Model test of structural response of end-restricted shield tunnel induced by surface loading and unloading
-
摘要: 为探明地表临时堆载产生的加卸载过程中端部受限盾构隧道结构受力变形特性,建立了相似比为1∶35的物理模型试验系统,分析了连接车站的端部受限盾构隧道和区间隧道结构在地表加卸载过程结构响应的区别;为更准确地反映盾构隧道这一复杂构筑物结构的受力变形特性,利用3D打印技术制作盾构隧道管片,拼装出高还原度的错缝无榫槽隧道模型,并与制作的车站模型连接;以车站连接部分正上方矩形堆载为例,设计了多级地表加卸载试验;通过应变片、位移计和土压力盒监测系统测量隧道结构受力变形状态,分析了附加土压力、隧道位移、管片内力和截面变形发展规律。试验结果表明:地表加卸载过程端部受限隧道拱顶附加土压力不受连接车站的影响;与车站连接的接头环与加载中间环相比弯矩更小,且分布更加均匀;端部受限盾构隧道的管环位移受到连接车站的限制,沉降曲线呈不对称分布,接头环拱顶沉降仅为边缘环的58%,且仅为对应区间隧道拱顶的42.6%;端部受限隧道加载中间环收敛变形最大,接头环收敛变形小于对称位置的边缘环;端部受限隧道接头环竖向和横向收敛较为接近,而端部自由的区间隧道竖向收敛远大于横向收敛;端部受限隧道竖向变形能力和恢复能力都受到限制,接头环竖向收敛回弹率仅3.0%;端部受限盾构隧道与区间隧道相比在地表加卸载过程结构变形更小,表现出更强的结构承载性能。研究成果可为服役盾构隧道的保护提供一定的理论指导。Abstract: To investigate the stress and deformation characteristics of end-restricted shield tunnel structures during the loading and unloading process induced by temporary surface surcharge, a physical model test system with a similarity ratio of 1:35 was established. The study analyzes the structural response differences between the end-restricted shield tunnel connecting the station and the interval tunnel during the surface loading and unloading process. To more accurately reflect the stress and deformation characteristics of the shield tunnel, a high-fidelity, staggered-joint, non-dovetail tunnel model was constructed using 3D printing technology to fabricate the shield tunnel segments. The tunnel model was then assembled and connected to the station model. A multi-stage surface loading and unloading test was designed using a rectangular load directly above the station connection. The tunnel's stress and deformation were monitored using strain gauges, displacement meter, and earth pressure box. The development of additional earth pressure, tunnel displacement, segmental internal forces, and cross-sectional deformation was analyzed. Experimental test results show that the additional earth pressure on the tunnel crown during the surface loading and unloading process is unaffected by the connection to the station. The joint ring connecting the station exhibits a smaller bending moment value and a more uniform distribution compared to the loading intermediate ring. The displacement of the tunnel rings in the end-restricted shield tunnel is constrained by the connection to the station, resulting in an asymmetric settlement curve. The settlement at the crown of the joint ring is only 58% of that at the edge ring and just 42.6% of the corresponding crown settlement in the interval tunnel. In the end-restricted shield tunnel, the intermediate ring under loading experiences the largest convergence deformation, while the joint ring's convergence deformation is smaller than that of the edge ring at the symmetric position. The vertical and horizontal convergence of the joint ring in the end-restricted tunnel are similar, whereas in the interval tunnel with a free end, the vertical convergence is significantly greater than the horizontal convergence. The vertical deformation and recovery capacity of the end-restricted tunnel are limited, with the vertical convergence rebound rate of the joint ring being only 3.0%. Compared to the interval tunnel, the end-restricted shield tunnel exhibits smaller structural deformations during the surface loading and unloading process, demonstrating stronger structural load-bearing performance. The research results provide theoretical guidance for the protection of operational shield tunnels.
