Lightweight pavement crack segmentation network with multi-branch feature extraction
-
摘要: 针对路面裂缝分割模型难以同时兼顾分割精度与模型复杂度的问题,提出一种轻量化路面裂缝分割网络——分层多分支级联网络(HMBCNet);根据特征图通道数与模型运算量之间的相关性,采用解耦下采样模块降低网络模型初期的运算量与参数量;利用特征提取中浅层形态信息与深层语义信息的差异性,分别设计多分支扩张模块与双分支反向残差模块对网络不同阶段进行特征提取,多分支的设计能够降低模型的复杂度,同时增强网络模型不同阶段的特征提取能力;通过级联多个子主干网络得到编码器,使特征提取模块的参数能够共享给特征融合模块,实现在不增加模型总参数量的条件下提高模型多尺度特征融合能力;在移动平台NVIDIA Jetson AGX Orin边缘设备上使用自建数据集与公开数据集(Crack500、DeepCrack537)进行试验,采用精确度、召回率、F1分数、交并比以及准确性作为模型分割性能的评价指标,将参数量、运算量以及运行速度作为模型轻量化程度的评价指标,对比提出的HMBCNet模型与LightCrackNet以及其他7种具有代表性的模型。研究结果表明:在不同场景的数据集中,HMBCNet的分割精度均高于LightCrackNet与其他7种模型,并且大幅度降低参数量与运算量,参数量仅为1.44×106,运算量为2.93 GFLOPs,相较于LightCrackNet运算量降低63%,F1分数提高1%,在测试阶段平均每张图片的处理时间能够达到211 ms,是一种有效兼顾精度与复杂度且能够应用在实际工程中的网络模型。Abstract: To address the problem in balancing segmentation accuracy and model complexity of road crack segmentation models, a lightweight pavement crack segmentation network, namely, hierarchical multi-branch cascade network (HMBCNet) was proposed. According to the correlation between the number of feature map channels and model computations, a decoupled down sampling module was used to reduce the initial computations and parameters of the network. By exploiting the differences between shallow morphological information and deep semantic information in feature extraction, the multi-branch dilated module and dual-branch inverted residuals module were designed to extract features of the network at different stages. The complexity of the model was reduced and the feature extraction capabilities of the network model at different stages were enhanced by the multi-branch design. Through cascading multiple sub-backbone networks to obtain an encoder, the parameters of the feature extraction module were shared with the feature fusion module. The multi-scale feature fusion capability of the model was thus improved without increasing the total model parameter quantities. Experiments were conducted on the mobile platform NVIDIA Jetson AGX Orin edge device using the self-built dataset and publicly available datasets (Crack500, DeepCrack537). The accuracy, recall, F1-score, intersection over union, and precision were taken as the evaluation metrics for model segmentation performance. The degree of model lightweight was assessed based on parameter quantities, computation, and running speed. The proposed HMBCNet was compared with LightCrackNet and seven other representative models. Analysis results indicate that across diverse datasets, the segmentation accuracy of HMBCNet is higher than LightCrackNet and the other seven models, and parameter quantities and computations significantly reduce. HMBCNet has only 1.44×106 parameter quantities and 2.93 GFLOPs computations, 63% lower than LightCrackNet in computations and 1% higher in the F1-score. The average processing time per image during testing reaches 211 ms. HMBCNet proves to be an effective network model that balances accuracy and complexity, suitable for practical engineering applications.
