留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯盐侵蚀下盾构隧道管片ECC-RC叠合构造抗锈蚀劣化性能研究

赵德博 张杰威 崔宏志 包小华 陈湘生 曹成勇 沈俊

赵德博, 张杰威, 崔宏志, 包小华, 陈湘生, 曹成勇, 沈俊. 氯盐侵蚀下盾构隧道管片ECC-RC叠合构造抗锈蚀劣化性能研究[J]. 交通运输工程学报, 2025, 25(3): 160-177. doi: 10.19818/j.cnki.1671-1637.2025.03.010
引用本文: 赵德博, 张杰威, 崔宏志, 包小华, 陈湘生, 曹成勇, 沈俊. 氯盐侵蚀下盾构隧道管片ECC-RC叠合构造抗锈蚀劣化性能研究[J]. 交通运输工程学报, 2025, 25(3): 160-177. doi: 10.19818/j.cnki.1671-1637.2025.03.010
ZHAO De-bo, ZHANG Jie-wei, CUI Hong-zhi, BAO Xiao-hua, CHEN Xiang-sheng, CAO Cheng-yong, SHEN Jun. Anti-corrosion and deterioration performance of ECC-RC composite structure for shield tunnel segment under chloride attack[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 160-177. doi: 10.19818/j.cnki.1671-1637.2025.03.010
Citation: ZHAO De-bo, ZHANG Jie-wei, CUI Hong-zhi, BAO Xiao-hua, CHEN Xiang-sheng, CAO Cheng-yong, SHEN Jun. Anti-corrosion and deterioration performance of ECC-RC composite structure for shield tunnel segment under chloride attack[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 160-177. doi: 10.19818/j.cnki.1671-1637.2025.03.010

氯盐侵蚀下盾构隧道管片ECC-RC叠合构造抗锈蚀劣化性能研究

doi: 10.19818/j.cnki.1671-1637.2025.03.010
基金项目: 

国家重点研发计划 2021YFB2601000

国家自然科学基金项目 52178292

国家自然科学基金项目 52090084

详细信息
    作者简介:

    赵德博(1988-),男,山东聊城人,深圳大学研究员,工学博士,从事隧道耐久性、结构加固研究

    通讯作者:

    包小华(1983-),女,安徽宿州人,深圳大学教授,工学博士

  • 中图分类号: U455.43

Anti-corrosion and deterioration performance of ECC-RC composite structure for shield tunnel segment under chloride attack

Funds: 

National Key R&D Program of China 2021YFB2601000

National Natural Science Foundation of China 52178292

National Natural Science Foundation of China 52090084

More Information
    Corresponding author: BAO Xiao-hua (1983-), female, professor, PhD, bxh@szu.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为提升盾构隧道结构在地下氯盐环境中的服役性能,利用高韧性水泥基复合材料(ECC)的优异抗裂性能,提出了1种具有ECC-钢筋混凝土(RC)叠合构造的管片结构;考虑隧道结构服役环境的单侧氯离子侵蚀与围岩持载耦合作用特征,设计了持载-加速锈蚀试验装置及模拟管片受力状态的偏压试件;对ECC-RC叠合及普通RC管片构件进行了电化学锈蚀试验以及锈蚀劣化后力学性能测试;研究了不同持载水平下2种管片构件的锈蚀劣化规律和钢筋不均匀锈蚀特性,揭示了ECC外层对管片抗锈蚀劣化性能的提升机制。试验结果表明:由于ECC层致密结构和微裂缝开展特性,相同通电电流下ECC-RC试件通电电压约为普通RC试件的6.8~7.2倍,且钢筋锈蚀率显著低于普通RC试件,表明ECC-RC叠合构造的盾构隧道结构抗锈蚀能力显著提高;锈蚀劣化后ECC-RC试件承载能力高于相同持载水平的RC试件,但极限挠度普遍偏小;持载等级对管片构件的锈蚀劣化形态及承载性能有显著影响,劣化后极限承载力与锈蚀阶段持载水平呈负相关,持载相较无劣化极限承载力每增加1/10,RC管片的极限承载力将下降约2.6%,而ECC-RC叠合管片的极限承载力将下降约4.2%;持载下普通RC试件钢筋沿纵向产生显著不均匀锈蚀,持载裂缝位置的钢筋易出现坑蚀,且持载水平越大,不均匀特征越明显;由于ECC层在持载下多微裂缝的开裂模式,ECC-RC试件内部钢筋锈蚀分布也相对均匀。

