留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速动车组阀控式半主动横向减振系统与试验

石怀龙 干锋 曾京 冯永华 罗仁 王勇 吴一

石怀龙, 干锋, 曾京, 冯永华, 罗仁, 王勇, 吴一. 高速动车组阀控式半主动横向减振系统与试验[J]. 交通运输工程学报, 2025, 25(3): 231-241. doi: 10.19818/j.cnki.1671-1637.2025.03.015
引用本文: 石怀龙, 干锋, 曾京, 冯永华, 罗仁, 王勇, 吴一. 高速动车组阀控式半主动横向减振系统与试验[J]. 交通运输工程学报, 2025, 25(3): 231-241. doi: 10.19818/j.cnki.1671-1637.2025.03.015
SHI Huai-long, GAN Feng, ZENG Jing, FENG Yong-hua, LUO Ren, WANG Yong, WU Yi. Valve-controlled semi-active lateral vibration reduction system for high-speed EMUs and tests[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 231-241. doi: 10.19818/j.cnki.1671-1637.2025.03.015
Citation: SHI Huai-long, GAN Feng, ZENG Jing, FENG Yong-hua, LUO Ren, WANG Yong, WU Yi. Valve-controlled semi-active lateral vibration reduction system for high-speed EMUs and tests[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 231-241. doi: 10.19818/j.cnki.1671-1637.2025.03.015

高速动车组阀控式半主动横向减振系统与试验

doi: 10.19818/j.cnki.1671-1637.2025.03.015
基金项目: 

国家自然科学基金项目 52388102

国家自然科学基金项目 52272406

四川省科技计划项目 2024NSFSC0003

四川省科技计划项目 2025ZNSFSC0034

详细信息
    作者简介:

    石怀龙(1986-),男,吉林公主岭人,西南交通大学副研究员,工学博士,从事机车车辆动力学与控制研究

    通讯作者:

    曾京(1963-),男,湖南涟源人,西南交通大学教授,工学博士

  • 中图分类号: U270.11

Valve-controlled semi-active lateral vibration reduction system for high-speed EMUs and tests

Funds: 

National Natural Science Foundation of China 52388102

National Natural Science Foundation of China 52272406

Sichuan Science and Technology Plan Project 2024NSFSC0003

Sichuan Science and Technology Plan Project 2025ZNSFSC0034

More Information
Article Text (Baidu Translation)
  • 摘要: 为保障高速动车组在既有客运专线(160 km·h-1)、提速线路(250 km·h-1)和高速客运专线(350 km·h-1)之间跨线运行时的横向平稳性,基于天棚阻尼原理和阀控式半主动减振器,设计了一种半主动横向减振控制系统,并开展了整车台架和线路试验研究;首先测试了阀控式半主动减振器的动态性能、阀控特性和响应时滞,然后开展了整车滚振台架试验,对比分析了3种轨道激励下的控制效果,进而搭载动车组低速线路运行试验,评价了车体横向振动改善效果。研究结果表明:实测的半主动控制系统时滞量约为140 ms;基于简谐振动预测原理提出控制时滞补偿方法,可补偿1/4简谐振动周期的时间,台架试验验证了时滞补偿的有效性和必要性;不同轨道谱和车速工况下整车滚振台架试验表明,定阻尼、开关阻尼和连续阻尼控制策略均有效,横向平稳性指标最大改善率为19%,减振带宽为1~20 Hz,并且车速越高,轨道谱越差,改善效果越好;线路试验表明该半主动减振系统对车体2.5 Hz以下振动都有改善,车速为160 km·h-1时平稳性指标改善率为11%。研究成果能够为轨道车辆主动悬挂技术应用提供理论与技术支撑,促进既有动车组性能改进和更高速度等级动车组创新研发。

     

  • 图  1  阀控式半主动减振器工作原理

    Figure  1.  Mechanism of valve-controlled semi-active damper

    图  2  主动悬挂控制器硬件组成

    Figure  2.  Hardware components of active suspension controller

    图  3  基于振动预测的时滞补偿原理

    Figure  3.  Principle of time delay compensation based on vibration prediction

    图  4  半主动减振器动态特性测试

    Figure  4.  Dynamic performance test of semi-active damper

    图  5  被动模式下减振器动态特性

    Figure  5.  Dynamic performance of damper under passive mode

    图  6  半主动模式下减振器动态特性

    Figure  6.  Dynamic performance of damper under semi-active mode

    图  7  控制系统时滞测量与统计

    Figure  7.  Time delay measurement and statistics of control system

    图  8  控制时滞补偿的滚振台架试验结果

    Figure  8.  Rolling vibration bench test results of controlled time delay compensation

    图  9  滚振台实测的横向平稳性指标

    Figure  9.  Lateral comfort indexes measured on rolling vibration bench

    图  10  滚振台实测的车体横向加速度频谱

    Figure  10.  Frequency spectrum of car body lateral acceleration measured on rolling vibration bench

    图  11  线路实测的平稳性指标和加速度频谱

    Figure  11.  Ride comfort indexes and acceleration spectrum measured on lines

    图  12  控制策略2的线路实测数据

    Figure  12.  Line measurement data of control strategy 2

    表  1  减振器阀系开闭状态与工作模式的关系

    Table  1.   Relation between on-off condition and working mode of damper valve

    组合 拉伸阀 压缩阀 比例阀 安全阀 减振器工作模式
    1 关闭 关闭 关闭 打开 被动
    2 关闭 关闭 打开 关闭 阻尼力连续可调
    3 打开 关闭 打开 关闭 拉伸卸荷,压缩可控
    4 关闭 打开 打开 关闭 压缩卸荷,拉伸可控
    下载: 导出CSV
  • [1] BRUNI S, GOODALL R, MEI T X, et al. Control and monitoring for railway vehicle dynamics[J]. Vehicle System Dynamics, 2007, 45(7/8): 743-779.
    [2] FU B, GIOSSI R L, PERSSON R, et al. Active suspension in railway vehicles: a literature survey[J]. Railway Engineering Science, 2020, 28(1): 3-35.
    [3] 罗仁, 石怀龙. 高速列车系统动力学[M]. 成都: 西南交通大学出版社, 2019.

    LUO Ren, SHI Huai-long. Dynamics of High-Speed Railway Vehicle System[M]. Chengdu: Southwest Jiaotong University Press, 2019.
    [4] WU Y, ZENG J, QU S, et al. Low-frequency carbody sway modelling based on low wheel-rail contact conicity analysis[J]. Shock and Vibration, 2020, 2020(1): 6671049.
    [5] 毛冉成, 曾京, 石怀龙, 等. 基于主动抗蛇行减振器的高速转向架分岔控制与复杂运动分析[J]. 交通运输工程学报, 2025, 25(1): 121-131. doi: 10.19818/j.cnki.1671-1637.2025.01.008

    MAO Ran-cheng, ZENG Jing, SHI Huai-long, et al. Bifurcation control and complex motion analysis of high-speed bogie based on active yaw damper[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 121-131. doi: 10.19818/j.cnki.1671-1637.2025.01.008
    [6] 董孝卿, 王悦明, 王林栋, 等. 高速动车组车轮踏面镟修策略研究[J]. 中国铁道科学, 2013, 34(1): 88-94.

    DONG Xiao-qing, WANG Yue-ming, WANG Lin-dong, et al. Research on the reprofiling strategy for the wheel T read of high-speed EMU[J]. China Railway Science, 2013, 34(1): 88-94.
    [7] 石怀龙, 屈升, 张大福, 等. 高速动车组线路动力学响应特性研究[J]. 铁道学报, 2019, 41(10): 30-37.

    SHI Huai-long, QU Sheng, ZHANG Da-fu, et al. Dynamic response performance analysis of high-speed trains on track[J]. Journal of the China Railway Society, 2019, 41(10): 30-37.
    [8] TENG W X, SHI H L, LUO R, et al. Improved nonlinear model of a yaw damper for simulating the dynamics of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(7): 651-665.
    [9] GOODALL R M, WARD C P, PRANDI D, et al. Railway bogie stability control from secondary yaw actuators[C]//IAVSD. 24th Symposium of the International Association for Vehicle System Dynamics. Graz: IAVSD, 2015, DOI: 10.1201/b21185-112.
    [10] WANG X, LIU B B, DI GIALLEONARDO E, et al. Application of semi-active yaw dampers for the improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation[J]. Vehicle System Dynamics, 2022, 60(8): 2608-2635.
    [11] SHI H L, ZENG J, QU S. Linear stability analysis of a high- speed rail vehicle concerning suspension parameters variation and active control[J]. Vehicle System Dynamics, 2023, 61(11): 2976-2998.
    [12] 佐佐木君章. 改善高速列车的横向乘坐舒适度—半主动悬挂减振装置的应用[J]. 铁道学报, 2004, 26(1): 105-115.

    SASAKI K. Improving lateral ride comfort of high-speed trains applying semi-active suspension system to high-speed trains[J]. Journal of the China Railway Society, 2004, 26(1): 105-115.
    [13] 郭孔辉, 隋记魁, 宋晓琳, 等. 高速车辆横向减振器模糊天棚半主动控制研究[J]. 工程设计学报, 2012, 19(3): 174-181.

    GUO Kong-hui, SUI Ji-kui, SONG Xiao-lin, et al. Analysis of fuzzy sky-hook semi-active control method for high-speed railway vehicle lateral damper[J]. Chinese Journal of Engineering Design, 2012, 19(3): 174-181.
    [14] 陈健, 王开文, 倪平涛, 等. 控制时滞对半主动悬挂车辆动力学性能的影响[J]. 铁道机车车辆, 2006, 26(4): 9-11, 62.

    CHEN Jian, WANG Kai-wen, NI Ping-tao, et al. Effects of control time lag on vehicle dynamics performances with semi-active suspensions[J]. Railway Locomotive & Car, 2006, 26(4): 9-11, 62.
    [15] 廖英英, 刘永强, 刘金喜, 等. 时滞对高速铁道车辆悬挂系统半主动控制的影响[J]. 北京交通大学学报, 2011, 35(1): 113-118.