-
表 1 模型相似比
Table 1. Similarity ratios of model
物理量 相似比 相似常数关系 几何尺寸 1∶35 由模型材料尺寸决定 弹性模量 1∶14.8 由模型材料属性决定 抗弯刚度 1∶22.2×106 由尺寸相似比和弹性模量相似比共同决定 应力 1∶22.2×106 与抗弯刚度相似比相同 应变 1∶35 与尺寸相似比相同 表 2 打印管片材料参数
Table 2. Material parameters of printing segment
弹性模量/ MPa 压缩强度/ MPa 泊松比 拉伸强度/ MPa 密度/ (g·cm-3) 断裂延伸率/% 2 392 91.8 0.23 56.8 1.12 11 表 3 原型隧道与模型隧道相关尺寸
Table 3. Relevant dimensions of prototype tunnel and model tunnel
尺寸 隧道外径/ mm 隧道内径/ mm 管片厚度/ mm 隧道环宽/ mm 压缩模量/ MPa 原型 6 200 5 500 350 1 250.0 34 500.0 模型 177 157 10 35.7 2 329.5 -
[1] 黄大维, 周顺华, 赖国泉, 等. 地表超载作用下盾构隧道劣化机理与特性[J]. 岩土工程学报, 2017, 39(7): 1173-1181.HUANG Da-wei, ZHOU Shun-hua, LAI Guo-quan, et al. Mechanisms and characteristics for deterioration of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1173-1181. [2] LIANG F Y, YUAN Q, SONG Z, et al. Longitudinal responses of shield tunnel subjected to surcharge considering dislocation[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2021, 174(4): 342-354. [3] 柯宅邦, 梁荣柱, 童智能, 等. 地表堆载下盾构隧道纵向非线性变形简化解析解[J]. 岩土工程学报, 2019, 41(增1): 245-248.KE Zhai-bang, LIANG Rong-zhu, TONG Zhi-neng, et al. Simplified analytical solution for nonlinear longitudinal deformation of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 245-248. [4] 王敏, 甘晓露, 杜巍, 等. 考虑土体刚度衰减的地面堆载对既有隧道影响[J]. 地下空间与工程学报, 2021, 17(6): 1965-1971, 1979.WANG Min, GAN Xiao-lu, DU Wei, et al. Effects of surface surcharge on existing tunnel considering soil stiffness degradation[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(6): 1965-1971, 1979. [5] WU H N, SHEN S L, YANG J, et al. Soil-tunnel interaction modelling for shield tunnels considering shearing dislocation in longitudinal joints[J]. Tunnelling and Underground Space Technology, 2018, 78: 168-177. [6] 康成, 梅国雄, 梁荣柱, 等. 地表临时堆载诱发下既有盾构隧道纵向变形分析[J]. 岩土力学, 2018, 39(12): 4605-4616.KANG Cheng, MEI Guo-xiong, LIANG Rong-zhu, et al. Analysis of the longitudinal deformation of existing shield tunnel induced by temporary surface surcharge[J]. Rock and Soil Mechanics, 2018, 39(12): 4605-4616. [7] 白岩, 乔婷婷, 宁晓骏, 等. 浅埋偏压隧道在变坡面下围岩压力计算分析[J]. 中外公路, 2024, 44(03): 211-219.BAI Yan, QIAO Ting-ting, NING Xiao-jun, et al. Calculation analysis of the surrounding rock pressure in shallow buried unsymmetrial tunnel under variable slope[J]. Journal of China and Foreign Highway, 2024, 44(3): 211-219. [8] 张治国, 张洋彬, 张成平, 等. 地面堆载作用下黏弹性地层盾构施工诱发土体响应时域解[J]. 岩土工程学报, 2021, 43(1): 34-42.ZHANG Zhi-guo, ZHANG Yang-bin, ZHANG Cheng-ping, et al. Time-domain solution for soil feedback induced by shield tunneling in viscoelastic strata considering influences of surcharge loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 34-42. [9] 魏新江, 洪文强, 魏纲, 等. 堆载引起临近地铁隧道的转动与错台变形计算[J]. 岩石力学与工程学报, 2018, 37(5): 1281-1289.WEI Xin-jiang, HONG Wen-qiang, WEI Gang, et al. Rotation and shearing dislocation deformation of subway tunnels due to adjacent ground stack load[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1281-1289. [10] 魏纲, 张书鸣, 余剑英, 等. 地面堆载对盾构隧道围压影响的模型试验与理论分析[J]. 岩土工程学报, 2022, 44(10): 1789-1798.WEI Gang, ZHANG Shu-ming, YU Jian-ying, et al. Model tests and theoretical analyses of influences of surface surcharge on confining pressure of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1789-1798. [11] CAO S A, LIANG R Z, KANG C, et al. Analytical prediction for longitudinal deformation of shield tunnel subjected to ground surface surcharge considering the stiffness reduction[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2024, 48(4): 925-950. [12] ZHANG Z W, ZHENG G, CHENG X S, et al. Analytical approach for longitudinal deformation of shield tunnels considering bending-shear-torsional effects of circumferential joints[J]. Tunnelling and Underground Space Technology, 2024, 152: 105946. [13] AI Q, GU Y N, YUAN Y, et al. Integrated waterproofing evaluation method for longitudinal joints of shield tunnel subjected to extreme surcharge: numerical analysis and experimental validation[J]. Tunnelling and Underground Space Technology, 2023, 131(9): 104834. [14] 刘继强, 朱旻, 郝琨, 等. 上方基坑施工引起新运营隧道变形与病害分析[J]. 中外公路, 2024, 44(3): 202-210.LIU Ji-qiang, ZHU Min, HAO Kun, et al. Deformation and damage characteristics of a newly operated tunnel caused by above foundation pit construction[J]. Journal of China and Foreign Highway, 2024, 44(3): 202-210. [15] 孙廉威, 秦建设, 洪义, 等. 