-
表 1 不同下采样模块的参数量与运算量对比
Table 1. Comparison of parameter quantities and computations of different down-sampling modules
模块 参数量/103 运算量/GFLOPs 常规下采样模块 56.5 1.89 解耦下采样模块 43.2 0.79 表 2 不同扩张模块的参数量与运算量对比
Table 2. Comparison of parameter quantities and computations of different dilated modules
模块 参数量/103 运算量/MFLOPs 混合扩张模块 155.97 639 三分支扩张模块 98.62 404 双分支扩张模块 90.37 370 表 3 Crack500数据集
Table 3. Crack500 datasets
数据集 训练集/张 验证集/张 测试集/张 Crack500 1 792 448 1 124 Crack500+数据增强 8 960 2 240 1 124 表 4 各模型在Crack500数据集上的测试指标
Table 4. Test metrics of each model in Crack500 dataset
模型 交并比/% 准确性/% 精确度/% 召回率/% F1分数/% FCN 71.55 96.79 77.44 71.10 71.54 FPN 71.76 96.82 76.28 71.43 71.24 U-Net 71.92 96.84 77.04 71.28 71.78 PSPNet 71.14 96.70 75.68 71.92 70.98 Crack U-Net 65.00 77.20 68.40 FFEDN 58.56 96.95 71.01 76.96 73.87 LightCrackNet 74.50 96.60 75.30 72.10 73.70 HMBCNet 73.16 96.92 76.07 77.31 74.69 表 5 各模型在DeepCrack537数据集上的测试指标
Table 5. Test metrics of each model in DeepCrack537 dataset
模型 交并比/% 准确性/% 精确度/% 召回率/% F1分数/% FCN 51.11 96.27 46.95 87.99 57.21 FPN 55.08 97.01 51.46 80.81 59.77 U-Net 49.97 95.92 44.21 86.31 54.43 PSPNet 51.63 96.43 46.12 81.41 55.97 HMBCNet 57.67 96.99 52.89 84.52 61.79 表 6 各模型在自建数据集上的测试指标
Table 6. Test metrics of each model in self-built dataset
模型 交并比/% 准确性/% 精确度/% 召回率/% F1分数/% FCN 47.25 91.08 75.42 56.31 58.16 FPN 49.09 91.28 79.03 53.26 57.96 U-Net 50.60 91.36 71.48 61.96 59.97 PSPNet 30.17 89.32 83.02 22.26 31.07 HMBCNet 56.71 92.53 77.67 65.25 65.91 表 7 各方法参数量、运算量以及运行速度对比
Table 7. Comparison of parameters, computations and running speeds of each model
模型 参数量/106 运算量/GFLOPs 运行速度/ms FCN 18.64 80.40 1 340 FPN 23.16 27.48 413 U-Net 24.44 31.36 526 PSPNet 1.61 27.48 229 Crack U-Net 6.00 FFEDN 35.05 262.73 LightCrackNet 1.30 8.00 HMBCNet 1.44 2.93 211 表 8 HMBCNet中各模块消融结果
Table 8. Ablation results of each module in HMBCNet
数据集 Basic DDSM MBDM DBIRM CF 交并比/% 准确性/% 精确度/% 召回率/% F1分数/% Crack500 + - - - - 70.26 96.57 73.05 77.03 72.06 + + - - - 70.94 96.64 74.83 75.12 72.26 + + + - - 72.72 96.85 74.50 76.69 73.15 + + - + - 71.39 96.83 72.43 79.10 73.38 + + + + - 73.57 96.97 75.25 76.79 73.82 + + + + + 73.16 96.92 76.07 77.31 74.69 DeepCrack537 + - - - - 52.58 96.08 45.44 86.82 56.10 + + - - - 54.21 96.49 47.82 84.96 58.00 + + + - - 53.81 96.86 51.15 75.23 57.58 + + - + - 53.74 96.17 48.29 84.04 58.03 + + + + - 55.54 96.90 53.85 73.28 59.19 + + + + + 57.67 96.99 52.89 84.52 61.79 表 9 HMBCNet结构设计消融结果
Table 9. Ablation results of HMBCNet structure design
数据集 在网络中的顺序 交并比/% 准确性/% 精确度/% 召回率/% F1分数/% DBIRM DBDM TBDM Crack500 1 2 3 73.16 96.92 76.07 77.31 74.69 2 1 3 72.54 96.82 76.39 75.68 73.85 3 2 1 70.30 96.63 73.60 76.33 72.17 DeepCrack537 1 2 3 57.67 96.99 52.89 84.52 61.79 2 1 3 55.73 96.75 50.82 82.91 59.79 3 2 1 53.77 96.52 47.74 83.83 57.54 -
[1] MOHAN A, POOBAL S. Crack detection using image processing: a critical review and analysis[J]. Alexandria Engineering Journal, 2018, 57(2): 787-798. [2] 易钰程, 王靖智, 朱路, 等. 路面缺陷智能检测系统与方法综述[J]. 华东交通大学学报, 2023, 40(5): 19-31.YI Yu-cheng, WANG Jing-zhi, ZHU Lu, et al. Review of the intelligent pavement defect detection system and methods[J]. Journal of East China Jiaotong University, 2023, 40(5): 19-31. [3] 张伟光, 钟靖涛, 呼延菊, 等. 基于VGG16-UNet语义分割模型的路面龟裂形态提取与量化[J]. 交通运输工程学报, 2023, 23(2): 166-182. doi: 10.19818/j.cnki.1671-1637.2023.02.012ZHANG Wei-guang, ZHONG Jing-tao, HUYAN Ju, et al. Extraction and quantification of pavement alligator crack morphology based on VGG16-UNet semantic segmentation model[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 166-182. doi: 10.19818/j.cnki.1671-1637.2023.02.012 [4] SHEN G. Road crack detection based on video image processing[C]//IEEE. 2016 3rd International Conference on Systems and Informatics (ICSAI). New York: IEEE, 2016: 912-917. [5] QU Z, CHEN Y X, LIU L, et al. The algorithm of concrete surface crack detection based on the genetic programming and percolation model[J]. IEEE Access, 2019, 7: 57592-57603. [6] 李海丰, 吴治龙, 聂晶晶, 等. 基于深度图像的机场道面裂缝自动检测算法[J]. 交通运输工程学报, 2020, 20(6): 250-260. doi: 10.19818/j.cnki.1671-1637.2020.06.022LI Hai-feng, WU Zhi-long, NIE Jing-jing, et al. Automatic crack detection algorithm for airport pavement based on depth image[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 250-260. doi: 10.19818/j.cnki.1671-1637.2020.06.022 [7] 田伟, 沈浩, 李晓, 等. 