     

  • 图  1  模拟管片服役状态的试件设计

    Figure  1.  Specimen design to simulate service state of tunnel segment

    图  2  试件尺寸和配筋设计(单位:mm)

    Figure  2.  Specimen sizes and steel bar design (unit: mm)

    图  3  ECC拉伸应力-应变曲线

    Figure  3.  Tensile stress-strain curves of ECC

    图  4  持载加速锈蚀试验装置

    Figure  4.  Sustained-loading-accelerated corrosion test setup

    图  5  持载锈蚀试验现场

    Figure  5.  Sustained-loading corrosion test site

    图  6  偏压加载试验装置

    Figure  6.  Eccentric loading test setup

    图  7  钢筋表面光纤布置

    Figure  7.  Optical cable configuration of steel bar

    图  8  预加载后受拉钢筋应变分布

    Figure  8.  Strain distribution of tensile steel bars after preloading

    图  9  普通RC试件锈蚀劣化形态(侧面)

    Figure  9.  Corrosion deterioration patterns of conventional RC specimens (side view)

    图  10  普通RC试件锈蚀劣化形态(顶面)

    Figure  10.  Corrosion deterioration patterns of conventional RC specimens (top view)

    图  11  ECC-RC试件锈蚀劣化形态(侧面)

    Figure  11.  Corrosion deterioration patterns of ECC-RC specimens (side view)

    图  12  ECC-RC试件锈蚀劣化形态(顶面)

    Figure  12.  Corrosion deterioration patterns of ECC-RC specimens (top view)

    图  13  加速锈蚀试验中通电电压变化

    Figure  13.  Applied voltage changes in accelerated corrosion tests

    图  14  锈蚀试验中的试件挠度变化

    Figure  14.  Deflection changes of specimens in corrosion tests

    图  15  普通RC试件破坏形态

    Figure  15.  Failure patterns of conventional RC specimens

    图  16  ECC-RC试件破坏形态

    Figure  16.  Failure patterns of ECC-RC specimens

    图  17  加载过程中典型试件钢筋应变分布

    Figure  17.  Strain distributions of steel bars in typical specimens during loading process

    图  18  RC试件受拉裂缝处锈蚀产物

    Figure  18.  Corrosion products at tensile cracks of RC specimen

    图  19  荷载挠度曲线

    Figure  19.  Load-deflection curves

    图  20  极限荷载随锈蚀阶段持载关系

    Figure  20.  Relationship between ultimate load and sustained load at corrosion stage

    图  21  3D扫描处理流程

    Figure  21.  3D scanning processing steps

    图  22  R-0-C锈蚀钢筋残余面积及对应的表面形貌

    Figure  22.  Residual areas and corresponding surface morphologies of R-0-C corroded steel bar

    图  23  无持载试件钢筋残余面积与锈蚀形态

    Figure  23.  Residual areas and corrosion patterns of steel bar in specimens without sustained loading

    图  24  持载试件钢筋残余面积与拉伸应变分布

    Figure  24.  Residual areas and tensile strain distributions of steel bar in specimens with sustained loading

    图  25  不均匀系数随持载变化关系

    Figure  25.  Relationship between uneven coefficients and sustained loading

    图  26  锈蚀钢筋残余面积分布直方图及拟合概率分布曲线

    Figure  26.  Histograms of residual area distribution of corroded steel bar and fitting probability distribution curves

    图  27  氯盐侵蚀环境中开裂隧道管片服役状态

    Figure  27.  Service state of cracked tunnel segments in chloride attack environment

    表  1  基体材料配合比

    Table  1.   Proportions of matrix materials kg·m-3

    ECC 水泥 矿粉 石灰石粉 硅灰 石英砂 PE纤维 减水剂
    528 566 74 111 446 20 3 388
    C50 水泥 粗骨料 细骨料
    575 957 612 230
    下载: 导出CSV

    表  2  基体材料抗压强度

    Table  2.   Compressive strengths of matrix materials MPa

    材料 28 d抗压强度 平均值 标准差
    试件1 试件2 试件3
    C50 50.0 48.2 51.2 49.8 1.2
    ECC 51.2 50.0 40.0 47.1 5.0
    下载: 导出CSV

    表  3  试件设计

    Table  3.   Specimen design

    持载+锈蚀情况 对应工况 普通RC试件 ECC-RC试件
    120 kN+锈蚀 正常服役 R-120-C E-120-C
    180 kN+锈蚀 超载服役 R-180-C E-180-C
    240 kN+锈蚀 严重超载服役 R-240-C E-240-C
    无持载+锈蚀 无持载 R-0-C E-0-C
    无持载+无锈蚀 对照 R-0-N E-0-N
    下载: 导出CSV

    表  4  纵向锈胀裂缝宽度统计

    Table  4.   Statistics for widths of longitudinal corrosive expanding cracks mm

    试件 第10天最大裂缝宽度 第30天最大裂缝宽度
    R-0-C 0.41 0.78
    R-120-C 0.53 0.63
    R-180-C 0.42 0.58
    R-240-C 0.32 0.42
    下载: 导出CSV

    表  5  实测极限承载力与挠度

    Table  5.   Actual measured ultimate bearing capacities and deflections

    试件 极限承载力/kN 极限挠度/ mm 试件 极限承载力/kN 极限挠度/ mm
    R-0-N 484.2 5.00 E-0-N 544.9 2.62
    R-0-C 458.5 3.31 E-0-C 525.7 2.64
    R-120-C 427.9 4.08 E-120-C 492.9 2.75
    R-180-C 414.9 4.65 E-180-C 460.8 4.06
    R-240-C 393.1 7.13 E-240-C 420.6 3.82
    下载: 导出CSV

    表  6  锈蚀率统计

    Table  6.   Statistics of corrosion rate

    试件 质量锈蚀率 锈蚀效率 试件 质量锈蚀率 锈蚀效率
    R-0-C 0.097 0.81 E-0-C 0.063 0.52
    R-120-C 0.110 0.92 E-120-C 0.086 0.69
    R-180-C 0.108 0.90 E-180-C 0.073 0.61
    R-240-C 0.108 0.90 E-240-C 0.095 0.79
    下载: 导出CSV

    表  7  各试件钢筋锈蚀情况统计表

    Table  7.   Statistics for corrosion of steel bar in each specimen mm2

    横截面积 未锈蚀 R-0-C E-0-C R-120-C E-120-C R-180-C E-180-C R-240-C E-240-C
    savg 247.24 224.74 231.67 221.17 228.19 223.07 229.98 219.95 224.50
    smax 252.88 251.62 247.33 237.32 243.94 246.91 253.07 249.14 240.67
    smin 242.44 206.53 213.29 201.08 210.35 192.12 206.81 138.42 200.73
    下载: 导出CSV

    表  8  锈蚀钢筋残余面积概率分布拟合曲线参数

    Table  8.   Parameters of fitting curves for probability distribution of residual area of corroded steel bar

    试件 kj x1 wj K-S统计量
    R-120-C 1.000 221.180 6.317 0.096
    0.528 0.472 217.780 224.970 6.538 3.074 0.025
    R-180-C 1.000 220.070 11.382 0.048
    0.879 0.121 220.750 239.930 10.109 2.119 0.030
    R-240-C 1.000 220.590 19.188 0.124
    0.435 0.565 207.060 230.990 21.039 7.876 0.047
    R-0-C 1.000 224.740 6.740 0.074
    0.851 0.149 222.820 235.670 4.951 4.951 0.020
    E-120-C 1.000 228.190 6.670 0.042
    0.333 0.667 222.270 231.160 5.192 5.192 0.030
    E-180-C 1.000 229.980 7.941 0.054
    0.465 0.535 228.250 231.490 9.173 6.314 0.047
    E-240-C 1.000 224.500 6.542 0.034
    0.095 0.905 213.450 225.660 5.475 5.475 0.031
    E-0-C 1.000 231.670 8.201 0.069
    0.421 0.579 223.640 237.500 4.524 4.524 0.025
    下载: 导出CSV
  • [1] 钱源. 服役期海底盾构隧道管片结构劣化机理研究[D]. 焦作: 河南理工大学, 2020.

    QIAN Yuan. Study on the degradation mechanism of lining segment of subsea shield tunnel in commission[D]. Jiaozuo: Henan Polytechnic University, 2020.
    [2] 卢锋. 隧道寿命全过程安全性演化与广义安全系数求解方法研究[D]. 成都: 西南交通大学, 2020.

    LU Feng. Life-cycle evolution of safety and calculation method of generalized factor of safety for tunnel[D]. Chengdu: Southwest Jiaotong University, 2020.
    [3] LI C, WU M X, CHEN Q, et al. Chemical and mineralogical alterations of concrete subjected to chemical attacks in complex underground tunnel environments during 20-36 years[J]. Cement and Concrete Composites, 2018, 86: 139-159.
    [4] 曹权, 刘健炜. 深圳地铁11号线地下水侵蚀性统计分析[J]. 上海应用技术学院学报(自然科学版), 2016, 16(2): 147-150.

    CAO Quan, LIU Jian-wei. Analysis on statistics of groundwater corrosion in Shenzhen Metro Line 11[J]. Journal of Shanghai Institute of Technology (Natural Science), 2016, 16(2): 147-150.
    [5] WANG X G, SONG X W, ZHANG M P, et al. Experimental comparison of corrosion unevenness and expansive cracking between accelerated corrosion methods used in laboratory research[J]. Construction and Building Materials, 2017, 153: 36-43.
    [6] YUAN J, ZHANG Z R, FU Q, et al. Ion corrosion behavior of tunnel lining concrete in complex underground salt environment[J]. Journal of Materials Research and Technology, 2023, 24: 4875-4887.
    [7] YU S, JIN H, SUN H J, et al. Study on rust layer distribution of cracked segment at tunnel arch waist under stray current and chloride ion corrosion[J]. Structural Concrete, 2023, 24(1): 434-450.
    [8] 苏三庆, 刘子毅, 王威, 等. 侵蚀环境作用下海底隧道管片耐久性研究进展[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(5): 633-645.

    SU San-qing, LIU Zi-yi, WANG Wei, et al. Research progress on durability of subsea tunnel segments under erosion environment[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2022, 54(5): 633-645.
    [9] 焦雷. 海底隧道注浆材料耐腐蚀性能研究及工程应用[J]. 现代隧道技术, 2022, 59(1): 256-262.

    JIAO Lei. Study on corrosion resistance of grouting materials for subsea tunnels and its engineering application[J]. Modern Tunnelling Technology, 2022, 59(1): 256-262.
    [10] WANG C T, LI W, WANG Y Q, et al. Chloride-induced stray current corrosion of Q235A steel and prediction model[J]. Construction and Building Materials, 2019, 219: 164-175.
    [11] CHU H Q, WANG T T, GUO M Z, et al. Effect of stray current on stability of bound chlorides in chloride and sulfate coexistence environment[J]. Construction and Building Materials, 2019, 194: 247-256.
    [12] ZHANG L, NIU D T, WEN B, et al. Concrete protective layer cracking caused by non-uniform corrosion of reinforcements[J]. Materials, 2019, 12(24): 4245.
    [13] ZHANG W P, LIU Y, YU Q Q. Time-dependent seismic fragility analysis of reinforced concrete columns subjected to chloride-induced corrosion[J]. Engineering Structures, 2024, 302: 117448.
    [14] 刘四进. 侵蚀环境作用下盾构隧道结构性能衰退演变机理研究[D]. 成都: 西南交通大学, 2017.

    LIU Si-jin. Research on evolution mechanism of structural performance degradation for shield tunnel under environment erosion[D]. Chengdu: Southwest Jiaotong University, 2017.
    [15] 张广超. 地下结构中钢筋锈胀对钢筋混凝土整体结构影响问题的研究[D]. 成都: 西南交通大学, 2013.

    ZHANG Guang-chao. Research on the effect of the corroded expansion force of rebar on reinforce concrete structure in underground structures[D]. Chengdu: Southwest Jiaotong University, 2013.
    [16] HE Z S, HE C, MA G Y, et al. Experimental investigation on the deterioration process and spatial variation of corrosion damage of RC segmental specimens under sustained load[J]. Construction and Building Materials, 2022, 349: 128731.
    [17] HE Z S, HE C, MA G Y, et al. Performance assessment of deteriorated RC shield tunnels integrated with stochastic field-based modeling for nonuniform steel corrosion[J]. Engineering Failure Analysis, 2023, 148: 107196.
    [18] ZHU W J, FRANÇSOIS R. Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam[J]. Construction and Building Materials, 2014, 51: 461-472.
    [19] LIM S, AKIYAMA M, FRANGOPOL D M. Assessment of the structural performance of corrosion-affected RC members based on experimental study and probabilistic modeling[J]. Engineering Structures, 2016, 127: 189-205.
    [20] ZHANG M Y, NISHIYA N, AKIYAMA M, et al. Effect of the correlation of steel corrosion in the transverse direction between tensile rebars on the structural performance of RC beams[J]. Construction and Building Materials, 2020, 264: 120678.
    [21] ABBAS S, SOLIMAN A M, NEHDI M L. Experimental study on settlement and punching behavior of full-scale RC and SFRC precast tunnel lining segments[J]. Engineering Structures, 2014, 72: 1-10.
    [22] CARATELLI A, MEDA A, RINALDI Z, et al. Structural behaviour of precast tunnel segments in fiber reinforced concrete[J]. Tunnelling and Underground Space Technology, 2011, 26 (2): 284-291.
    [23] FENG K, YANG R J, GENG J Y, et al. Experimental investigation of mechanical-performance deterioration of HFRC segment under combined effect of sustained loading and chloride-induced corrosion[J]. Tunnelling and Underground Space Technology, 2021, 114: 104015.
    [24] HU Z H, ELCHALAKANI M, YEHIA S, et al. Engineered cementitious composite (ECC) strengthening of reinforced concrete structures: A state-of-the-art review[J]. Journal of Building Engineering, 2024, 86: 108941.
    [25] ZHANG X C, LI B. Investigation on effect of ECC coverage condition on seismic behavior of beam-column joint[J]. Structures, 2024, 62: 106195.
    [26] BI Y T, YANG C Q, ZHOU T J, et al. Theoretical and finite element analysis of engineered cementitious composite (ECC) link slab in hollow slab beam bridge base on different load conditions[J]. Engineering Structures, 2024, 308: 118045.
    [27] JI J, ZHANG Z B, LIN M F, et al. Structural application of engineered cementitious composites (ECC): A state-of-the-art review[J]. Construction and Building Materials, 2023, 406: 133289.
    [28] LI V C. High-performance and multifunctional cement-based composite material[J]. Engineering, 2019, 5(2): 250-260.
    [29] HU X Y, HE C, FENG K, et al. Effects of polypyrrole coated rebar on corrosion behavior of tunnel lining with the combination effect of sustained loading and pre-existing cracks when exposed to chlorides[J]. Construction and Building Materials, 2019, 221: 318-331.
    [30] 刘四进, 何川, 封坤, 等. 受荷状态下盾构隧道管片锈蚀劣化破坏过程研究[J]. 土木工程学报, 2018, 51(6): 120-128.

    LIU Si-jin, HE Chuan, FENG Kun, et al. Research on corrosion deterioration and failure process of shield tunnel segments under loads[J]. China Civil Engineering Journal, 2018, 51(6): 120-128.
    [31] 邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043.

    SHAO Hua, HUANG Hong-wei, ZHANG Dong-ming, et al. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043.
    [32] JIN H, YU S. Effect of DC stray current on rebar corrosion in cracked segment of shield tunnel[J]. Construction and Building Materials, 2021, 272: 121646.
    [33] 郑帆, 史桂昀, 董必钦, 等. 钢筋混凝土通电加速锈蚀行为可视化表征[J]. 硅酸盐学报, 2018, 46(8): 1081-1086.

    ZHENG Fan, SHI Gui-yun, DONG Bi-qin, et al. Visual characterization on current accelerated corrosion profile of reinforcements[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1081-1086.
    [34] 刘一君. 基于外加恒电流的钢筋锈蚀新型测试方法[D]. 武汉: 华中科技大学, 2022.

    LIU Yi-jun. A novel detection method for corrosion of steel bars based on application of galvanostatic polarization[D]. Wuhan: Huazhong University of Science and Technology, 2022.
    [35] 姬永生, 曾平, 马会荣, 等. 荷载引起的横向裂缝区钢筋锈蚀速率[J]. 西南交通大学学报, 2013, 48(1): 36-41, 61.

    JI Yong-sheng, ZENG Ping, MA Hui-rong, et al. Experimental research on influence of transverse crack on corrosion rate of rebar in concrete[J]. Journal of Southwest Jiaotong University, 2013, 48(1): 36-41, 61.
    [36] PICANDET V, KHELIDJ A, BELLEGOU H. Crack effects on gas and water permeability of concretes[J]. Cement and Concrete Research, 2009, 39(6): 537-547.
    [37] TANG F J, LIN Z B, CHEN G D, et al. Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion[J]. Construction and Building Materials, 2014, 70: 104-117.
    [38] 武芳文, 左剑, 樊州, 等. 钢-ECC/UHPC组合梁负弯矩区力学性能研究[J]. 交通运输工程学报, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014

    WU Fang-wen, ZUO Jian, FAN Zhou, et al. Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014
  • 加载中
图(27) / 表(8)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  51
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-20
  • 录用日期:  2025-03-12
  • 修回日期:  2024-12-05
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回