地面堆载下盾构隧道管片与环缝接头的性状分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1509-1518.SUN Lian-wei, QIN Jian-she, HONG Yi, et al. Shield tunnel segment and circumferential joint performance under surface surcharge[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(8): 1509-1518. [16] 张冬梅, 朱锐, 陈淙岑, 等. 地表超载作用下锈蚀盾构隧道结构易损性分析[J]. 湖南大学学报(自然科学版), 2025, 52(1): 196-206.ZHANG Dong-mei, ZHU Rui, CHEN Cong-cen, et al. Fragility analysis on corroded shield tunnel structure under extreme surcharge[J]. Journal of Hunan University (Natural Sciences), 2025, 52(1): 196-206. [17] XU G W, HE C, LU D Y, et al. The influence of longitudinal crack on mechanical behavior of shield tunnel lining in soft-hard composite strata[J]. Thin-Walled Structures, 2019, 144: 106282. [18] 范垚垚, 郭晓航, 邓指军, 等. 正上方加卸载对盾构隧道变形的影响分析[J]. 施工技术, 2014, 43(7): 107-109.FAN Yao-yao, GUO Xiao-hang, DENG Zhi-jun, et al. Deformation analysis of shield tunnel with loading and unloading above[J]. Construction Technology, 2014, 43(7): 107-109. [19] HUANG H W, ZHANG D M. Resilience analysis of shield tunnel lining under extreme surcharge: characterization and field application[J]. Tunnelling and Underground Space Technology, 2016, 51: 301-312. [20] 刘庭金, 陈思威, 叶振威. 堆载诱发盾构隧道病害及结构安全分析[J]. 铁道工程学报, 2019, 36(11): 67-73.LIU Ting-jin, CHEN Si-wei, YE Zhen-wei. Analysis of disease and structural safety of shield tunnel under accidental surface surcharge[J]. Journal of Railway Engineering Society, 2019, 36(11): 67-73. [21] 吴庆, 杜守继. 地面堆载对既有盾构隧道结构影响的试验研究[J]. 地下空间与工程学报, 2014, 10(1): 57-66.WU Qing, DU Shou-ji. Model test on influence of ground heaped load on existing shield tunnel structure[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(1): 57-66. [22] 刘谨豪, 严远忠, 张琪, 等. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896.LIU Jin-hao, YAN Yuan-zhong, ZHANG Qi, et al. Centrifugal test and numerical analysis of impact of surface surcharge on existing tunnels[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 886-896. [23] 黄大维, 周顺华, 冯青松, 等. 地表超载对软、硬地层中既有盾构隧道影响的试验研究[J]. 岩土工程学报, 2019, 41(5): 942-949.HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, et al. Experimental study on influences of surface surcharge on existing shield tunnels buried in soft and hard soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 942-949. [24] 朱瑶宏, 柳献, 张晨光, 等. 地铁盾构隧道纵缝接头螺栓形式对比试验研究[J]. 铁道科学与工程学报, 2015, 12(6): 1427-1435.ZHU Yao-hong, LIU Xian, ZHANG Chen-guang, et al. Contrast test research on longitudinal joint with different forms of bolts in metro shield tunnel[J]. Journal of Railway Science and Engineering, 2015, 12(6): 1427-1435. [25] WANG J, LIU H Q, LIU H B. Measuring joint opening displacement between model shield-tunnel segments for reduced-scale model tests[J]. Structures, 2018, 16: 112-118. [26] 梁发云, 方衍其, 袁强, 等. 软、硬地层中局部堆载对隧道横向变形影响的试验研究[J]. 同济大学学报(自然科学版), 2021, 49(3): 322-331, 430.LIANG Fa-yun, FANG Yan-qi, YUAN Qiang, et al. Experimental study of the influence of surface surcharge on tunnel lateral deformation in soft and hard soil[J]. Journal of Tongji University (Natural Science), 2021, 49(3): 322-331, 430. [27] 黄大维, 徐长节, 罗文俊, 等. 土压平衡盾构施工模块化分步缩尺模型试验设计与应用[J]. 交通运输工程学报, 2023, 23(4): 248-257. doi: 10.19818/j.cnki.1671-1637.2023.04.018HUANG Da-wei, XU Chang-jie, LUO Wen-jun, et al. Design and application of modular step-by-step scale model test for earth pressure balance shield construction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 248-257. doi: 10.19818/j.cnki.1671-1637.2023.04.018 [28] 梁荣柱, 曹世安, 向黎明, 等. 地表堆载作用下盾构隧道纵向受力机制试验研究[J]. 岩石力学与工程学报, 2023, 42(3): 736-747.LIANG Rong-zhu, CAO Shi-an, XIANG Li-ming, et al. Experimental investigation on longitudinal mechanical mechanism of shield tunnels subjected to ground surface surcharge[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 736-747. [29] ZHANG Y J, SAADAT Y, HUANG H W, et al. Experimental study on deformational resilience of longitudinal joint in shield tunnel lining[J]. Structure and Infrastructure Engineering, 2024, 20(3): 368-379. [30] 符宇坤, 康成, 梁荣柱, 等. 地表堆卸载对浅覆土盾构隧道影响试验研究[J]. 铁道科学与工程学报, 2024, 21(1): 241-252.FU Yu-kun, KANG Cheng, LIANG Rong-zhu, et al. Experimental investigation on effect of surface loading and unloading on shield tunnel with shallow overburden[J]. Journal of Railway Science and Engineering, 2024, 21(1): 241-252. -
下载: