ACOSTA A A, MARTÍNEZ-MADRID M. Residual life of corroding reinforced concrete structures in marine environment[J]. Journal of Materials in Civil Engineering, 2003, 15(4): 344-353.
    [18] 肖秦琨, 高嵩, 高晓光. 动态贝叶斯网络推理学习理论及应用[M]. 北京: 国防工业出版社, 2007.

    XIAO Qin-kun, GAO Song, GAO Xiao-guang. Theory and application of dynamic Bayesian network reasoning learning[M]. Beijing: National Defense Industry Press, 2007.
    [19] RACKWITZ R. Reliability analysis: a review and some perspectives[J]. Structural Safety, 2001, 23(4): 365-395.
    [20] WHITE C C. A survey of solution techniques for the partially observed Markov decision process[J]. Annals of Operations Research, 1991, 32(1): 215-230.
    [21] LOVEJOY W S. A survey of algorithmic methods for partially observed Markov decision processes[J]. Annals of Operations Research, 1991, 28(1): 47-65.
    [22] LAURITZEN S L, NILSSON D. Representing and solving decision problems with limited information[J]. Management Science, 2001, 47(9): 1235-1251.
    [23] 朱彦洁, 王瑜晨, 熊文, 等. 基于桥检领域-任务迁移的检测报告信息提取少样本模型[J]. 交通运输工程学报, 2025, 25(1): 248-262. doi: 10.19818/j.cnki.1671-1637.2025.01.018

    ZHU Yan-jie, WANG Yu-chen, XIONG Wen, et al. Few-shot model for extracting inspection report information based on bridge inspection domain-task transfer[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 248-262. doi: 10.19818/j.cnki.1671-1637.2025.01.018
    [24] BISMUT E, STRAUB D. Optimal adaptive inspection and maintenance planning for deteriorating structural systems[J]. Reliability Engineering & System Safety, 2021, 215: 107891.
    [25] CONNOR R J, MAHMOUD H N, BOWMAN C A. Results of the fatigue evaluation and field monitoring of the Ⅰ-39 Northbound Bridge over the Wisconsin River[R]. Wisconsin: Wisconsin Department of Transportation, 2005.
    [26] Wisconsin Department of Transportation. Ⅰ-39/90/94 bridge over Wisconsin River-Columbia County[R]. Wisconsin: Wisconsin Department of Transportation, 2019.
    [27] BARONE G, FRANGOPOL D M. Hazard-based optimum lifetime inspection and repair planning for deteriorating structures[J]. Journal of Structural Engineering, 2013, 139(12): 04013017.
    [28] SOHANGHPURWALA A A. Manual on service life of corrosion-damaged reinforced concrete bridge superstructure elements[M]. Washington DC: TRB, 2006.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  70
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 录用日期:  2024-12-12
  • 修回日期:  2024-10-29
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回