    LIAO Ying-ying, LIU Yong-qiang, LIU Jin-xi, et al. Effects of time delay on semi-active control for high-speed railway vehicle suspension systems[J]. Journal of Beijing Jiaotong University, 2011, 35(1): 113-118.
    [16] QAZIZADEH A, STICHEL S, PERSSON R. Proposal for systematic studies of active suspension failures in rail vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(1): 199-213.
    [17] 杨建伟, 黄强, 李伟, 等. 基于加速度阻尼控制的半主动悬挂研究[J]. 铁道学报, 2006, 28(5): 21-27.

    YANG Jian-wei, HUANG Qiang, LI Wei, et al. Study on lateral semi-active suspension based on acceleration damping control[J]. Journal of the China Railway Society, 2006, 28(5): 21-27.
    [18] 邓力, 陈春俊, 杨伟芳. 高速列车横向半主动悬挂开闭环优化控制研究[J]. 振动与冲击, 2013, 32(22): 119-123.

    DENG Li, CHEN Chun-jun, YANG Wei-fang. Open/closed-loop optimal control for lateral semi-active suspension systems of a high speed train[J]. Journal of Vibration and Shock, 2013, 32(22): 119-123.
    [19] SAVARESI S M, SPELTA C. Mixed sky-hook and ADD: Approaching the filtering limits of a semi-active suspension[J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(4): 382-392.
    [20] 郭孔辉, 隋记魁, 郭耀华. 基于天棚和地棚混合阻尼的高速车辆横向减振器半主动控制[J]. 振动与冲击, 2013, 32(2): 18-23.

    GUO Kong-hui, SUI Ji-kui, GUO Yao-hua. Semi-active control method for a high-speed railway vehicle lateral damper based on skyhook and groundhook hybrid damping[J]. Journal of Vibration and Shock, 2013, 32(2): 18-23.
    [21] 邓辰鑫, 周劲松, 夏张辉, 等. 高速列车低频晃车在线检测及控制[J]. 同济大学学报(自然科学版), 2020, 48(3): 441-446.

    DENG Chen-xin, ZHOU Jin-song, XIA Zhang-hui, et al. Online detection and control of high-speed train's low-frequency swaying[J]. Journal of Tongji University (Natural Science), 2020, 48(3): 441-446.
    [22] ORVNÄS A, STICHEL S, PERSSON R. Active lateral secondary suspension with H control to improve ride comfort: simulations on a full-scale model[J]. Vehicle System Dynamics, 2011, 49(9): 1409-1422.
    [23] LEBLEBICI A S, TÜRKAY S. An H and skyhook controller design for a high speed railway vehicle[J]. IFAC-Papers OnLine, 2018, 51(9): 156-161. https://www.sciencedirect.com/science/article/pii/S2405896318307493
    [24] GOPALA RAO L V V, NARAYANAN S. Sky-hook control of nonlinear quarter car model traversing rough road matching performance of LQR control[J]. Journal of Sound and Vibration, 2009, 323(3/4/5): 515-529.
    [25] HUANG D S, ZHANG J Q, LIU Y L. The PID semi-active vibration control on nonlinear suspension system with time delay[J]. International Journal of Intelligent Transportation Systems Research, 2018, 16(2): 125-137. doi: 10.1007/s13177-017-0143-5
    [26] GAO Z Y, TIAN B, WU D P, et al. Study on semi-active control of running stability in the high-speed train under unsteady aerodynamic loads and track excitation[J]. Vehicle System Dynamics, 2021, 59(1): 101-114.
    [27] SEZER S, ATALAY A E. Application of fuzzy logic based control algorithms on a railway vehicle considering random track irregularities[J]. Journal of Vibration and Control, 2012, 18(8): 1177-1198.
    [28] 陈春俊, 陈仁涛. 高速列车多目标约束横向半主动控制算法研究[J]. 计算机测量与控制, 2021, 29(1): 120-125.

    CHEN Chun-jun, CHEN Ren-tao. Research on multi-objective constrained transverse semi-active control algorithm for high-speed trains[J]. Computer Measurement and Control, 2021, 29(1): 120-125.
    [29] QAZIZADEH A, PERSSON R, STICHEL S. On-track tests of active vertical suspension on a passenger train[J]. Vehicle System Dynamics, 2015, 53(6): 798-811. https://trid.trb.org/view/1351972
    [30] 曹洪勇, 王旭, 冯永华, 等. 高速动车组半主动横向减振系统研制[J]. 铁道车辆, 2023, 61(2): 26-29.

    CAO Hong-yong, WANG Xu, FENG Yong-hua, et al. Development of semi-active lateral damper system for high-speed EMUs[J]. Rolling Stock, 2023, 61(2): 26-29.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  43
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 录用日期:  2024-07-24
  • 修回日期:  2024-06-19
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回