基于图像处理的廊道表面裂缝检测技术研究[J]. 电子设计工程, 2020, 28(5): 148-151, 156.TIAN Wei, SHEN Hao, LI Xiao, et al. Research on corridor surface crack detection technology based on image processing[J]. Electronic Design Engineering, 2020, 28(5): 148-151, 156. [8] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [9] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2017: 2117-2125. [10] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Springer. Medical Image Computing and Computer-assisted Intervention-MICCAI 2015. Berlin: Springer, 2015: 234-241. [11] 祝一帆, 王海涛, 李可, 等. 一种高精度路面裂缝检测网络结构: Crack U-Net[J]. 计算机科学, 2022, 49(1): 204-211.ZHU Yi-fan, WANG Hai-tao, LI Ke, et al. Crack U-Net: towards high quality pavement crack detection[J]. Computer Science, 2022, 49(1): 204-211. [12] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Springer. 15th European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 801-818. [13] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv, 2015, DOI: 10.48550/arXiv.1511.07122. [14] LIU C Q, ZHU C G, XIA X, et al. FFEDN: feature fusion encoder decoder network for crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15546-15557. [15] LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]//IEEE. 2017 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2017: 2736-2744. [16] MA X L, LIN S, YE S K, et al. Non-structured DNN weight pruning—Is it beneficial in any platform?[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4930-4944. [17] WANG X J, ZHANG R, SUN Y, et al. Adversarial distillation for learning with privileged provisions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3): 786-797. [18] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//IEEE. 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2017: 2881-2890. [19] WEI H R, LIU X, XU S C, et al. DWRSeg: dilation-wise residual network for real-time semantic segmentation[J]. arXiv, 2022, DOI: 10.48550/arXiv.2212.01173. [20] ZHOU Q, QU Z, JU F R. A lightweight network for crack detection with split exchange convolution and multi-scale features fusion[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(3): 2296-2306. [21] ZHANG G, LI Z Y, LI J M, et al. CFNet: cascade fusion network for dense prediction[J]. arXiv, 2023, DOI: 10.48550/arXiv.2302.06052. [22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Springer. 15th European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 3-19. [23] WANG W G, SUN G L, VAN GOOL L. Looking beyond single images for weakly supervised semantic segmentation learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(3): 1635-1649. [24] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// IEEE. 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 770-778. [25] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv, 2017, DOI: 10.48550/arXiv.1704.04861. [26] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetv2: Inverted residuals and linear bottlenecks[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2018: 4510-4520. [27] HU M, LI Y L, FANG L, et al. A2-FPN: attention aggregation based feature pyramid network for instance segmentation[C]//IEEE. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2021: 15343-15352. [28] MENG T J, GHIASI G, MAHJOURIAN R, et al. Revisiting multi-scale feature fusion for semantic segmentation[J]. arXiv, 2022, DOI: 10.48550/arXiv.2203.12683. [29] 翟军治, 孙朝云, 裴莉莉, 等. 多尺度特征增强的路面裂缝检测方法[J]. 交通运输工程学报, 2023, 23(1): 291-308. doi: 10.19818/j.cnki.1671-1637.2023.01.022ZHAI Jun-zhi, SUN Zhao-yun, PEI Li-li, et al. Pavement crack detection method based on multi-scale feature enhancement[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 291-308. doi: 10.19818/j.cnki.1671-1637.2023.01.022 [30] LI X, SUN X, MENG Y, et al. Dice loss for data-imbalanced NLP tasks[J]. arXiv, 2019, DOI: 10.48550/arXiv.1911.02855. [31] SMITH L N, TOPIN N. Super-convergence: very fast training of neural networks using large learning rates[J]. arXiv, 2017, DOI: 10.48550/arXiv.1708.07120. [32] YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1525-1535. [33] LIU Y H, YAO J, LU X H, et al. DeepCrack: a deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338: 139-153. -
下载: